Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken)

Größe: px
Ab Seite anzeigen:

Download "Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken)"

Transkript

1 Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken) Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de 11. Januar 2007

2 Aufgabe der schließenden Statistik: Festlegung einer Entscheidung auf der Grundlage eines Stichprobenergebnisses Entscheidungsverfahren: Zu jedem möglichen Stichprobenergebnis wird die zugehörige Entscheidung bestimmt. Entscheidungsfunktion δ : X A X Stichprobenraum, A Aktionenraum (Menge der Entscheiungsmöglichkeiten) gesucht: beste Entscheidungfunktion (benötigt wird dazu ein Bewertungskriterium s.u.) Kapitel IV - Stichprobenfunktionen (Statistiken) 1

3 Problem: X IR k ist i.a. sehr umfangreich, d.h. es gibt sehr viele, teilweise auch wenig sinnvolle Entscheidungsfunktionen. Ansatz: Das Stichprobenergebnis enthält auch Informationen, die für die Entscheidung unwesentlich sind, z.b. die Reihenfolge der Messwerte bei einer Stichprobe mit Zurücklegen. Reduktion der Daten auf den für die Entscheidung wesentlichen Kern durch eine Auswertung des Stichprobenergebnisses (z.b. mit Methoden der deskriptiven Statistik) Kapitel IV - Stichprobenfunktionen (Statistiken) 2

4 Beispiele: 1. Kontrolle einer Warenpartie: Stichprobenergebnis (x 1, x 2,...,x n ) mit x i = { 0 i te Stichprobeneinheit ist gut 1 i te Stichprobeneinheit ist schlecht Auswertung: Anzahl schlechter Einheiten = n x i (Oder: Anzahl guter Teile, Stichprobenausschussanteil,...) Kapitel IV - Stichprobenfunktionen (Statistiken) 3

5 2. Justierung einer Maschine: x 1, x 2,...,x n Messwerte n x i Stichprobenmittelwert 1 n ist Kandidat für ein sinnvolles Auswertungsverfahren. Kapitel IV - Stichprobenfunktionen (Statistiken) 4

6 Stichprobenfunktion: X Stichprobenraum einer Stichprobe X 1, X 2,...,X n T : X IR k heißt Stichprobenfunktion T(X 1,X 2,...,X n ) = T(X) ist dann Zufallsvariable Kapitel IV - Stichprobenfunktionen (Statistiken) 7

7 Beispiele für Stichprobenfunktionen: 1. T(x 1,x 2,...,x n ) = x 3 bzw. x i für i {1,2,...,n}. T erhält in der Regel nicht die gesamte Information der Stichprobe, da nur eines des Stichprobenergebnisse benutzt wird. 2. T(x 1,...,x n ) = (x (1),...,x (n) ), d.h. die Stichprobenergebnisse werden ihrer Größe nach geordnet (x (1),...,x (n) ist die geordnete Urliste zu x 1,...,x n ). T heißt Ordnungsstatistik und erhält bei einer Stichprobe mit Zurücklegen alle relevanten Informationen, da in diesem Fall die Reihenfolge der Ergebnisse keine Bedeutung hat. Aber: Keine Datenreduktion. Kapitel IV - Stichprobenfunktionen (Statistiken) 8

8 3. T(x 1,...,x n ) = x z, x z Zentralwert (Median) von x 1, x 2,...,x n, heißt Stichprobenmedian(-zentralwert). 4. T(x 1,...,x n ) mit T(x 1,...,x n ) = 1 n n x i heißt Stichprobenmittelwert. Beispiele 3 und 4 sind Kandidaten für Auswertungen bei Untersuchungen, die mit Lageparametern zu tun haben. Kapitel IV - Stichprobenfunktionen (Statistiken) 9

9 5. T(x 1,...,x n ) mit T(x 1,...,x n ) = 1 n n (x i x) 2, x = Stichprobenmittelwert, heißt Stichprobenvarianz. 6. T(x 1,...,x n ) T(x 1,...,x n ) = 1 n 1 n (x i x) 2, x = Stichprobenmittelwert, heißt korrigierte Stichprobenvarianz. Beispiele 5 und 6 kommen bei Untersuchungen zu Streuungsparametern einer Verteilung in Betracht (aber auch die Stichprobenspannweite, die mittlere absolute Abweichung der Stichprobe, der Quartilsabstand der Stichprobe,...). Kapitel IV - Stichprobenfunktionen (Statistiken) 10

10 Frage: Welche Auswertungen sind sinnvoll? Welche Stichprobenfunktionen dürfen verwendet werden, ohne gute Entscheidungsverfahren auszuschließen? Antwort: T sollte alle Informationen der Stichprobe über die entscheidungsrelevante Größe (Zustand) erhalten. Wie kann dies überprüft werden? Kapitel IV - Stichprobenfunktionen (Statistiken) 11

11 1. Kontrolle einer Warenpartie: Intuition: Anzahl der schlechten Teile in der Stichprobe enthält alle Informationen über den Ausschussanteil, d.h. zwei Stichprobenergebnisse Ist dies richtig? x = (x 1,...,x n ) und x = (x 1,...,x n) mit übereinstimmender Anzahl schlechter Teile unterscheiden sich nicht bezüglich ihrer Information über den Ausschussanteil. Kapitel IV - Stichprobenfunktionen (Statistiken) 12

12 Dazu: Wahrscheinlichkeitsverteilung der Stichprobe X 1,...,X n auf Teilbereich mit k schlechten Teilen: T(X 1,...,X n ) = k Bedingte Wahrscheinlichkeitsverteilung unter der Bedingung: T(X 1,...,X n ) = k Kapitel IV - Stichprobenfunktionen (Statistiken) 13

13 P(X = x T(X) = k) = P(X 1 = x 1,...,X n = x n = = n X i = k) P(X 1 = x 1,...,X n = x n und n 0 P( n P(X 1 =x 1,...,X n =x n ) ( n k)p k (1 p) n k X i = k) n n x i k x i = k X i = k) Kapitel IV - Stichprobenfunktionen (Statistiken) 14

14 X 1, X 2,...,X n unabhängig: Dann P(X 1 = x 1,...,X n = x n ) = P(X 1 = x 1 ) P(X 2 = x 2 )... P(X n = x n ) Mit P(X i = 1) = p und P(X i = 0) = 1 p n P(X i = x i ) = p nè x i n n È x i (1 p) Kapitel IV - Stichprobenfunktionen (Statistiken) 15

15 Damit: P(X = x n X i = k) = = 0 p k (1 p) n k ( n k)p k (1 p) n k 0 1 ( n k) n x i k n x i = k n x i k n x i = k Kapitel IV - Stichprobenfunktionen (Statistiken) 16

16 Die bedingte Wahrscheinlichkeitsverteilung hängt also nicht von p ab, die Variation des Stichprobenergebnisses im Teilbereich mit T(X 1,...,X n ) = k ist also unbeeinflusst vom Ausschussanteil p und damit auch ohne Information über p. Kapitel IV - Stichprobenfunktionen (Statistiken) 17

17 2. Fehleranzahlen Bei der Produktion von Teilen können ein oder mehrere Fehler entstehen (z.b. Lackierfehler an Automobilkarossen). Die Anzahl der Fehler an einer Produkteinheit entspreche einer Zufallsvariable Y. Y sei Poisson-verteilt mit Parameter λ, λ sei unbekannt. Durch eine Stichprobe soll Information über λ ermittelt werden. Stichprobenergebnis: x 1, x 2,...,x n (x i ganze Zahl 0) Kapitel IV - Stichprobenfunktionen (Statistiken) 18

18 Vermutung: Wesentliche Information über den Parameter λ des Stichprobenergebnisses ist die Gesamtzahl der Fehler (oder die durchschnittliche Fehlerzahl). Zugehörige Stichprobenfunktion ist: T(x 1,...,x n ) = n x i Überprüfung der Vermutung: Stichprobe mit Zurücklegen, d.h. X 1, X 2,...,X n unabhängig, identisch verteilt wie Y P(X = x 1,...,X n = x n T(X 1,...,X n ) = n X i = k) =? Kapitel IV - Stichprobenfunktionen (Statistiken) 19

19 P ( X = x 1,...,X n = x n T(X 1,...,X n ) = ) n X i = k = 0 P(X=x) P( n È X i =k) n x i k n x i = k Kapitel IV - Stichprobenfunktionen (Statistiken) 20

20 mit P(X = x) = P(X 1 = x 1,...,X n = x n ) = P(X 1 = x 1 ) P(X 2 = x 2 )... P(X n = x n ) = λx 1 x 1! e λ... λx n x n! e λ = n ( λx i x i! e λ ) Kapitel IV - Stichprobenfunktionen (Statistiken) 21

21 n X i ist Poisson-verteilt mit Parameter nλ: Damit ist: P( n X i = k) = (nλ)k k! e nλ P(X=x) P( n È X i =k) = né ( λx i x i! e λ ) (nλ) k k! e nλ = ( = né né n k k! x 1 ie x i! )λ nλ nè (nλ) k k! e nλ 1 x i! Kapitel IV - Stichprobenfunktionen (Statistiken) 22

22 Die bedingte Wahrscheinlichkeitsverteilung ( P X 1 = x 1,...,X n = x n T(X 1,...,X n ) = n ) X i = k = k! n k ist also unabhängig vom Parameter λ. Welche spezielle Stichprobe mit (x 1,x 2,...,x n ) mit Gesamtfehlerzahl k vorliegt, liefert demnach keine Information über λ. Eine Stichprobenfunktion T enthält also die Information der Stichprobe über den Parameter der Verteilung, wenn die bedingte Wahrscheinlichkeit des Stichprobenvektors mit T(X) = t als Bedingung nicht vom Parameter abhängt. T heißt dann suffizient bezüglich des Parameters. n 1 x i! Kapitel IV - Stichprobenfunktionen (Statistiken) 23

23 Definition: Sei Γ der Parameterraum zur Verteilungsannahme einer diskreten Zufallsvariable Y. X = (X 1,...,X n ) sei eine Stichprobe zu Y mit Stichprobenraum X. Eine Stichprobenfunktion T : X IR k heißt suffizient bzgl. γ Γ, wenn P γ (X = x T(X) = t) für alle x X und t IR k mit P γ (T(X) = t) 0 von γ unabhängig ist, also allein von x und t abhängt. Kapitel IV - Stichprobenfunktionen (Statistiken) 24

24 Folgerung: Wegen P γ (X = x) = P(X = x T(X) = t)p γ (T(X) = t) ist bei suffizientem T die Wahrscheinlichkeitsverteilung zerlegt in zwei Faktoren, von denen P(X = x T(X) = t) nur von x (t ergibt sich aus T(x) = t) und P γ (T(X) = t) von γ und t abhängt. Kapitel IV - Stichprobenfunktionen (Statistiken) 25

25 Es gilt demnach mit P(X = x T(X) = t) = h(x) und P γ (T(X) = t) = g(t(x), γ) Aus (*) folgt aber : (*) P γ (X = x) = g(t(x),γ)h(x). P γ (X = x T(X) = t) = P γ(x = x, T(X) = t) P γ (T(X) = t) = = = g(t(x), γ)h(x) g(t( x),γ)h( x) = x X : T( x)=t h(x) x X : T( x)=t h( x) g(t(x), γ)h(x) P γ (X = x) x X : T( x)=t g(t,γ)h(x) g(t, γ)h( x) x X : T( x)=t hängt nicht von γ ab Kapitel IV - Stichprobenfunktionen (Statistiken) 25

26 Im diskreten Fall ist eine Stichprobenfunktion genau dann suffizient bezüglich einem Parameter γ, wenn sich die Wahrscheinlichkeitsverteilung des Stichprobenvektors entsprechend (*) in Faktoren zerlegen lässt. (Faktorisierungstheorem von Neyman). Beispiele: 1. Bernoulliverteilung: P(X 1 = x 1,...,X n = x n ) = P(X 1 = x 1 )... P(X n = x n ) = p nè x i(1 n n È x i p) = g(t(x),p)h(x) mit h(x) = 1 Kapitel IV - Stichprobenfunktionen (Statistiken) 26

27 2. Poissonverteilung: P(X = x) = P(X 1 = x 1,...,X n = x n ) = P(X 1 = x 1 )... P(X n = x n ) = λx 1 x 1! e λ... λx n x n! e λ = n ( λx i x i! e λ ) x ie = λ nλ 1 x 1!x 2!... x n! = g(t(x),λ)h(x) nè mit g(t(x),λ) = λ nè x ie nλ, T(x) = n x i und h(x) = 1 x 1!x 2!... x n! Kapitel IV - Stichprobenfunktionen (Statistiken) 27

28 Im stetigen Fall sind die analogen Betrachtungen mit der Dichtefunktion durchzuführen. Beispiel: 1. Exponentialverteilung Sei Y exponentialverteilt mit Parameter λ > 0, X 1, X 2,...,X n eine einfache Stichprobe mit Zurücklegen zu Y. Dann gilt f X,λ (x 1,...,x n ) = n λe λx i = λ n e λ nè x i =... Kapitel IV - Stichprobenfunktionen (Statistiken) 28

29 = g( n mit g(t(x),λ) = λ n e λ x i,λ) h(x) nè x i,t(x) n = x i und h(x) = 1. Zur Berechnung der bedingten Dichte unter der Bedingung T(X) = n wird die Verteilung von X i = t benötigt. n X i Kapitel IV - Stichprobenfunktionen (Statistiken) 29

30 Man erhält (s. Übungsaufgabe aus der Wahrscheinlichkeitstheorie) die Erlang-Verteilung mit Stufenzahl n mit der Dichtefunktion f(t) = λ n (n 1)! tn 1 e λt t 0 0 t < 0 Kapitel IV - Stichprobenfunktionen (Statistiken) 30

31 ... und damit die bedingte Dichte f (X,λ T(X)=t) (x) = n λe λx i λ n (n 1)! tn 1 e λt = für x = (x 1,...,x n ) mit x i = t. λ n (n 1)! ( n = (n 1)! λ n e λ nè x i x i ) n 1 e λ 1 ( n x i ) n 1 nè x i Kapitel IV - Stichprobenfunktionen (Statistiken) 31

32 Die Dichte lässt sich also analog in zwei Faktoren zerlegen und die bedingte Dichte ist unabhängig vom Parameter. Die Stichprobenfunktion T(x 1, x 2,...,x n ) = n ist also suffizient bezüglich λ. x i Kapitel IV - Stichprobenfunktionen (Statistiken) 32

33 2. Normalverteilung Sei Y N(µ,σ 2 )-verteilt, also mit der Dichte f Y,µ,σ 2(y) = 1 2πσ 2 e (y µ)2 2σ 2 Kapitel IV - Stichprobenfunktionen (Statistiken) 33

34 Dann ist für eine Stichprobe X mit Zurücklegen: f X,µ,σ 2(x 1,...,x n ) = = n 1 i µ)2 2πσ 2 e (x 2σ 2 1 (2πσ2 ) ne nè (x i µ) 2 2σ 2 = 1 1 n È 2σ 2( x 2 i 2µ n È x i +nµ 2 ) (2πσ2 ) ne = 1 1 2σ nè 2 x 2 i (2πσ2 ) ne e µ nè σ 2 x ie nµ2 2σ 2 Kapitel IV - Stichprobenfunktionen (Statistiken) 34

35 Dieser Ausdruck hängt außer von den Parametern µ und σ 2 nur von n x 2 i und n x i ab. Die zweidimensionale Stichprobenfunktion T(x 1,...,x n ) = ( n x i, n x 2 i ) ist suffizient bezüglich (µ, σ2 ). Kapitel IV - Stichprobenfunktionen (Statistiken) 35

36 In den Beispielen spielt die Exponentialfunktion eine wesentliche Rolle, da das Produkt von Exponentialfunktionen mit der Exponentialfunktion der Summe der Exponenten übereinstimmt: Folgerung: n e z i = e nè z i Immer wenn wir die Wahrscheinlichkeiten bzw. die Dichte der Zufallsvariable als Exponentialfunktion schreiben können, haben wir gute Aussichten, eine suffiziente Statistik zu erhalten. Kapitel IV - Stichprobenfunktionen (Statistiken) 36

37 Beispiele: 1. Poissonverteilung: P λ (Y = y) = λy y! e λ = e y ln λ 1 y! e λ Daraus folgt für eine einfache Stichprobe X = (X 1,...,X n ) mit Zurücklegen P λ (X = x) = = n ( λx i x i! e λ ) = [ n ] ( 1 x i! ) e ln λ n ( 1 x i! ex i ln λ e λ ) nè x ie nλ Kapitel IV - Stichprobenfunktionen (Statistiken) 37

38 2. Normalverteilung: f µ,σ 2(y) = 1 2πσ 2 e (y µ)2 2σ 2 = 1 2πσ 2 y2 e 2σ 2+µy σ 2 e µ2 2σ 2 = 1 2πσ 2 µ2 e 2σ 2 e y2 2σ 2 e 2µy 2σ 2 Daraus folgt für eine einfache Stichprobe X = (X 1,...,X n ) mit Zurücklegen f µ,σ 2(x) = n f µ,σ 2(x i ) = ( 1 2πσ 2 ) n µ2 e 2σ 2 e 1 nè 2σ 2 x 2 i e µ nè 2σ 2 x i Kapitel IV - Stichprobenfunktionen (Statistiken) 38

39 Nennen wir den Parameter γ, so ist in beiden Beispielen die Wahrscheinlichkeit bzw. die Dichte von der Form (+) a(γ)h(y)e k=1 rè b k (γ)τ k (y) Kapitel IV - Stichprobenfunktionen (Statistiken) 39

40 Beispiele 1. Poissonverteilung: r = 1 e λ 1 y! eγlnλ a(γ)h(γ)e b(y)τ(y) mit a(γ) = e γ, h(y) = 1 y!,b(γ) = lnγ,τ(y) = y Kapitel IV - Stichprobenfunktionen (Statistiken) 41

41 Beispiele 2. Normalverteilung r = 2 a(γ)h(y)e b 1(γ)τ i (y)+b 2 (γ)τ 2 (y) mit a(µ,σ 2 ) = 1 σ 2 e µ2 2σ 2, h(y) = 1 2π, b 1 (µ,σ 2 ) = 1 2σ 2, τ 1 (y) = y 2, b 2 (µ,σ 2 ) = µ σ 2, τ 2 (y) = y. Kapitel IV - Stichprobenfunktionen (Statistiken) 42

42 Aus der Darstellung (+) für die Wahrscheinlichkeit bzw. Dichte einer Zufallsvariable ergibt sich unmittelbar für die Wahrscheinlichkeit bzw. Dichte einer Stichprobe mit Zurücklegen rè [ n b k (γ)τ k (x i ) n ] (a(γ)h(x i )ek=1 ) = a(γ) n h(x i ) e = g(t(x),γ) h(x) ( n mit T(x) = τ 1 (x i ),..., g(t(x),γ) = a(γ) n e k=1 rè k=1 rè b k (γ) n È τ k (x i ) ) n τ r (x i ), b k (γ) n È τ k (x i ), n h(x) = h(x i ) Kapitel IV - Stichprobenfunktionen (Statistiken) 43

43 Falls bei der Verteilung der Zufallsvariable Y eine Darstellung der Form (+) vorliegt, nennen wir die Verteilungsannahme der Zufallsvariable eine Exponentialfamilie. Exponentialfamilie: Y diskret P γ (Y = y) = a(γ)h(y)e j=1 rè b j (γ)τ j (y) Y stetig f Y,γ (y) = a(γ)h(y)e j=1 rè b j (γ)τ j (y) Kapitel IV - Stichprobenfunktionen (Statistiken) 44

44 Folgerung: T(x) = ( n τ 1 (x i ),..., n τ r (x i )) ist suffiziente Stichprobenfunktion bezüglich γ. Kapitel IV - Stichprobenfunktionen (Statistiken) 45

45 Beispiel: Gammaverteilung Dichte der Gammaverteilung ist f α,λ (y) = { 1 Γ(α) λα y α 1 e λy y 0 0 y < 0 Γ(α) ist dabei die Gammafunktion an der Stelle α; für eine natürliche Zahl n gilt Γ(n) = (n 1)! Hinweis: Für α = n erhalten wir also die Erlang-Verteilung mit Stufenzahl n. Kapitel IV - Stichprobenfunktionen (Statistiken) 46

46 Mit a(α,λ) = 1 Γ(α) λα, h(y) = { 1 y 0 0 y < 0 b 1 (α,λ) = α 1, b 2 (α,λ) = λ, τ 1 (y) = ln(y), τ 2 (y) = y gilt f α,λ (y) = a(α,λ)h(y)e b 1(α,λ)τ 1 (y)+b 2 (α,λ)τ 2 (y) Kapitel IV - Stichprobenfunktionen (Statistiken) 47

47 Damit ist n T(x) = ( ln(x i ), n x i ) suffizient bezüglich α und λ. Kapitel IV - Stichprobenfunktionen (Statistiken) 48

48 Sei T eine suffiziente Stichprobenfunktion, so sollte die Entscheidung (Schlussfolgerung) aus dem Stichprobenergebnis nur vom Auswertungsergebnis bei T abhängen, d.h. sind zwei Stichprobenergebnisse mit x = (x 1,...,x n ) und x = ( x 1,..., x n ) T(x) = T( x), so sollten die Entscheidungen bei x und x, übereinstimmen. Damit wird die Menge der möglichen Entscheidungsverfahren stark reduziert, falls eine geeignete suffiziente Statistik benutzt wird. Kapitel IV - Stichprobenfunktionen (Statistiken) 49

49 x, x δ(x) = δ (T(x)) = δ (T(x )) X δ A = δ(x ) T X T T(x) = T(x ) δ δ = δ T Reduktion auf die wesentliche Information zur Entscheidungsfindung. Kapitel IV - Stichprobenfunktionen (Statistiken) 50

50 Sei X T die Menge der möglichen Auswertungsergebnisse bei der Stichprobenfunktion T, also X T = {T(x) x X } so ist δ T : X T A eine Entscheidungsfunktion mit Benutzung von T, d.h. zum Stichprobenergebnis x wird zunächst die Auswertung T(x) berechnet und abhängig von diesem Auswertungsergebnis T(x) die Entscheidung δ(t(x)) getroffen. Kapitel IV - Stichprobenfunktionen (Statistiken) 51

51 Behauptung: Wird eine Stichprobenfunktion T aus einer Darstellung der Wahrscheinlichkeits - verteilung von Y als Exponentialfamilie gewonnen, so sind zwei Entscheidungsfunktionen mit Benutzung von T durch ihren Erwartungswert nahezu vollständig festgelegt. Kapitel IV - Stichprobenfunktionen (Statistiken) 52

52 Beispiel-Poisson-Verteilung: T(x 1,...,x n ) = n x i ist suffizient bezüglich dem Parameter λ > 0. Seien δ T 1 und δ T 2 zwei Entscheidungsfunktionen mit Benutzung von T. Erwartungswert von δ i ist E λ (δ T i (T(X))) = = δi T (k)p λ (T(X) = k) = k=0 k=0 δi T (k) (nλ)k e nλ k! n δi T (k)p λ ( X j = k) k=0 j=1 Kapitel IV - Stichprobenfunktionen (Statistiken) 53

53 Stimmen die Erwartungswerte von δ 1 und δ 2 überein für alle λ > 0, so gilt 0 = E λ (δ1 T (T(X))) E λ (δ2 T (T(X))) = (δ1 T (k) δ2 T (k)) (nλ)k k! Da e nλ 0 ist, ist dies gleichwertig mit (δ1 T (k) δ2 T (k)) (nλ)k k! k=0 k=0 e nλ = e nλ (δ1 T (k) δ2 T (k)) (nλ)k k! k=0 = 0 für alle λ > 0 δ T 1 (k) = δ T 2 (k) für alle k. Kapitel IV - Stichprobenfunktionen (Statistiken) 54

54 Eine Stichprobenfunktion T mit der Eigenschaft, dass je zwei Funktionen δ T 1 und δ T 2 mit übereinstimmendem Erwartungswert auch selbst übereinstimmen, heißt vollständig. Kapitel IV - Stichprobenfunktionen (Statistiken) 55

55 Definition: Sei X eine Stichprobe zu Y, X der Stichprobenraum. Y habe eine parametrische Verteilungsannahme mit Parameter γ aus dem Parameterraum Γ. Eine Stichprobenfunktion(Statistik) T heißt vollständig bezüglich γ, wenn für je zwei Funktionen δ T 1 und δ T 2 aus folgt, dass gilt. E γ (δ T 1 (T(X))) = E γ (δ T 2 (T(X))) für alle γ Γ P γ (δ T 1 (T(X)) = δ T 2 (T(X))) = 1 Kapitel IV - Stichprobenfunktionen (Statistiken) 56

56 Satz: Sei X eine Stichprobe zu Y, deren Verteilung sich als Exponentialfamilie schreiben lässt, d.h. es gilt Y diskret : P γ (Y = y) Y stetig : f Y,γ (y) } = a(γ)h(y)e j=1 rè b j (γ)τ j (y) dann ist ( n T(x 1,...,x n ) = τ 1 (x i ),..., eine suffiziente und vollständige Statistik, wenn ) n τ r (x i ) einen offenen Quader im IR r enthält. B = {(b 1 (γ),...,b r (γ)) γ Γ} IR r Kapitel IV - Stichprobenfunktionen (Statistiken) 57

57 Folgerungen: Sei X 1,X 2,...,X n eine einfache Stichprobe mit Zurücklegen zu Y. Dann ist x i T(x 1,...,x n ) = n suffizient und vollständig,... Kapitel IV - Stichprobenfunktionen (Statistiken) 58

58 ... falls y a) Bernoulli-verteilt mit Parameter p [0,1], (Übungsaufgabe: Man stelle die Wahrscheinlichkeitsverteilung von Y als Exponentialfamilie dar.) b) binomialverteilt mit Parameter p [0, 1], c) Poisson-verteilt mit Parameter λ > 0, d) exponentialverteilt mit Parameter λ > 0. Kapitel IV - Stichprobenfunktionen (Statistiken) 59

59 Beispiel-Normalverteilung: f µ,σ 2(y) = 1 2πσ 2 e (y µ)2 2σ 2 = 1 2πσ 2 y2 e 2σ 2+µy σ 2 e µ2 2σ 2 = 1 2πσ 2 µ2 e 2σ 2 e y2 2σ 2 e 2µy 2σ 2 Kapitel IV - Stichprobenfunktionen (Statistiken) 60

60 1. µ und σ 2 unbekannt (und entscheidungsrelevant): a(µ,σ 2 ) = 1 σ 2 e µ2 2σ 2, h(y) = 1 2π, b 1 (µ,σ 2 ) = 1 2σ 2, τ 1 (y) = y 2, b 2 (µ,σ 2 ) = µ σ 2, τ 2 (y) = y. ergibt eine Darstellung als Exponentialfamilie. Kapitel IV - Stichprobenfunktionen (Statistiken) 61

61 T(x 1,...,x n ) = ( n x i, n x 2 i ) ist eine suffiziente Statistik. Sie ist auch vollständig, da B = {( 1 2σ 2, µ σ 2) µ IR, σ2 > 0} = {(β 1,β 2 ) β 1 < 0, β 2 IR} = IR IR einen offenen Quader im IR 2 enthält. Kapitel IV - Stichprobenfunktionen (Statistiken) 62

62 2. µ unbekannt (und entscheidungsrelevant), σ 2 fest: Der Parameterraum ist jetzt Γ = IR. Mit a(µ) = 1 σ 2 b(µ) = µ σ 2 e µ2 2σ 2, h(y) = 1 2π e y2 2σ 2,, τ 2 (y) = y erhalten wir eine Darstellung als Exponentialfamilie, so dass T(x 1,...,x n ) = n x i suffizient bezüglich µ ist. T ist auch vollständig, da B = { µ σ2 µ IR} = IR (enthält offenen Quader) Kapitel IV - Stichprobenfunktionen (Statistiken) 63

63 3. σ 2 unbekannt (und entscheidungsrelevant), µ fest: a(σ 2 ) = 1 σ 2, h(y) = 1 2π, b(σ 2 ) = 1 2σ 2, τ(y) = (y µ) 2 ergibt jetzt eine Darstellung als Exponentialfamilie für den Parameter σ 2. Wegen B = { 1 2σ 2 σ2 > 0} = {x IR x < 0} ist damit n T(x 1,...,x n ) = (x i µ) 2 suffizient und vollständig bezüglich σ 2. Kapitel IV - Stichprobenfunktionen (Statistiken) 64

Kapitel IV - Stichprobenfunktionen (Statistiken)

Kapitel IV - Stichprobenfunktionen (Statistiken) Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel IV - Stichprobenfunktionen (Statistiken) Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Kapitel IX - Neyman-Pearson-Tests

Kapitel IX - Neyman-Pearson-Tests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel IX - Neyman-Pearson-Tests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Ausgangssituation:

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Kapitel VI - Maximum-Likelihood-Schätzfunktionen

Kapitel VI - Maximum-Likelihood-Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Maximum-Likelihood-Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Kapitel III - Grundannahmen der schließenden Statistik

Kapitel III - Grundannahmen der schließenden Statistik Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel III - Grundannahmen der schließenden Statistik Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Kapitel VIII - Tests zum Niveau α

Kapitel VIII - Tests zum Niveau α Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VIII - Tests zum Niveau α Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh Testsituationen

Mehr

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Wahrscheinlichkeitstheorie Agenda:

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) =

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) = Diskrete Sei X stetig auf (a,b), wobei a, b unendlich sein können, a x 0 < x 1 b P(X = x 0 ) = 0, P(x 0 < X < x 1 ) > 0 (wenn f > 0). Die Funktion f heißt Dichtefunktion (von X) falls: 1. f(x) 0, a < x

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

2. Prinzipien der Datenreduktion

2. Prinzipien der Datenreduktion 2. Prinzipien der Datenreduktion Man verwendet die Information in einer Stichprobe X 1,..., X n, um statistische Inferenz über einen unbekannten Parameter zu betreiben. Falls n groß ist, so ist die beobachtete

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

1.5.4 Quantile und Modi

1.5.4 Quantile und Modi 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.70. [Quantil, Modus] Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Vorlesung an der Universität des Saarlandes Dr. Martin Becker Wintersemester 20/5 Schließende Statistik (WS 20/5) Folie Einleitung Organisatorisches. Organisatorisches I Vorlesung:

Mehr

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel XIII - Funktion und Transformation Mehrdimensionaler Zufallsvariablen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen

Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - Funktion und Transformation mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D.

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte Statistik II für Wirtschaftswissenschaftler Folie 6.1 Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte I) Werte in (, ), Parameter µ (, ), σ 2 > 0 Normalverteilung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

1 Relevante Beispiele für Verteilungen auf R

1 Relevante Beispiele für Verteilungen auf R Prof. Dr. H. Zähle Vorlesung Sachversicherungsmathemati, Anlage 1 Universität des Saarlandes, SS 2010 1 Relevante Beispiele Verteilungen auf R Wir bezeichnen die Menge aller W-Maße auf (R, B(R)) mit M

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung

5 Konfidenzschätzung. 5.1 Einige Grundbegriffe zur Konfidenzschätzung 5 Konfidenzschätzung 5. Einige Grundbegriffe zur Konfidenzschätzung Diesem Kapitel liegt das parametrische Modell {X, B X, P } mit P {P Θ} zugrunde. {Θ, B Θ } sei ein Meßraum über Θ und µ ein σ-finites

Mehr

Übungsaufgaben zu Statistik II

Übungsaufgaben zu Statistik II Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung.

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. 1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. Sei N eine zufällige Variable, ist ein Poisson-Verteilung mit Parameter λ definiert

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Einführung in die (induktive) Statistik

Einführung in die (induktive) Statistik Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr