Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Größe: px
Ab Seite anzeigen:

Download "Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching"

Transkript

1 Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching und 1.3 Maximum Matching 1.4 Perfektes Matching kleinsten Gewichts für bipartite Graphen 2 Aussois Workshop on Combinatorial Optimization 2001: Eureka, You Shrink! Video-Ausschnitte: William Pulleyblank: Einordnung in das Zeitgeschehen Jack Edmonds: Präsentation im RAND Workshop 1963 mit Dantzig, Gomory, etc. im Publikum 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching 1. Wende Algorithmus für Perfektes Matching an 2. Falls Perfektes Matching gefunden auch Maximum Matching 3. Sonst: 1. Entferne V(T) aus G [Denn: es ex. kein augm. Weg zu r] 2. Wende Algorithmus auf nächsten M -exp. Knoten an 3 4 Korrektheit für Blüten-Schrumpf Algorithmus für Maximum Matching Lemma: Der Algorithmus ist korrekt! Beweis: Ann.: k Mal gestartet: mit M -exp. Knoten. Seien T 1,,T k die frustrierten Bäume, jeder Baum T i hat genau einen M -exp. Knoten (Wurzel r i ) Matching am Ende besitzt genau k M-exp. Knoten. Sei A=υA(T i ) Entferne A aus G: jeder Knoten von B(T i ) ergibt eine ungerade Komponente, die Anzahl der ungeraden Komponenten von G\A ist A +k (gilt sogar = ) M ist Maximum Matching von G 5 Tutte s Matching Theorem, 1947 Theorem: Ein Graph G=(V,E) besitzt ein Perfektes Matching Für jede Teilmenge A von Knoten gilt: oc(g\a) A Bw.: : G besitzt Perfektes Matching Indirekt: es ex. A mit oc(g\a) > A Argumentation wie immer (s. Alg.) es ex. kein Perfektes Matching. : Für alle A gilt: oc(g\a) A Indirekt: G besitzt kein Perfektes Matching Algorithmus bleibt stecken, d.h. für alle Kanten vw E mit v B(T) gilt: w A(T) Betrachte: G \ A: oc(g\a) < A (wegen Baum) für diese A. 6 1

2 Analyse: Laufzeit Lemma: Der Algorithmus terminiert nach O(n) Augmentierungen, nach maximal O(n 2 ) Schrumpfungsoperationen, nach O(n 2 ) Baum- Erweiterungsschritten. Lemma: Ein Augmentierungsschritt kann in Zeit O(m log n) realisiert werden. Damit erhält man als Laufzeit für den Algorithmus O(nm log n). Bw.: Idee: nicht explizite Graph-Schrumpfung, sondern implizite Repräsentation der Menge B Übung 1.4 Perfektes Matching kleinsten Gewichts für bipartite Graphen Minimum Weight (MWPM) Idee: Primal-dual Algorithmus mit Methoden der linearen Programmierung. Ausflug: Lineare Programmierung Übung Bem.: Micali und Vazirani, 1980: O( n m): Idee: finde kürzeste augmentierende Wege, davon jeweils viele 7 8 Formulierung als Ganzzahliges Lineares Programm: Formulierung als Ganzzahliges Lineares Programm: Relaxierung: Lineares Programm: (P) 9 10 Theorem von Birkhoff Sei G ein bipartiter Graph, und sei c R E. Dann besitzt G ein perfektes Matching (P) besitzt eine zulässige Lösung. Weiterhin gilt: Falls G ein perfektes Matching besitzt, dann ist der Wert eines perfekten Matchings kleinsten Gewichts gleich des optimalen Werts von (P). Beweis: über primal-dualen Algorithmus für MWPM, alternativ: s. Übung Primal-dualer Algorithmus für MWPM in bipartiten Graphen Duales Programm zu (P): (D) Geg. sei ein Vektor y R V und eine Kante e=(u,v). Wir def.: c e := c e (y) := c e -(y u +y v ) E = := E = (y) := {e E: c e =0} Gleichheits-Kantenmenge

3 Dualität der Linearen Programmierung Dualität der Linearen Programmierung Schwacher Dualitätssatz: Sei x ein zulässiger Punkt für (P) und y zulässig für (D). Dann gilt: y T b c T x 13 Starker Dualitätssatz: Sei x* ein zulässiger Punkt für (P) und y* zulässig für (D). Dann gilt: y* T b=c T x* beide Lösungen x* und y* sind optimal 14 Complementary Slackness Theorem Complementary Slackness für MWPM Geg. sei ein Vektor y R V und eine Kante e=(u,v). Wir def.: c e := c e (y) := c e -(y u +y v ) E = := E = (y) := {e E: c e =0} Gleichheits-Menge Satz vom komplementären Schlupf: Seien x eine zulässige Lösung für (P) und y zulässig für (D). Dann sind beide Lösungen optimal für alle j gilt: Komplementäre Schlupfbedingungen: Für alle e E gilt: aus x e >0 folgt: c e = c e -(y u +y v ) = 0 Falls x der charakteristische Vektor für ein perfektes Matching M ist, dann ist dies äquivalent zu M E = Primal-Dualer Algorithmus für MWPM Idee: Geg. eine zul. Lösung für (D): Bestimme ein Perfektes Matching in G = :=(V,E = ). Falls eines in G = existiert, dann Optimallösung Denn: x P und y D zulässig und komplementäre Schlupfbedingungen erfüllt. Sonst: gibt uns Algorithmus für PM ein Matching M in G = und einen M-alternierenden Baum in dem Knoten in B(T) höchstens Kanten zur Menge A(T) besitzen. Idee: Primal-Dualer Algorithmus für MWPM für bipartite Graphen Idee: Ändere y, so dass weiterhin Kanten in M und T in E = bleiben und zusätzlich neue Kanten (von B(T) nach nicht A(T)) zu E = hinzukommen. Idee: Erhöhe y v durch ε>0 für alle v B(T), und erniedrige y v durch ε>0 für alle v A(T). Wähle größtes ε>0, so dass y zulässig bleibt. eine neue Kante kommt zu E = hinzu (falls PM ex.) Weil G bipartit ist, kann T nun auf der neuen Menge E = erweitert oder augmentiert werden

4 Algorithmus für MWPM in bipartiten Graphen (1) Sei y zul. Lösung für (D), M ein Matching in G = (2) Sei T=({r}, ), wobei r M-exponiert ist (3) Wiederhole (4) Solange ein vw E = exist. mit v B(T), w V(T): (5) Falls w ist M-exponiert, dann: (6) Augmentiere M durch Weg (w,r) (7) Falls kein M-exp. Knoten in G existiert, dann: (8) Return M ist Perfektes Matching, STOP (9) Sonst Ersetze T durch ({r}, ), r ist neuer M-exp. Knoten (10) Sonst: Erweitere T durch vw (11) Falls jedes (v,w) E mit v B(T) nur w A(T) hat, dann (12) STOP: G besitzt kein Perfektes Matching. (13) Sonst: Sei ε = min { c vw : v B(T), w V(T) } Korrektheit des Primal-Dualen Algorithmus für MWPM in bipartiten Graphen Die Korrektheit des Algorithmus folgt aus dem Complementary Slackness Theorem: x und y sind zulässige Lösungen für (P) und (D), und die complementary slackness Bedingungen sind erfüllt. Algorithmus heißt auch: ungarische Methode (14) Ersetze y 19 v durch y v +ε für v B(T), y v -ε für v A(T) 20 Laufzeit des Primal-Dualen Algorithmus für MWPM für bipartite Graphen 1.5 Perfektes Matching kleinsten Gewichts in allgemeinen Graphen Im Worst Case ist ein duale Änderung für jeden einzelnen Baumerweiterungsschritt notwendig, O(n 2 ) Baumerweiterungsschritte Zeit für eine duale Änderung: naiv: überprüfe jede Kante um ε zu berechnen insgesamt: O(n 2 m) Realisierung in Zeit O(n 3 ) möglich (Übung) Idee: Primal-dualer Algorithmus in Verbindung mit Blossom-Shrinking des ungewichteten Falls Problem: Birkhoffs Theorem gilt hier nicht mehr Relaxierung: Lineares Programm: (P) kann für allgemeine Graphen nicht ganzzahlige Werte annehmen Relaxierung: Lineares Programm: (P) kann für allgemeine Graphen nicht ganzzahlige Werte annehmen 23 Lösung (Edmonds): füge zusätzliche Ungleichungen ein 24 4

5 1.5 Perfektes Matching kleinsten Gewichts in allgemeinen Graphen Idee: Primal-dualer Algorithmus in Verbindung mit Blossom-Shrinking des ungewichteten Falls Details: s. Cook, Cunningham, Pulleyblank, Schrijver: Combinatorial Optimization, Wiley,

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

Steiner Bäume. Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS VO 15. Januar 2007

Steiner Bäume. Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS VO 15. Januar 2007 Steiner Bäume Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS11 12 VO 15. Januar 2007 Überblick Einführung Definition und Motivation Komplexität Approximationsalgorithmen Distanznetzwerk

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Durchschnitt von Matroiden

Durchschnitt von Matroiden Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr Matchings (Paarungen) in Graphen PS Algorithmen auf Graphen SS `06 Steven Birr 1 Gliederung 1) Definitionen und Beispiele 2) Algorithmus des maximalen Matchings 3) Das Personal-Zuteilungsproblem Ungarischer

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Flüsse, Schnitte, Bipartite Graphen II

Flüsse, Schnitte, Bipartite Graphen II Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Ausarbeitung über den Satz von Menger und den Satz von König

Ausarbeitung über den Satz von Menger und den Satz von König Ausarbeitung über den Satz von Menger und den Satz von König Myriam Ezzedine, 0326943 Anton Ksernofontov, 0327064 Jürgen Platzer, 0025360 Nataliya Sokolovska, 0326991 1. Beweis des Satzes von Menger Bevor

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex Netzwerk-Simplex MinCostFlow als Lineares Programm of 2 Netzwerksimplex MinCostFlow geg: gerichteter Graph G, Kapazitäten u R R 0 { }, Bedarfe b V R, Pfeilkosten c R R ges: zulässiger b-fluss f mit minimalen

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Graphenalgorithmen. Kurz-Vorstellung. Forschungsinteressen. Algorithm Engineering. Themen der VO: Probleme

Graphenalgorithmen. Kurz-Vorstellung. Forschungsinteressen. Algorithm Engineering. Themen der VO: Probleme Graphenalgorithmen Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering / Experimentelle Algorithmen, LS11 WS 2006/06 Kurz-Vorstellung Studium an Univ. Augsburg (WiMa/Math) 1983--1990 Wiss. Mitarb.

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Formale Grundlagen der Informatik

Formale Grundlagen der Informatik Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende

Mehr

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben?

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben? Kap. 4.4: B-Bäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14. VO DAP2 SS 2008 3. Juni 2008 Änderung zur Übung ab jetzt: weniger Ü-Aufgaben, aber immer

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #7: Matchingtheorie Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Matchings und erweiternde Wege Satz von Berge Das Heiratsproblem und der

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17)

Vorlesung Kombinatorische Optimierung (Wintersemester 2016/17) Vorlesung Kombinatorische Optimierung (Wintersemester 06/7) Kapitel : Flüsse und Zirkulationen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. Oktober 06) Definition. Ein Netzwerk

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Optimierung auf Netzwerken

Optimierung auf Netzwerken KAPITEL 4 Optimierung auf Netzwerken Wir untersuchen hier spezielle lineare Programme, die eine zusätzliche kombinatorische (graphentheoretische) Struktur tragen. Nutzt man diese kombinatorische Struktur

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Flüsse in Netzwerken. Zeitplan Zeitplan Netzwerke. Theorie & Algorithmen Gunnar W. Klau TU Wien

Flüsse in Netzwerken. Zeitplan Zeitplan Netzwerke. Theorie & Algorithmen Gunnar W. Klau TU Wien Zeitplan 200 Flüsse in Netwerken Theorie & Algorithmen Gunnar W. Klau TU T6 T T8 Mi,..200 Di, 16..200 Mi, 1..200 Einführung, Netwerke, Flussprobleme, Wiederholung Maximale Flüsse, Max-Flow- Min-Cut-Theorem,

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Inhaltsverzeichnis. - Kurzer Überblick Seite ) Einleitung Seite ) Vorbereitungen Seite 2. - ungewichtete und ungerichtete Graphen Seite 2

Inhaltsverzeichnis. - Kurzer Überblick Seite ) Einleitung Seite ) Vorbereitungen Seite 2. - ungewichtete und ungerichtete Graphen Seite 2 Inhaltsverzeichnis - Kurzer Überblick Seite 1-1) Einleitung Seite 1-2) Vorbereitungen Seite 2 - ungewichtete und ungerichtete Graphen Seite 2 - Erweiterung für gerichtete Graphen Seite 8-3) a) Abschätzung

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #4: Maximale Flüsse Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Definition des Maximalfluss- und des Minimalschnitt-Problems Anwendungen

Mehr

Minimal spannende Bäume

Minimal spannende Bäume Minimal spannende Bäume Ronny Harbich 4. Mai 006 (geändert 19. August 006) Vorwort Ich danke Patrick Bahr und meinem Bruder Steffen Harbich für die Unterstützung bei dieser Arbeit. Sie haben sowohl zu

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Vlad Popa 08.06.2010 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr