C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d"

Transkript

1 6.3 Beispiel: Siebensegmentanzeige Typische Anzeige für Ziffern a f g b e d c Schaltfunktionen zur Ansteuerung der Segmente Parameter: binär codierte Zahl bzw. Ziffer Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d C.40

2 6.3 Beispiel: Siebensegmentanzeige (2) 6.3 Beispiel: Siebensegmentanzeige (3) Aufstellung der Wahrheitstafel zur Ansteuerung des Segmentes d 0 f(,,, 0 ) d d d C.41 Aufstellung der KDNF nur 1-Werte betrachten don t care-werte werden ignoriert f = ( 0 ) + ( 0 ) + ( 0 ) + ( 0 ) + ( 0 ) + ( 0 ) + ( 0 ) KDNF sicherlich nicht minimal ungeeignet zur Übertragung in eine kostengünstige Schaltung C.42 7 Äquivalenz von Schaltfunktionen Wegen der Eindeutigkeit der Darstellung als KDNF bzw. KKNF gilt: zwei Schaltfunktionen sind äquivalent, wenn sie sich auf die selbe KDNF oder KKNF zurückfürhen lassen bis auf Vertauschungen bzgl. des Kommutativitätsaioms Umformungen nach den Gesetzen der Boolschen Algebra Erhaltung der Schaltfunktion Nutzen z.b. Minimisieren von Schaltfunktionen 8 Minimisierung Suche nach einer minimalen Darstellung einer Schaltfunktion Größenbegriff notwendig Menge der notwendigen Gatter Anzahl der Variablen Anzahl der notwendigen ICs Anzahl der notwendigen Kontakte Größenbegriff von den Kosten bestimmt Größenbegriff hier Anzahl der booleschen Operationen C.43 C.44

3 8.1 Grundlage der Minimisierung Gesetze der Booleschen Algebra insbesondere A B+ A B = A 8.1 Grundlage der Minimisierung (2) Beispiel: Oderfunktion KDNF: Umwandlung: f(, ) = + + Beweis A B+ A B = A ( B+ B) A ( B+ B) = A 1 A 1 = A wg. (Kommutativität u.) Distributivität wg. komplementärem Element wg. neutralem Element f(, ) = + + f(, ) = + ( + ) f(, ) = + 1 f(, ) = + f(, ) = + + f(, ) f(, ) = = ( + ) + + Distributivität, neutrales Element Absorption C.45 C Vorgehensweise Manuelles Minimisieren Umformen (z.b. der KDNF) nach den Regeln der Booleschen Algebra Algorithmisches Verfahren Verfahren nach Quine/McCluskey kann durch ein Programm angewandt werden geeignet für Schaltfunktionen mit vielen Variablen Graphische Verfahren Händlersche Kreisgraph Karnaugh-Veitch Diagramme geeignet für Schaltfunktionen mit wenigen Variablen 8.3 Karnaugh-Veitch-Diagramme Ausgangspunkt KDNF (oder KKNF) Rechteckschema je ein Feld für jeden möglichen Minterm (Materm) Anordnung der Felder, so dass benachbarte Felder bzw. Minterme zusammenfassbar Diagramm für zweistellige Schaltfunktion Funktion: f(, ) Diagramm: C.47 C.48

4 8.3 Karnaugh-Veitch-Diagramme (2) 8.4 Beispiel: Oderfunktion Diagrammaufbau jede Variable halbiert das Diagramm in zwei zusammenhängende Teile erster Teil für zweiter Teil für Variable i i i Variable Aufstellen der KDNF f(, ) = + + Eintragung in das Diagramm Eintragung einer 1, wenn Minterm benötigt wird Eintragung einer 0, wenn Minterm nicht benötigt wird benachbarte Felder unterscheiden sich nur um das Vorzeichen einer Variablen in den beiden Mintermen Eintragung auch direkt aus Wahrheitstafel möglich C.49 C Beispiel: Oderfunktion (2) 8.4 Beispiel: Oderfunktion (3) Markierung möglichst weniger und möglichst großer zusammenhängender Bereiche mit 1en nur zusammenhängende rechteckige Bereiche mit 2 n Elementen erlaubt alle 1 Felder müssen schließlich markiert sein 0 1 Alternative Markierung Markierung nicht so groß wie möglich, aber alle 1en markiert markierten Bereiche ergeben Produktterme, die summiert werden: markierten Bereiche ergeben Produktterme, die summiert werden: f(, ) = + f(, ) = + Funktion korrekt, jedoch nicht minimal Produktterme ergeben sich aus den Variablen die lediglich negiert oder ohne Negation vorkommen C.51 C.52

5 8.5 Beispiel: Eingabemelder 8.6 Beispiel: Eingabemelder (2) Dreistellige Schaltfunktionen Karnaugh-Veitch-Diagramm Halbierungen des Diagramms Variable Variable Wichtig: die Bereiche für gehören zusammen Vorstellung: Diagramm ist an den Rändern zusammengeklebt C.53 C Beispiel: Eingabemelder (3) 8.7 Beispiel: Eingabemelder (4) Halbierungen des Diagramms Variable Belegen des Diagramms aus der Wahrheitstafel Funktion aus Folie C.38 f 2 Eintragung der don t care -Werte 0 1 d 0 1 d d d don t care -Werte können mitmarkiert werden oder nicht Ziel: möglichst große Bereiche markieren markierte don t care -Werte werden später zu 1, andere zu 0 C.55 C.56

6 8.7 Beispiel: Eingabemelder (5) Markierungen für f 2 zwei Bereiche 8.8 Beispiel: unbestimmte Funktion Gegebene Belegung aus der Wahrheitstafel Gesucht ist die beste Markierung 0 1 d d 1 1 d d d 1 1 d d markierten Bereiche ergeben Produktterme, die summiert werden: f 2 (,, ) = + markierten Bereiche ergeben Produktterme, die summiert werden: f(,, ) = + C.57 C Beispiel: weitere Funktion Gegebene weitere Belegung aus der Wahrheitstafel Gesucht ist die beste Markierung Minimale DNF gefunden f(,, ) = Vierstellige Funktionen Karnaugh-Veitch-Diagramm für vierstellige Schaltfunktion C.59 C.60

7 8.10 Vierstellige Funktionen (2) Halbierungen für vierstellige Schaltfunktion 8.10 Vierstellige Funktionen (3) Halbierungen für vierstellige Schaltfunktion 3 C.61 4 C Vierstellige Funktionen (4) Markierungen insbesonder folgende Markierung möglich 8.11 Beispiel: 22-Multiplizierer Binärer Multiplizierer für 2 mal 2 Eingänge Binärdarstellung von Zahlen von 0 bis 3 bzw. 0 bis 15 X X X Vorstellung: Diagramm ist an den Seiten jeweils zusammengeklebt zwei Eingänge a 1 und a 0 zwei Eingänge b 1 und b 0 vier Ausgänge y 3, y 2, y 1 und y 0 X X X X X X X X X C.63 C.64

8 8.12 Beispiel: 22-Multiplizierer (2) 8.12 Beispiel: 22-Multiplizierer (3) b a 1 = a 0 = = b 0 = 2 y 3 y 2 y 1 y = 0 0 = 1 0 = = = = = = = = = = = = = = C.65 Karnaugh-Veitch-Diagramm für y 0 : Markierte Bereiche: y 0 = C Beispiel: 22-Multiplizierer (4) 8.12 Beispiel: 22-Multiplizierer (5) Karnaugh-Veitch-Diagramm für y 1 : Karnaugh-Veitch-Diagramm für y 2 : Markierte Bereiche: y 1 = Markierte Bereiche: y 2 = + C.67 C.68

9 8.12 Beispiel: 22-Multiplizierer (6) Karnaugh-Veitch-Diagramm für y 3 : Zusammenfassung Markierungsregeln rechteckige Bereiche mit 2 n Elementen markieren Achtung: Diagramm gilt als oben und unten zusammengenäht alle 1-Werte müssen markiert werden möglichst große Bereiche markieren möglichst wenig Bereiche markieren Markierte Bereiche: y 3 = C.69 C.70 9 Schaltnetze Mehrere Schaltfunktionen (Combinational Networks) sind von gleichen Eingangsvariablen abhängig f 1 (,,, n ) f 2 (,,, n ) f m (,,, n ) entspricht Schaltung mit mehreren Ausgängen n Kombinatorische Logik f 1 () f 2 () f m () 9 Schaltnetze (2) Gerichteter, azyklischer Graph Gatter, Ein- und Ausgänge sind Knoten Verbindungsleitungen sind Kanten (gerichtet von Eingang zu Ausgang) Aufbau von Schaltnetzen einstufige (nur eine Gatterebene) zweistufige (zwei Gatterebenen) mehrstufige Folgerung aus Darstellung durch kanonische Normalformen Jedes Schaltnetz ist zweistufig realisierbar, wenn alle Signale einfach und negiert vorliegen und Gatter mit ausreichender Anzahl von Eingängen vorliegen. C.71 C.72

10 9 Schaltnetze (3) Begründung Bezug zur KDNF (oder KKNF) alle Variablen werden einfach oder negiert benutzt zunächst Minterme: ein Und-Gatter pro Minterm (erste Stufe) Summe der Minterme: ein Oder-Gatter für alle Minterme f 2 f 1 9 Schaltnetze (4) Anzahl der notwendigen Gatter bei n Eingängen ma. 2 n Und-Gatter pro Schaltfunktion mit bis zu n Eingängen (KDNF) ein Oder-Gatter mit bis zu 2 n Eingängen Minimisierung reduziert Gatteranzahl und Eingangsanzahl pro Gatter Minimisierung parallel für mehrere Schaltfunktionen des Schaltnetzes Verwendung der selben Gatter z.b. Karnaugh-Veitch-Diagramme für mehrere Schaltfunktionen des Netzes Beispiel: Eingabemelder C.73 C Typische Schaltnetze aus-k-Multipleer Steuerleitungen weisen viele Eingabeleitungen einem Ausgang zu n Steuerleitungen s 0, s 1,, s n 1 (Eingänge) k = 2 n Eingänge 0,,, k 1 ein Ausgang y es gilt: y = i für ( s n 1,, s 1, s 0 ) 2 = i (Zahlendarstellung im Binärsystem) aus-k-Multipleer (2) Realisierung für n = 2 als DNF y = s 1 s s 1 s 0 + s 1 s 0 + s 1 s 0 0 y 0 k-1 s 0 s 1 s n-1 y Multipleer (MUX) s 0 s 1 Einsatz Anzeige und Auswahl verschiedener Datenquellen z.b. Auslesen von Daten aus Speicherzellen C.75 C.76

11 zu-k-Demultipleer Steuerleitungen weisen eine Eingabeleitung vielen Ausgängen zu n Steuerleitungen s 0, s 1,, s n 1 (Eingänge) ein Eingang k = 2 n Ausgänge y 0, y 1,, y k 1 es gilt: y i = für ( s n 1,, s 1, s 0 ) 2 = i (Zahlendarstellung im Binärsystem) s 0 s 1 s n-1 y 0 y 1 y k-1 Demultipleer (DEMUX) C zu-k-Demultipleer (2) Realisierung für n = 2 als DNF Einsatz y 0 = s 1 s 0, y 1 = s 1 s 0, y 2 = s 1 s 0, y 3 = s 1 s 0 s 0 s 1 Zuordnung und Auswahl verschiedener Datensenken z.b. Speichern von Daten in Speicherzellen y 0 y 1 y 2 y 3 C k-zu-n-kodierer 10.3 k-zu-n-kodierer (2) Nummer eines Eingangs wird ausgegeben k = 2 n Eingänge 0,,, k 1 immer genau eine Eingangsleitung auf 1 i mit i = 1 und j i j = 0 n Ausgänge y 0, y 1,, y n 1 es gilt: ( y n 1,, y 1, y 0 ) 2 = i (Zahlendarstellung im Binärsystem) Realisierung für n = 2, k = 4 als DNF y 0 = +, y 1 = + 0 y 0 0 k-1 Encoder y 0 y 1 y n-1 Kodierer Einsatz y 1 z.b. Signalisierung eines Eingang C.79 C.80

12 10.4 n-zu-k-dekodierer Eingänge selektieren genau einen von vielen Ausgängen n Eingänge 0,,, n 1 k = 2 n Ausgänge y 0, y 1,, y k 1 es gilt: y i = 1 und j i y j i = 0 mit ( n 1,,, 0 ) 2 = i (Zahlendarstellung im Binärsystem) 10.4 n-zu-k-dekodierer (2) Realisierung für n = 2, k = 4 als DNF y 0 = 0, y 1 = 0, y 2 = 0, y 3 = 0 y 0 0 n-1 Decoder y 0 y 1 y k-1 Dekodierer y 1 y 2 0 y 3 Einsatz z.b. Dekodierung eines Maschinenbefehls C.81 C.82

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3) 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische

Mehr

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 finkbeiner@cs.uni-saarland.de Prof. Bernd Finkbeiner, Ph.D. finkbeiner@cs.uni-saarland.de 1 Schaltfunktionen! Schaltfunktion:

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer

Mehr

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016 Einführung in die Zentralavionik-Hardware Logische Grundschaltungen Frank Flederer Informatik VIII: Informationstechnik für Luft- und Raumfahrt Wintersemester 2015/2016 1 / 46 Logik in Elektronik 2 Zustände:

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung 2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese

Arbeitsblatt Logische Verknüpfungen Schaltnetzsynthese Einleitung Zur Aktivitätsanzeige der 3 Gehäuselüfter (Signale a - c) eines PC-Systems soll eine Logikschaltung entwickelt werden, die über drei Signalleuchten (LEDs) anzeigt, ob ein beliebiger (LED1 x),

Mehr

Minimierung von logischen Schaltungen

Minimierung von logischen Schaltungen Minimierung von logischen Schaltungen WAS SIND LOGISCHE SCHALTUNGEN Logische Verknüpfungszeichen: & = Logisches Und-Verknüpfung (Konjunktion). V = Logische Oder-Verknüpfung (Disjunktion). - = Nicht (Negation).

Mehr

Übungsklausur - Beispiellösung

Übungsklausur - Beispiellösung Digitale Systeme Übungsklausur - Beispiellösung Aufgabe 1 (a) Benutzt man n Bit für die Darstellung im 2-Komplement, so deckt man den Wertebereich von 2 n 1 bis 2 n 1 1 ab. Also ergibt sich der abgedeckte

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Technische Informatik I

Technische Informatik I Vorlesung A Organisatorisches Sommersemester 22 [S 21] 22, Franz. Hauck, Verteilte Systeme, Univ. Ulm [22s-TI1-A-Org.fm, 22-9-11 9.3] 1 A 22, Franz. Hauck, Verteilte Systeme, Univ. Ulm [22s-TI1-A-Org.fm,

Mehr

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen Technische Informatik I 4. Vorlesung 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen...... H.-D. Wuttke 09 Karnaugh-Veith Veith-Diagramme, 3. Struktur digitaler Schaltungen: Strukturdefinition,

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel:

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: Seite 1 Aufgabe 1 Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: f 1 = a b c d + a b c d + a b c d + a b c d + a

Mehr

Minimierung mittels KV-Diagramm (Karnaugh-Plan)

Minimierung mittels KV-Diagramm (Karnaugh-Plan) MINIMIERUNG MITTELS KV-DIAGRAMM (KARNAUGH-PLAN) 16. 11. 2015 1 Minimierung mittels KV-Diagramm (Karnaugh-Plan) Grundlagen der Schaltungsminimierung Die Schaltfunktion ist als disjunktive oder konjunktive

Mehr

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik 1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von

Mehr

Technische Informatik

Technische Informatik Vorlesung WS 25/6 Klaus Merle, ZDV, Universität Mainz [25ws-TI-A-Org.fm, 25-11-2 13.12] A Organisatorisches Klaus Merle, ZDV, Universität Mainz [25ws-TI-A-Org.fm, 25-11-2 13.12] A 1 1 Dozent Prof. Dr.

Mehr

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti mrigotti@student.ethz.ch 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Teil III. Schaltnetze und ihre Optimierung

Teil III. Schaltnetze und ihre Optimierung Teil III Schaltnetze und ihre Optimierung 1 Teil III.1 Schaltnetze 2 Beispiel 1 Schaltnetz für xor mit {+,, } x y x y 0 0 0 0 1 1 1 0 1 1 1 0 DNF: x y = xy + xy 3 Beispiel 2 xor mittels nand-verknüpfung;

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Boolesche Funktionen und Schaltkreise

Boolesche Funktionen und Schaltkreise Boolesche Funktionen und Schaltkreise Die Oder-Funktion (Disjunktion) und die Und-Funktion (Konjunktion), x y 0 0 0 0 1 1 1 0 1 1 1 1 x y 0 0 0 0 1 0 1 0 0 1 1 1 1 (Implikationsfunktion), ( umgekehrte

Mehr

2.2 Register-Transfer-Synthese

2.2 Register-Transfer-Synthese 2.2 Register-Transfer-Synthese Register-Transfer-Synthese Überblick digitale Synthese Register-Transfer- Synthese Makrozellgeneratoren Beispiel Addierer Beispiel Speicher Synthese endlicher Automaten Zustandskodierung

Mehr

Synthese digitaler Schaltungen Aufgabensammlung

Synthese digitaler Schaltungen Aufgabensammlung Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik Fachgebiet Elektronische Schaltungen und Systeme Dr. Ing. Steffen Arlt Synthese digitaler Schaltungen Aufgabensammlung.

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 6 am 0.2.200 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter)

Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Lösung 3.1 Schaltalgebra - Schaltnetze (AND, OR, Inverter) Folgende Darstellung der Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern ist möglich: a) F = X ( Y Z) b) F = EN ( X Y) ( Y

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Synthese und Analyse Digitaler Schaltungen

Synthese und Analyse Digitaler Schaltungen Synthese und Analyse Digitaler Schaltungen von Prof. Dr.-Ing. habil. Gerd Scarbata Technische Universität Ilmenau 2., überarbeitete Auflage Oldenbourg Verlag München Wien V Inhaltsverzeichnis Seite Boolesche

Mehr

Electronic Design Automation (EDA) Register-Transfer-Synthese

Electronic Design Automation (EDA) Register-Transfer-Synthese Electronic Design Automation (EDA) Register-Transfer-Synthese Überblick digitale Synthese Register-Transfer-Synthese Makrozellgenerator Beispiel Addierer (1)... (2)... (3)... (4) Beispiel Speicher Synthese

Mehr

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE

DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Seite 1 von 23 DIGITALTECHNIK 06 SCHALTUNGS- SYNTHESE UND ANALYSE Inhalt Seite 2 von 23 1 SCHALTUNGS- SYNTHESE UND ANALYSE... 3 1.1 NORMALFORM... 5 1.2 UND NORMALFORM... 5 1.3 ODER NORMALFORM... 7 1.4

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

9. Kombinatorische Schaltungen

9. Kombinatorische Schaltungen 9. Kombinatorische Schaltungen Christoph Mahnke 15.06.2006 1 NAND-Gatter sowie der Eingangsstrom I E = f(u E ) Abbildung 1: Schaltsymbol NAND-Gatter Ein NAND-Gatter entspricht der logischen Verknüpfung

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

2.5. Umwandlung von Schaltfunktionen in die NOR und NAND Technik

2.5. Umwandlung von Schaltfunktionen in die NOR und NAND Technik .. Umwandlung on Schaltfunktionen in die NOR und NAND Technik... Smbole 0 0 0 0 0 NAND Elemente 0 0 0 0 0 0 0 NOR Elemente Beachte : Jedes NOR bzw. NAND Element hat mindestens Eingänge!... Umwandlungsorschriften

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Kapitel 1: Schaltfunktionen und ihre Darstellung

Kapitel 1: Schaltfunktionen und ihre Darstellung Kapitel 1: Schaltfunktionen und ihre Darstellung Kapitel 1 Schaltfunktionen und ihre Darstellung Literatur: Oberschelp/Vossen, Kapitel 1 Kapitel 1: Schaltfunktionen und ihre Darstellung Seite 1 Motivation

Mehr

Informatik I Tutorium WS 07/08

Informatik I Tutorium WS 07/08 Informatik I Tutorium WS 07/08 Vorlesung: Prof. Dr. F. Bellosa Übungsleitung: Dipl.-Inform. A. Merkel Tutorium: 2 Tutor: Jens Kehne Tutorium 7: Dienstag,. Dezember 2007 Agenda des heutigen Tutoriums Übersicht

Mehr

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3

zugehöriger Text bei Oberschelp/Vossen: 2.1-2.3 Spezielle Schaltnetze Übersicht in diesem Abschnitt: Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich aus mehreren Gattern zusammensetzen ("spezielle Schaltnetze") und

Mehr

Störungen in Digitalsystemen

Störungen in Digitalsystemen Störungen in Digitalsystemen Eine Lernaufgabe von Jost Allmeling Betreuer: Markus Thaler Inhalt und Lernziel: Die Studenten erkennen, dass man durch Einfügen von zusätzlichen Gattern Hazards vermeiden

Mehr

Verwendung eines KV-Diagramms

Verwendung eines KV-Diagramms Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Jede Belegung von k Variablen kann als Binärvektor aus k Binärwerten x 1...x k mit

Jede Belegung von k Variablen kann als Binärvektor aus k Binärwerten x 1...x k mit BOOLESCHE PROBLEME / SCHALTALGEBRA 1 1. Boolesche Räume Jede Belegung von k Variablen kann als Binärvektor aus k Binärwerten x 1...x k mit { } xi 0,1 ; i = 1...k dargestellt werden. Der Boolesche Raum

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Grundlagen digitaler Systeme WS12

Grundlagen digitaler Systeme WS12 Grundlagen digitaler Systeme WS12 Binary Decision Diagrams Johann Blieberger 183.580, VU 2.0 Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email:

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Kombinatorische Schaltungen

Kombinatorische Schaltungen Mathias Arbeiter 16. Juni 2006 Betreuer: Herr Bojarski Kombinatorische Schaltungen Elektrische Logigsysteme ohne Rückführung Inhaltsverzeichnis 1 Wirkungsweise von NAND-Gattern 3 2 logische Schaltungen

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Kombinatorische Grundschaltungen

Kombinatorische Grundschaltungen Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme Kombinatorische Grundschaltungen Versuch im Informationselektronischen

Mehr

Aufgabe 3.1 Schaltalgebra - Schaltnetze

Aufgabe 3.1 Schaltalgebra - Schaltnetze Aufgabe 3.1 Schaltalgebra - Schaltnetze Zeichnen Sie die folgenden Funktionen als Zusammenschaltung von AND-, OR- und Invertergattern: a) b) F = X ( Y Z) F = EN ( X Y) ( Y Z) zur Lösung 3.1 Aufgabe 3.2

Mehr

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5 Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

6. Vorlesung: Minimalformen

6. Vorlesung: Minimalformen 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme 24..26 fällt aus wegen Dozentenfachexkursion 2 Normalformen

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig A) Vorbereitungsaufgaben: 1) Ermitteln Sie anhand der gegebenen zwei Blockschaltbilder die Schaltgleichungen und vereinfachen Sie weitmöglich! y 1 =(/(/(x 0 x 1 )/(x 0 +x 1 )))+(/(/(x 0 x 1 )+/(x 0

Mehr

Digitalelektronik - Inhalt

Digitalelektronik - Inhalt Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge

Mehr

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation 3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 16. 7. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 FH Dortmund FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 16. 7. 2015 Aufgaben und

Mehr

Mathematik für Informatik 1

Mathematik für Informatik 1 Mathematik für Informatik 1 Inhalt : Grundbegriffe Mengen, speziell Zahlenmengen Aussagenlogik Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binominalkoeffizienten Komplexität von

Mehr

8. Tutorium Digitaltechnik und Entwurfsverfahren

8. Tutorium Digitaltechnik und Entwurfsverfahren 8. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Normalformen von Schaltfunktionen

Normalformen von Schaltfunktionen Disjunktive Normalform (DNF) Vorgehen: 2. Aussuchen der Zeilen, in denen die Ausgangsvariable den Zustand 1 hat 3. Die Eingangsvariablen einer Zeile werden UND-verknüpft a. Variablen mit Zustand 1 werden

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08

Rechnerorganisation. (10,11) Informationskodierung (12,13,14) TECHNISCHE UNIVERSITÄT ILMENAU. IHS, H.- D. Wuttke 08 Rechnerorganisation Mathematische Grundlagen (1) Boolesche Algebren: : BMA, BAA (2,3) Kombinatorische Schaltungen (4,5) Automaten (6,7) Sequentielle Schaltungen (8) Programmierbare Strukturen (9) Rechneraufbau

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 4. Minimierung digitaler Schaltfunktionen

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 4. Minimierung digitaler Schaltfunktionen Grundlagen der Informatik Grundlagen der Digitaltechnik. Minimierung digitaler Schaltfunktionen Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Einführung in die Boolesche Algebra

Einführung in die Boolesche Algebra Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik

Mehr

Teil 1 Digitaltechnik 1 Grundlagen: Zahlensysteme, Dualzahlen und Codes 3 1.1 Dezimalzahlensystem 3 1.2 Bündelung 4 1.3 Das dezimale Positionensystem 6 1.4 Römische Zahlen 7 1.5 Ägyptische Zahlen 8 1.6

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

(Prüfungs-)Aufgaben zu Schaltnetzen

(Prüfungs-)Aufgaben zu Schaltnetzen (Prüfungs-)Aufgaben zu Schaltnetzen 1) Gegeben sei die binäre Funktion f(a,b,c,d) durch folgende Wertetabelle: a b c d f(a,b,c,d) 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 a) Geben Sie die disjunktive Normalform

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr