Grundlagen der Elektrotechnik 3

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Elektrotechnik 3"

Transkript

1 Campus Duisburg Grundlagen der Elektrotechnik 3 Fakultät für Ingenieurwissenschaften Abteilung Elektrotechnik und Informationstechnik Fachgebiet Allgemeine und Theoretische Elektrotechnik Bismarckstraße Duisburg Version Januar 14

2 Übungsaufgabe 1: Skizzieren Sie maßstäblich den zeitlichen Verlauf der nachfolgend gegebenen jeweiligen Signale s(t)! 0 a) ( ) ( t s t = A rect t T 0 ) mit den Größen: A = 6 V, t 0 = s und T 0 = 1s. s( t) = ε ( t T ) sin( ω t + ϕ ) b) mit den Größen: ϕ = π 0 3 und π T 1 ω 0 =. c) t T t T s ( t ) = Λ( ) + Λ ( + ) 3 mit den Größen: T = 1s und T 3 = 1s. d) t T t T s ( t ) = r ( ) rect ( + ) mit den Größen: T 4 = 1s und T 5 = 1s. t T e) s ( t ) = rect ( ) sin( ω t 6 ) 6 mit den Größen: T 6 = 0.5s und ω 6 = π T 6 Seite 1

3 Übungsaufgabe : Gegeben sei eine periodische Zeitfunktion f(t) mit f(t) = f(t+nt) mit den nicht negativen ganzen Zahlen n und der Periodendauer T. Bestimmen Sie die Fourier-Reihenentwicklung für die in Bild auszugsweise im Zeitintervall 0 < t < T dargestellte periodische Zeitfunktion f(t)! Bild Seite

4 Übungsaufgabe 3: Gegeben sei eine periodische Zeitfunktion f(t) mit f(t) = f(t+nt) mit den nicht negativen ganzen Zahlen n und der Periodendauer T. Der zeitliche Funktionsverlauf ähnelt dem einer durch Einweggleichrichtung einer sinusförmigen Spannung gewonnenem Spannungsverlauf. T A sin( ωt) für 0 t f ( t) = T 0 für t T Bestimmen Sie die Fourier-Reihenentwicklung für die auszugsweise im Zeitintervall 0 < t < T beschriebene periodische Zeitfunktion f(t)! Seite 3

5 Übungsaufgabe 4: Gegeben sei die in Bild 4 dargestellte periodische Spannung u 1 ( t ). Bild 4 a) Berechnen Sie die Koeffizienten der Fourierreihe in komplexer Schreibweise und skizzieren Sie das Amplitudenspektrum. b) Berechnen Sie die Koeffizienten der Fourierreihe der Spannung u ( t ), wenn u 1 ( t ) jeweils an einer der Schaltungen nach den Abbildungen a-d angelegt wird. Bestimmen Sie die zugehörigen Amplitudenspektren. Abbildung a Abbildung b Abbildung c Abbildung d Seite 4

6 Übungsaufgabe 5: Der dargestellte Strom i( t ) fließt durch den gezeigten Schwingkreis. Es soll gelten: 1 T L = = 4ω C 16π C a) Berechnen Sie die Koeffizienten der Fourierreihe von i( t ) und u( t ) in komplexer Schreibweise. b) Skizzieren Sie die Amplitudenspektren von i( t ) und u( t ), wenn die Güte des Schwingkreises Q = 1 bzw. Q = 10 ist. c) Bestimmen Sie für Q = 1 und Q = 10 : a. die Effektivwerte I eff, U eff, b. den Schwingungsgehalt und Grundschwingungsgehalt von i( t ) und u( t ), c. den Oberschwingungsgehalt von i( t ) und u( t ). Seite 5

7 Übungsaufgabe 6: Gegeben ist ein im Zeitbereich einmaliger Impuls der Form: 0 für < t < T C π f ( t) = 1 cos t für T t T + < < T 0 für T < t < Berechnen Sie die Fourier-Transformierte von f ( t ) und bestimmen Sie das zugehörige Amplituden- und Phasenspektrum. Vergleichen Sie diese mit den entsprechenden Spektren des Rechteckimpulses gleicher Amplitude, aber halber Pulsdauer. Seite 6

8 Übungsaufgabe 7: Berechnen Sie die Laplace-Transformierte der gezeigten Impulsfunktion der Impulsdauer T, indem Sie den Impuls als Überlagerung zweier Sprungfunktionen darstellen. Bestimmen Sie anschließend die Laplace-Transformierte des um die Zeit t 0 zeitverschobenen Impulses. Seite 7

9 Übungsaufgabe 8: Bestimmen Sie die Laplace-Transformierten der folgenden Zeitfunktionen a) t g( t) = T 1t b) g( t) = 1 e σ ( σ 1 < 0) c) g( t) = cos( ω1t + ϕ) σ1t d) g( t) = e cos( ω t + ϕ) ( σ 1 < 0) 1 Seite 8

10 Übungsaufgabe 9: Berechnen Sie die Laplace-Transformierte der dargestellten Zeitfunktion. Seite 9

11 Übungsaufgabe 10: Gegeben sind die folgenden Laplace-Transformierten: a) G( s) = ab ( s a ) ( s b ) b) G( s) = a ( ) s s + a mit reellen Werten a,b. Bestimmen Sie die zugehörigen Zeitfunktionen. Seite 10

12 Übungsaufgabe 11: Gegeben ist die Schaltung: Der Schalter wird zu der Zeit t = 0 geschlossen. Bestimmen Sie die Spannung u ( t ) und die Ströme i 1 ( t ) und i ( t ) für 0 < t < C Seite 11

13 Übungsaufgabe 1: Gegeben ist die Schaltung: Der Schalter wird zu der Zeit t = 0 geschlossen und zu der Zeit L t = t1 = R1 R3 R + R + R 1 3 wieder geöffnet. Berechnen Sie die Ströme i 1 ( t ), i ( t ) und i 3 ( t ), sowie die Spannung u ( t ). Skizzieren Sie den zeitlichen Verlauf von i 1 ( t ), i ( t) und i 3 ( t ) für R1 = R = R3 = R. L Seite 1

14 Übungsaufgabe 13: Gegeben ist die Schaltung: Berechnen Sie die Spannung u( t ), sowie die Ströme i ( t ), i ( t ) und i ( t ), wenn der Schalter zu der Zeit t = 0 umgeschaltet wird und der Kondensator im Zeitbereich t < 0 ungeladen ist a) für den periodischen Fall, b) für den aperiodischen Fall, c) für den aperiodischen Grenzfall. C G L Seite 13

15 Übungsaufgabe 14: Gegeben ist die Schaltung: Im Zeitpunkt t = 0wird der Schalter umgeschaltet. Bestimmen Sie die Spannung u ( t ). L Seite 14

16 Übungsaufgabe 15: In der gegebenen Schaltung wird der Schalter zu der Zeit t = 0 umgeschaltet. Bestimmen Sie mit Hilfe der Laplace-Transformation die Ströme i( t ) und i 1 ( t) für den Zeitbereich 0 < t <. Seite 15

17 Übungsaufgabe 16: Gegeben ist ein invertierender Verstärker mit einem idealen Operationsverstärker Die symmetrische Versorgungspannung besitzt den Wert U = 15V. a) Welchen Wert muss der Widerstand R 0 besitzen, damit der Eingangswiderstand des Verstärkers 100 kω beträgt? b) Welchen Wert muss der Widerstand R 1 besitzen, damit der Verstärker eine Spannungsverstärkung von A = 50 besitzt? uɵ Hinweis: A = u ɵ a e Die Eingangsspannung ue( t ) sei nun sinusförmig mit dem Scheitelwert u ɵ e = 0,4V. c) Skizzieren Sie die Ausgangsspannung ( ) a u t. B Seite 16

18 Übungsaufgabe 17: Gegeben ist ein Hochpass. Ordnung: Bestimmen Sie die Werte der Bauelemente C 1, C, R 1, R für den Fall, dass die Verstärkung der Hochpassschaltung gleich 10 und die untere Grenzfrequenz 5 khz beträgt. Seite 17

19 Übungsaufgabe 18: Gegeben ist ein Tiefpass. Ordnung: Bestimmen Sie die Werte der Bauelemente C 1, C, R 1, R, R 3 für den Fall, dass die Verstärkung der Tiefpassschaltung gleich 10 und die obere Grenzfrequenz 5 khz beträgt. Seite 18

20 Übungsaufgabe 19: Ein idealer Operationsverstärker (OP) wird eingangs- und ausgangsseitig mit Zweitoren in Form von T-Gliedern beschaltet. a) Beschreiben Sie die Eigenschaften eines idealen Operationsverstärkers (Bauelementtyp, Prinzipschaltbild und Kennlinie, Spannungen, Ströme, Verstärkung). b) Berechnen Sie die Ströme 0 iɵ und 1 iɵ. c) Ermitteln Sie den Frequenzgang bzw. die Übertragungsfunktion der Schaltung. Seite 19

21 Übungsaufgabe 0: Die gegebene Schaltung stellt einen Differenzverstärker (Subtrahierer) dar. Der Verstärker ist ein idealer Operationsverstärker (OP). Die Eingangsspannungen u ɵ e1 und u ɵ e sind gegeben. Berechnen Sie die Ausgangsspannung u ɵ a in Abhängigkeit der Widerstände R 1 und R, wenn R3 R4 gilt: =. R R 1 Seite 0

22 Übungsaufgabe 1: Gegeben ist ein idealer Operationsverstärker (OP), der wie folgt beschaltet ist: a) Bestimmen Sie allgemein die Übertragungsfunktion v u uɵ = ɵ a der Schaltung. u b) Welche Übertragungsfunktion ergibt sich, 1 wenn: Z1 = R1, Z = R, Z5 = R3, Z3 = Z 4 = ( jωc)? Welches Filter ist damit realisiert? c) Welche Übertragungsfunktion ergibt sich für: Z1 = Z3 = Z4 = R, 1) Welches Filter ist damit realisiert? e Z Z5 ( j C) 1 = = ω? 1 ) Wie groß sind Betrag und Phase der Übertragungsfunktion fürω0 = ( RC)? 3) Welchen Wert hat der Betrag der Übertragungsfunktion an der Stelleω = ω0? Seite 1

23 Übungsaufgabe : Ein Sägezahngenerator, der die Spannung u q liefert (Abbildung b), ist in Reihe geschaltet mit einer Si-Diode D und einem Lastwiderstand R = 500Ω (Abbildung a). Die Diodenkennlinie werde angenähert durch eine Ersatzkennlinie mit U = 0,6 V und r = 10 Ω. L S f Abbildung a: Diode als Gleichrichter Abbildung c: Ersatzschaltbild Abbildung b: Sägezahnspannung a) Berechnen Sie den Maximalwert (Scheitelwert) i ɵ des Stromes i. b) Skizzieren Sie den zeitlichen Verlauf des Stromes i. c) Berechnen Sie den Effektivwert (quadratischer Mittelwert) I des Stromes i. Seite

24 Übungsaufgabe 3: Gegeben ist die abgebildete Schaltung. Die Spannung u 1 wird über den Widerstand R vollständig an die offenen Ausgangsklemmen übertragen, solange die Diode D gesperrt ist. Die Ausgangsspannung u wird begrenzt, wenn die Diode leitet. Die Diodenkennlinie werde idealisiert mit U = 0,6 V und r = 0 Ω. S f a) In welchem Bereich der Spannung u1 ist die Diode D leitend bzw. gesperrt? b) Berechnen Sie den Strom i in Abhängigkeit von der Spannung u 1. c) Bestimmen Sie die Übertragungskennlinie der Spannung u in Abhängigkeit von der Spannung u 1. Seite 3

25 Übungsaufgabe 4: Gegeben ist ein additiver Dioden-Mischer: Die Kondensatorwerte sind so groß gewählt, dass die an ihnen abfallende Wechselspannung vernachlässigt werden kann. Die nichtlineare Kennlinie der Diode kann durch ein Polynom n-ter Ordnung beschrieben werden. Für die Eingangsspannungen gilt: ue 1 = A sin( ω1t ) u = B sin( ω t) e mit ω1 ω Berechnen Sie die entstehenden Kreisfrequenzen ω i in der Ausgangsspannung u e3 des Mischers und skizzieren Sie das Frequenzspektrum der Ausgangsspannung. Hinweis: Zur vereinfachten Berechnung sollen nur die ersten drei Terme des Polynoms für einen willkürlich gewählten Arbeitspunkt berücksichtigt werden. Seite 4

26 Übungsaufgabe 5: Gegeben ist ein Operationsverstärker OP, der mit den Betriebsspannungen U = + 15 V bzw. UBM = 15 V symmetrisch gespeist wird. Der Operationsverstärker soll als inwertierender Verstärker mit einer Spannungsverstärkung A = 00 betrieben werden. Dabei soll der Eingangswiderstand des Operationsverstärkers etwa 10 kω betragen. Eine Signalspannung u( t) = 50 mv cos( ωt ) wird mit dem Eingang des invertierenden Verstärkers verbunden. a) Zeichnen Sie ein Schaltbild der Anordnung mit den beiden (positiven bzw. negativen) Betriebsspannungen und bestimmen Sie die Werte der dazu erforderlichen Bauelemente. b) Zeichnen Sie maßstäblich den Verlauf der Ausgangsspannung über eine Periodendauer T und bestimmen Sie in der Zeichnung alle für den Verlauf der Ausgangspannung charakteristischen Werte. BP Seite 5

27 Übungsaufgabe 6: Gegeben ist ein Operationsverstärker OP, der mit den Betriebsspannungen U = + 15 V bzw. UBM = 15 V symmetrisch gespeist wird. Der Operationsverstärker soll als inwertierender Verstärker mit einer Spannungsverstärkung A = 100 betrieben werden. Dabei soll der Eingangswiderstand des Operationsverstärkers etwa 10 kω betragen. Eine Signalspannung u( t) = 00 mv cos( ωt 45 ) wird mit dem Eingang des invertierenden Verstärkers verbunden. a) Zeichnen Sie ein Schaltbild der Anordnung mit den beiden (positiven bzw. negativen) Betriebsspannungen und bestimmen Sie die Werte der dazu erforderlichen Bauelemente. b) Zeichnen Sie maßstäblich den Verlauf der Ausgangsspannung über eine Periodendauer T und bestimmen Sie in der Zeichnung alle für den Verlauf der Ausgangspannung charakteristischen Werte. BP Seite 6

28 Übungsaufgabe 7: Gegeben ist ein Operationsverstärker OP, der mit den Betriebsspannungen U = + 5 V bzw. UBM = 5 V symmetrisch gespeist wird. Der Operationsverstärker soll als inwertierender Verstärker mit einer Spannungsverstärkung A = 100 betrieben werden. Dabei soll der Eingangswiderstand des Operationsverstärkers etwa 1 kω betragen. Eine Signalspannung u( t) = 50 mv cos( ωt + 45 ) wird mit dem Eingang des invertierenden Verstärkers verbunden. a) Zeichnen Sie ein Schaltbild der Anordnung mit den beiden (positiven bzw. negativen) Betriebsspannungen und bestimmen Sie die Werte der dazu erforderlichen Bauelemente. b) Zeichnen Sie maßstäblich den Verlauf der Ausgangsspannung über eine Periodendauer T und bestimmen Sie in der Zeichnung alle für den Verlauf der Ausgangspannung charakteristischen Werte. BP Seite 7

29 Übungsaufgabe 8: Gegeben ist eine verlustbehaftete homogene Fernleitung der Länge L, mit dem komplexen Leitungswellenwiderstand Z Lund dem Ausbreitungskoeffizienten γ = α + jβ. Die Fernleitung sei an dem Ort l = 0 mit einer Impedanz Z 0 abgeschlossen. Bild 8 Bestimmen Sie für eine vorgegebene konstante Kreisfrequenz ω = π f die Eingangsimpedanz Z E der mit einer Impedanz Z 0 belasteten Fernleitung. Seite 8

30 Übungsaufgabe 9: Gegeben ist eine homogene Fernleitung der Länge L, deren Verluste vernachlässigt werden sollen. Von dieser Fernleitung sind der Induktivitätsbelag L ' und der Kapazitätsbelag C ' bekannt. Für die Berechnungen soll die Fernleitung mit einer sinusförmigen Wechselspannung mit konstanter Wellenlänge λ betrieben werden. Bild 9 a) Bestimmen Sie ausgehend von den Leitungsgleichungen der verlustbehafteten Fernleitung die Leitungsgleichungen für die verlustlose Fernleitung und deren charakteristischen Größen. b) Bestimmen Sie die Eingangsimpedanz Z E einer mit Z 0 belasteten verlustlosen Fernleitung. c) Zeigen Sie, dass für eine spezielle Länge L = 0, 5 λ ein Widerstandswert Z 0 = R1 in einen Widerstandswert Z E = R transformiert wird und bestimmen Sie den Zusammenhang zwischen diesen Größen. d) Berechnen und skizzieren Sie die Strom- und Spannungsverläufe auf der Fernleitung für den Fall, dass für die Abschlussimpedanz Z 0 gilt: 1) Z 0 = 0 (Kurzschluss), ) Z 0 = (Leerlauf) und Z 3) 0 L = Z (Anpassung). Seite 9

31 Übungsaufgabe 30: Gegeben ist eine homogene Fernleitung der Länge L, deren Verluste vernachlässigt werden sollen. Von dieser Fernleitung sind der Induktivitätsbelag L ' und der Kapazitätsbelag C ' bekannt. Die Fernleitung ist mit einer Wechselspannungsquelle gemäß Bild 9 verbunden und mit einer Impedanz Z 0 belastet, in der eine elektrische Wirkleistung P0 = 180mW in Wärme umgewandelt wird. Bild 30 Folgende Größen sind bekannt: Z 0 = 100Ω, Z i = 100Ω, L = 1,5 m, C ' = 50 pf m, ' µ L = H und f = 10 MHz. m Berechnen Sie den Scheitelwert der Leerlaufspannung der angeschlossenen Wechselspannungsquelle! Seite 30

32 Übungsaufgabe 31: Gegeben sind zwei homogene Fernleitungen der Längen L 1 und L, deren Verluste vernachlässigt werden sollen. Die Fernleitungen sind mit einer Wechselspannungsquelle gemäß Bild 30 verbunden und mit einer Impedanz Z 0 belastet. Die Fernleitung mit der Länge L 1 besitzt einen Wellenwiderstand Z L1 und die Fernleitung mit der Länge L besitzt einen Wellenwiderstand Z L. Bild 31 Folgende Größen sind bekannt: Z 0 = 80Ω, L1 = 0,15 λ, Z L1 = 100Ω, L = 0,75 λ, Z L = 80Ω und f = 0kHz. 1) Berechnen Sie die Größe der Eingangsimpedanz Z E! ) Bestimmen Sie die Größe der Innenimpedanz Z i der Wechselspannungsquelle für den Fall, dass die in der Impedanz Z 0 in Wärme umgesetzte Wirkleistung maximal wird! Seite 31

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Praktikum Versuch Bauelemente. Versuch Bauelemente

Praktikum Versuch Bauelemente. Versuch Bauelemente 1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.

Mehr

Rechenübung HFT I. Smithdiagramm Impedanztransformation

Rechenübung HFT I. Smithdiagramm Impedanztransformation Rechenübung HFT I Smithdiagramm Impedanztransformation Organisatorisches zur Rechenübung HFT I UPDATE! Anmeldung für die Klausur: Bis 01.02.2010 im Sekretariat HFT 4 - (Bachelor und Diplom) Klausur wird

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Protokoll zum Versuch OV II im Elektronikpraktikum

Protokoll zum Versuch OV II im Elektronikpraktikum Protokoll zum Versuch OV II im Elektronikpraktikum Datum, Ort: Freitag, ---; PHY/D2 Praktikanten: --- Gruppe: --- Betreuer: Hr. Dr. Eckstein Aufgabenstellung. Schaltung des OPV als invertierender Addierverstärker

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2012 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen: Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Bearbeitungszeit: 30 Minuten

Bearbeitungszeit: 30 Minuten Vorname: Studiengang: Platz: Aufgabe: 1 2 3 Gesamt Punkte: Bearbeitungszeit: 30 Minuten Zugelassene Hilfsmittel: - eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, einseitig beschrieben,

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω Probeklausur Elektronik, W 205/206. Gegeben ist die folgende Schaltung: R U q R 3 R 2 R 4 U L 2 mit Uq= 0 V R= 800 Ω R2=, kω R3= 480 Ω R4= 920 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen Gesetze

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006 Übung Bauelemente und Schaltungstechnik Wintersemester 2005/2006 Prof. Dr. Dietmar Ehrhardt Universität Siegen im Februar 2006 Übung 1 - Widerstände und Heißleiter 1.1 Gegeben sei ein Schichtwiderstand

Mehr

Praktikum Elektronik

Praktikum Elektronik Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel. (0351) 462 2437 ~ Fax (0351)

Mehr

Projektlabor Sommersemester 2009 Mathis Schmieder. Operationsverstärker 1

Projektlabor Sommersemester 2009 Mathis Schmieder. Operationsverstärker 1 Operationsverstärker Projektlabor Sommersemester 2009 Mathis Schmieder Operationsverstärker 1 Was ist ein OPV? Gliederung Geschichte des Operationsverstärkers Genereller Aufbau und Funktion Ideale und

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 1. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Auswertung Operationsverstärker

Auswertung Operationsverstärker Auswertung Operationsverstärker Marcel Köpke & Axel Müller 31.05.2012 Inhaltsverzeichnis 1 Emitterschaltung eines Transistors 3 1.1 Arbeitspunkt des gleichstromgegengekoppelter Transistorverstärker....

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Musterlösung. Aufg. P max 1 13 Klausur "Elektrotechnik" am

Musterlösung. Aufg. P max 1 13 Klausur Elektrotechnik am Musterlösung Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 13 Klausur "Elektrotechnik" 2 7 3 15 6141 4 10 am 02.10.1996 5 9 6 16 Σ 70 N P Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene

Mehr

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 1.3. Vorbetrachtungen 2 2. Versuchsdurchführung 6

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Ortskurve, Resonanz, Filter

Ortskurve, Resonanz, Filter Elektrotechnisches Grundlagen-Labor II Ortskurve, esonanz, Filter Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 1 NF-Generator 10V; 600Ω 14 1 NF-Millivoltmeter 16 NF-Voltmeter, erdfrei

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

Aufgaben Elektronik II

Aufgaben Elektronik II Aufgaben Elektronik II. Zeigen Sie, dass bei der Berechnung der Übertragungsfunktion gilt: u A U E u E 2. Ein komplexer Widerstand ist in der Form Z Z e j gegeben. Wie ist das Verhältnis Imaginärteil zu

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer:

Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer: Gruppe: 1/10 Versuch: C PRAKTIKM SCHALTNGSTECHNIK VERSCH C Differenzverstärker Versuchsdatum: 14.06.2006 Teilnehmer: 1. Vorbereitung 1.1 Definitionen Grossignalverhalten des idealen Differenzverstärkers

Mehr

7.Übung Schaltungstechnik SS2009

7.Übung Schaltungstechnik SS2009 . Aufgabe: Aktives Filter.Ordnung Lernziele Vorteile und Nachteile aktiver Filter im Vergleich zu passiven Filter-Schaltungen. Berechnung eines einfachen Filters.Ordnung. Aufgabenstellung e d a Gegeben

Mehr

4. Passive elektronische Filter

4. Passive elektronische Filter 4.1 Wiederholung über die Grundbauelemente an Wechselspannung X Cf(f) X Lf(f) Rf(f) 4.2 Einleitung Aufgabe 1: Entwickle mit deinen Kenntnissen über die Grundbauelemente an Wechselspannung die Schaltung

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Impulsreflektometrie. 2 Abtast-Oszilloskop und Impulsreflektometer (TDR)

Impulsreflektometrie. 2 Abtast-Oszilloskop und Impulsreflektometer (TDR) HFT-Praktikum I Impulsreflektometrie IMP/1 Impulsreflektometrie (engl. time-domain reflectometry) 1 Einleitung Die Impulsreflektometrie ist ein Messverfahren, mit dem von einer Störstelle (z.b. Steckerübergang

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Komplexe Zahlen in der Elektrotechnik

Komplexe Zahlen in der Elektrotechnik Komplexe Zahlen in der Elektrotechnik René Müller 6. September 22 Zusammenfassung Oftmals stellen Studenten den Sinn und Zweck ihrer mathematischen Grundausbildung in Frage, denn es fehlt vielerorts an

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Prüfung Sommersemester 2014 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Prüfung Sommersemester 2014 Grundlagen der Elektrotechnik Dauer: 90 Minuten PrÄfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt Prüfung Sommersemester 2014 Grundlagen der Elektrotechnik Dauer: 90 Minuten Matr.-Nr.: Hörsaal:

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8. Wintersemester 2014/15 Elektronik

MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8. Wintersemester 2014/15 Elektronik MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Wintersemester

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

A. Formelsammlung Aktive Filter

A. Formelsammlung Aktive Filter A. Formelsammlung Aktive Filter Tiefpass-Schaltungen Grundglied. Ordnung u ( gegeben G( s u ω Abgleich: ω + s ( gegeben ω ω ω π f ω ω π f Sallen-Key Tiefpass.Ordnung (Einfach-itkopplung, SK (Einsetzbar

Mehr

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58 Leitungen Inhalt 1. Tastköpfe 2 1.1. Kompensation von Tastköpfen 2 1.1.1. Aufbau eines Tastkopfes. 2 1.1.2. Versuchsaufbau.2 1.2. Messen mit Tastköpfen..3 2. Reflexionen. 3 2.1. Spannungsreflexionen...3

Mehr

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Bei diesem Versuch sollen Sie mit den grundlegenden Eigenschaften und Anwendungen von Operationsverstärkern

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Kapitel 9. Anwendungsschaltungen mit Operationsverstärkern

Kapitel 9. Anwendungsschaltungen mit Operationsverstärkern Kapitel 9 Anwendungsschaltungen mit Operationsverstärkern Die hier betrachteten Schaltungen mit OP lassen sich unterteilen in solche mit einer relativ geringen Ansteuerung und andere, die den OP voll aussteuern.

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

Elektrische Filter und Schwingkreise

Elektrische Filter und Schwingkreise FB ET / IT Elektrische Filter und Schwingkreise Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 90933, 9339 Datum: 3.05.003 G. Schley,

Mehr

D.2 Versuchsreihe 2: Spice

D.2 Versuchsreihe 2: Spice .2: Versuchsreihe 2: Spice.2 Versuchsreihe 2: Spice Name: Gruppe: Theorie: Versuch: (vom Tutor abzuzeichnen) (vom Tutor abzuzeichnen) In dieser Versuchsreihe soll das Frequenzverhalten von RC-Gliedern

Mehr

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik/Mikroprozessortechnik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Dauer: 90 Minuten Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Mehr

Aufgabensammlung zur PEG Vorlesung im WS2003 Freie Universität Berlin, Institut für Informatik Dr.-Ing Achim Liers

Aufgabensammlung zur PEG Vorlesung im WS2003 Freie Universität Berlin, Institut für Informatik Dr.-Ing Achim Liers Aufgabensammlung zur PEG Vorlesung im WS2003 Freie Universität Berlin, Institut für Informatik Dr.-Ing Achim Liers. Zwei Metallplatten mit einer Fläche von jeweils 50 mm2 sind durch eine 0,5 mm dicke Glasscheibe

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen Simulieren mit TARGET 31! Seite 1 von 24 Zusammenstellung der in TARGET 31! simulierten Grundschaltungen Alle simulierten Schaltungen sind als TARGET 31!Schaltungen vorhanden und beginnen mit SIM LED Kennlinie...2

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 1 2 Grundlagen... 3 2.1 Gegenüberstellung der Grössen Translation > Rotation... 3 2.2 Gegenüberstellung Induktivität und Kapazität... 4 2.3 Zentrifugalkraft...

Mehr

Umwandlung elektrische Energie mit Leistungselektronik

Umwandlung elektrische Energie mit Leistungselektronik Umwandlung elektrische Energie mit Leistungselektronik Félix Rojas Technische Universität München Prof. Dr. Ing. Ralph Kennel. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Übung 2

Mehr

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1 29. Oktober 205 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 2.2 Aufgabe. CR-Glied Abbildung : CR-Glied Gegeben sei der Zweipol aus Abb.. Bestimmen Sie die Frequenzgangfunktion /U a) direkt durch

Mehr

Physik in der Praxis: Elektronik

Physik in der Praxis: Elektronik MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Physik in der Praxis: Elektronik 1. Versuch: Passive Schaltungen Abgabe am 2.1.21 Übungsgruppe 9 (Dienstagnachmittag) Übungsleiter Rainer

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Elektrotechnik II Übung 3

Elektrotechnik II Übung 3 Elektrotechnik II Übung 3 Prof. Dr. Göran Andersson FS 2011 http://www.eeh.ee.ethz.ch/ Feedback zur Übung 2 Übung 3-2 Ziel und Motivation der Übung 3 Ziele: 1. Praktische Realisierung eines PID-Reglers

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

3 Vierpole. 3.1 Matrixbeschreibung Definition Widerstandsmatrix

3 Vierpole. 3.1 Matrixbeschreibung Definition Widerstandsmatrix 3 Matrixbeschreibung Im vorhergehenden Kapitel hatten wir Zweipole diskutiert, also elektronische Bauteile mit nschlüssen bezeichnet Ein Tor liegt dann vor, wenn der elektrische Strom durch die beiden

Mehr

Messungen mit dem vektoriellen Netzwerkanalysator (VNA, VNWA)

Messungen mit dem vektoriellen Netzwerkanalysator (VNA, VNWA) Messungen mit dem vektoriellen Netzwerkanalysator (VNA, VNWA) 1. Vorstellung der Funktionsweise 2. Praktische Messungen Widerstände Kondensatoren Induktivitäten A L -Wert Antenne Leitungsdämpfung Filter

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 3 Grundschaltungen der Wechselstromtechnik Teilnehmer: Name orname Matr.-Nr. Datum der

Mehr

Kondensator und Spule

Kondensator und Spule Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

A1.1: Einfache Filterfunktionen

A1.1: Einfache Filterfunktionen A1.1: Einfache Filterfunktionen Man bezeichnet ein Filter mit dem Frequenzgang als Tiefpass erster Ordnung. Daraus lässt sich ein Hochpass erster Ordnung nach folgender Vorschrift gestalten: In beiden

Mehr

ELEKTRONIK - Beispiele - Dioden

ELEKTRONIK - Beispiele - Dioden ELEKTRONIK - Beispiele - Dioden DI Werner Damböck (D.1) (D.2) geg: U 1 = 20V Bestimme den Vorwiderstand R um einen maximalen Strom von 150mA in der Diode nicht zu überschreiten. Zeichne den Arbeitspunkt

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte Hochschule Merseburg (FH) FB INW Praktikum Virtuelle Instrumentierung 2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte National Instruments DAQ-Karte National

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Aufbau eines Oszillators Theorie und Beispiele

Aufbau eines Oszillators Theorie und Beispiele Aufbau eines Oszillators Theorie und Beispiele Inhaltsverzeichnis 1 Theoretischer Aufbau eines Oszillators 2 Kenngrößen eines Schwingkreises 3.1 Beispiel1: Meissner-Schaltung 3.2 Beispiel2: Wien-Robinson

Mehr

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Aufgabe 1 Die folgende Schaltung wird gespeist durch die beiden Quellen

Mehr

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik.

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik. Hochschule Augsburg Fachbereich: Elektrotechnik Arbeitsgruppe: 8 Praktikum Messtechnik 1 Versuch 4: Oszilloskop Arbeitstag :26.11.2009 Einliefertag: 03.12.2009 Peter Lawall Thomas Blenk (Unterschrift)

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Temperaturmeßung mit PT-100 und 4-20mA Transmitterschaltung

Temperaturmeßung mit PT-100 und 4-20mA Transmitterschaltung Sensortechnik Temperaturmeßung mit PT- und 4-m Transmitterschaltung nhaltsverzeichnis Platin Widerstände Linearisierung orgehensweise zum Schaltungsentwurf Schaltungsaufbau mit Berechnung Platin Widerstände

Mehr

Diplomprüfung Elektronik WS 2007/2008 Donnerstag

Diplomprüfung Elektronik WS 2007/2008 Donnerstag FH München F 3 Maschinenbau Diplomprüfung Elektronik WS 27/28 Donnerstag 3..28 Prof. Dr. Höcht (Prof. Dr. ortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.:

Mehr