TGI-Übung Dirk Achenbach

Größe: px
Ab Seite anzeigen:

Download "TGI-Übung Dirk Achenbach"

Transkript

1 TGI-Übung Dirk Achenbach INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Agenda Neues aus dem Kummerkasten Lösung von Übungsblatt 7 Ganz kurz: Hamming-Codes Infos zur Klausur Dirk Achenbach TGI-Übung 4 2/31

3 Neues aus dem Kummerkasten Wäre es möglich die Klausuren vergangener Jahre von Herrn Müller Quade frei verfügbar zu machen. Ich würde mich sehr darüber freuen, liebe Grüße. Sind auf der Lehrstuhlwebseite. Schon immer. :) Gibt es eine Liste der Fehler im Skript, die seit der ersten Fassung berichtigt wurden? Ich habe bereits die erste Version ausgedruckt und würde gerne vermeiden, jede Seite auf Verdacht mit der aktuellen Version zu vergleichen. Leider nein. :( Dirk Achenbach TGI-Übung 4 3/31

4 Aufgabe 1a Ein beliebiges, unabhängiges Spielzeug (Niete) N 6 /7 Die ebenso bezaubernde wie tödliche Anaconda A 1 /14 Der pfiffige Informatikstudent Marvin Faulsson F 3 /70 Theorie-Man halb Mensch, halb Turingmaschine T 3 /140 Der ebenso geniale wie verspielte Doktor Meta M 1 /140 Bestimmen Sie die Kanalentropie H(U) und den Informationsgehalt des Symbols M. I(M) = ld = ld 140 7,129 bit. Kanalentropie: Erwartungswert des Informationsgehalts eines Zeichens: H(U) = Σ x U p(x) ld p(x) = 0,827 bit. Dirk Achenbach TGI-Übung 4 4/31

5 Aufgabe 1a Ein beliebiges, unabhängiges Spielzeug (Niete) N 6 /7 Die ebenso bezaubernde wie tödliche Anaconda A 1 /14 Der pfiffige Informatikstudent Marvin Faulsson F 3 /70 Theorie-Man halb Mensch, halb Turingmaschine T 3 /140 Der ebenso geniale wie verspielte Doktor Meta M 1 /140 Bestimmen Sie die Kanalentropie H(U) und den Informationsgehalt des Symbols M. I(M) = ld = ld 140 7,129 bit. Kanalentropie: Erwartungswert des Informationsgehalts eines Zeichens: H(U) = Σ x U p(x) ld p(x) = 0,827 bit. Dirk Achenbach TGI-Übung 4 4/31

6 Aufgabe 1a Ein beliebiges, unabhängiges Spielzeug (Niete) N 6 /7 Die ebenso bezaubernde wie tödliche Anaconda A 1 /14 Der pfiffige Informatikstudent Marvin Faulsson F 3 /70 Theorie-Man halb Mensch, halb Turingmaschine T 3 /140 Der ebenso geniale wie verspielte Doktor Meta M 1 /140 Bestimmen Sie die Kanalentropie H(U) und den Informationsgehalt des Symbols M. I(M) = ld = ld 140 7,129 bit. Kanalentropie: Erwartungswert des Informationsgehalts eines Zeichens: H(U) = Σ x U p(x) ld p(x) = 0,827 bit. Dirk Achenbach TGI-Übung 4 4/31

7 Aufgabe 1b Ein beliebiges, unabhängiges Spielzeug (Niete) N 6 /7 Die ebenso bezaubernde wie tödliche Anaconda A 1 /14 Der pfiffige Informatikstudent Marvin Faulsson F 3 /70 Theorie-Man halb Mensch, halb Turingmaschine T 3 /140 Der ebenso geniale wie verspielte Doktor Meta M 1 /140 Dirk Achenbach TGI-Übung 4 5/31

8 Erstellen Sie für die gegebene Häufigkeitsverteilung einen Huffman-Code N 0 A F T M Dirk Achenbach TGI-Übung 4 6/31

9 Aufgabe 1c Zeichen Code N 0 A 10 F 110 T 1110 M 1111 Codieren Sie den String NNNANN mit dem von Ihnen erstellten Huffman-Code Dirk Achenbach TGI-Übung 4 7/31

10 Aufgabe 1c Zeichen Code N 0 A 10 F 110 T 1110 M 1111 Codieren Sie den String NNNANN mit dem von Ihnen erstellten Huffman-Code Dirk Achenbach TGI-Übung 4 7/31

11 Aufgabe 1d Zeichen Code N 0 A 10 F 110 T 1110 M 1111 Codieren Sie den String MTMMTM mit dem von Ihnen erstellten Huffman-Code Dirk Achenbach TGI-Übung 4 8/31

12 Aufgabe 1d Zeichen Code N 0 A 10 F 110 T 1110 M 1111 Codieren Sie den String MTMMTM mit dem von Ihnen erstellten Huffman-Code Dirk Achenbach TGI-Übung 4 8/31

13 Wiederholung: Kolmogorov-Komplexität Es sei x ein binäres Wort. Die minimale Beschreibung d(x) von x ist die kürzeste Zeichenkette M w, für die die Turingmaschine M mit Eingabe w unter Ausgabe von x auf dem Band hält. Die Kolmogorov-Komplexität K (x) ist K (x) = d(x). Dirk Achenbach TGI-Übung 4 9/31

14 Aufgabe 2a Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität an, um die n-te Stelle von π auszugeben. Besser: Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität der n-ten Stelle pi an. Zwei Interpretationen: n ist fest. Sei x die n-te Stelle von π. Dann: K (x) = c. Oder: n ist frei. Wir geben ein Programm an, das x ausrechnet und übergeben n: K (x) = log n + c. Dirk Achenbach TGI-Übung 4 10/31

15 Aufgabe 2a Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität an, um die n-te Stelle von π auszugeben. Besser: Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität der n-ten Stelle pi an. Zwei Interpretationen: n ist fest. Sei x die n-te Stelle von π. Dann: K (x) = c. Oder: n ist frei. Wir geben ein Programm an, das x ausrechnet und übergeben n: K (x) = log n + c. Dirk Achenbach TGI-Übung 4 10/31

16 Aufgabe 2a Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität an, um die n-te Stelle von π auszugeben. Besser: Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität der n-ten Stelle pi an. Zwei Interpretationen: n ist fest. Sei x die n-te Stelle von π. Dann: K (x) = c. Oder: n ist frei. Wir geben ein Programm an, das x ausrechnet und übergeben n: K (x) = log n + c. Dirk Achenbach TGI-Übung 4 10/31

17 Aufgabe 2b Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität an, um π auf n Stellen genau auszugeben. Besser: Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität der ersten n Stellen von pi an. Wie oben: K (x) = log n + c. Dirk Achenbach TGI-Übung 4 11/31

18 Aufgabe 2b Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität an, um π auf n Stellen genau auszugeben. Besser: Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität der ersten n Stellen von pi an. Wie oben: K (x) = log n + c. Dirk Achenbach TGI-Übung 4 11/31

19 Informationsgehalt, Entropie Informationsgehalt eines Zeichens: I p = log b ( 1 p ) [= log b (p)] Die Entropie einer diskreten Zufallsvariable X ist (analog zum physikalischem Begriff) definiert durch H(X) = 1 p(x) log( p(x) ) = EI(x). x X Dirk Achenbach TGI-Übung 4 12/31

20 Aufgabe 3 0 X 1 0,65 0,35 0,2 0,8 0 Y 1 P[X = 0] = 1 3, P[X = 1] = 2 3. Dirk Achenbach TGI-Übung 4 13/31

21 Aufgabe 3a Bestimmen Sie die Entropie von X und Y. H(X) = EI(X) = Pr[X = 0] I(X = 0) + Pr[X = 1] I(X = 1) = 1 3 log log 2 3 = 0,918 bit. Pr[Y = 0] = Pr[X = 0, Y = 0] + Pr[X = 1, Y = 0] = 1 3 0, ,2 = 0,35 Pr[Y = 1] = Pr[X = 0, Y = 1] + Pr[X = 1, Y = 1] = 1 3 0, ,8 = 0,65 H(Y ) = EI(Y ) = Pr[Y = 0] log Pr[Y = 0] P[Y = 1] log Pr[Y = 1] 0,9340 bit. Dirk Achenbach TGI-Übung 4 14/31

22 Aufgabe 3a Bestimmen Sie die Entropie von X und Y. H(X) = EI(X) = Pr[X = 0] I(X = 0) + Pr[X = 1] I(X = 1) = 1 3 log log 2 3 = 0,918 bit. Pr[Y = 0] = Pr[X = 0, Y = 0] + Pr[X = 1, Y = 0] = 1 3 0, ,2 = 0,35 Pr[Y = 1] = Pr[X = 0, Y = 1] + Pr[X = 1, Y = 1] = 1 3 0, ,8 = 0,65 H(Y ) = EI(Y ) = Pr[Y = 0] log Pr[Y = 0] P[Y = 1] log Pr[Y = 1] 0,9340 bit. Dirk Achenbach TGI-Übung 4 14/31

23 Aufgabe 3a Bestimmen Sie die Entropie von X und Y. H(X) = EI(X) = Pr[X = 0] I(X = 0) + Pr[X = 1] I(X = 1) = 1 3 log log 2 3 = 0,918 bit. Pr[Y = 0] = Pr[X = 0, Y = 0] + Pr[X = 1, Y = 0] = 1 3 0, ,2 = 0,35 Pr[Y = 1] = Pr[X = 0, Y = 1] + Pr[X = 1, Y = 1] = 1 3 0, ,8 = 0,65 H(Y ) = EI(Y ) = Pr[Y = 0] log Pr[Y = 0] P[Y = 1] log Pr[Y = 1] 0,9340 bit. Dirk Achenbach TGI-Übung 4 14/31

24 Aufgabe 3a Bestimmen Sie die Entropie von X und Y. H(X) = EI(X) = Pr[X = 0] I(X = 0) + Pr[X = 1] I(X = 1) = 1 3 log log 2 3 = 0,918 bit. Pr[Y = 0] = Pr[X = 0, Y = 0] + Pr[X = 1, Y = 0] = 1 3 0, ,2 = 0,35 Pr[Y = 1] = Pr[X = 0, Y = 1] + Pr[X = 1, Y = 1] = 1 3 0, ,8 = 0,65 H(Y ) = EI(Y ) = Pr[Y = 0] log Pr[Y = 0] P[Y = 1] log Pr[Y = 1] 0,9340 bit. Dirk Achenbach TGI-Übung 4 14/31

25 Entropie Fehlinformation / Irrelevanz H(Y X) H(X) I(X;Y) H(Y ) Totalinformation H(X, Y ) = H(X) + H(Y X) H(X Y ) Äquivokation Dirk Achenbach TGI-Übung 4 15/31

26 Gemeinsame Entropie, bedingte Entropie Die gemeinsame Entropie der Zufallsvariablen X, Y mit der gemeinsamen Verteilung p(x, y) ist definiert durch H(X, Y ) = 1 p(x, y) log( p(x, y) ). x X y Y Die bedingte Entropie der Zufallsvariable Y in Abhängigkeit von X mit gemeinsamer Verteilung p(x, y) ist H(Y X) = x X p(x)h(y X = x) = p(x) p(y x) log(p(y x)) x X y Y = p(x, y)log(p(y x)). x X,y Y Dirk Achenbach TGI-Übung 4 16/31

27 Aufgabe 3 0 X 1 0,65 0,35 0,2 0,8 0 Y 1 P[X = 0] = 1 3, P[X = 1] = 2 3. Dirk Achenbach TGI-Übung 4 17/31

28 Aufgabe 3b Bestimmen Sie die Verbundentropie von X und Y. H(X, Y ) = Σ X Σ Y Pr[X, Y ] log Pr[X, Y ] = (Pr[X = 0, Y = 0] log Pr[X = 0, Y = 0] +...) 1,711 bit Dirk Achenbach TGI-Übung 4 18/31

29 Aufgabe 3b Bestimmen Sie die Verbundentropie von X und Y. H(X, Y ) = Σ X Σ Y Pr[X, Y ] log Pr[X, Y ] = (Pr[X = 0, Y = 0] log Pr[X = 0, Y = 0] +...) 1,711 bit Dirk Achenbach TGI-Übung 4 18/31

30 Aufgabe 3c Bestimmen Sie Irrelevanz und Äquivokation. H(Y X) = H(X, Y ) H(X) 0,793 bit. H(X Y ) = H(X, Y ) H(Y ) 0,777 bit. Bestimmen Sie die Transinformation. I(X; Y ) = H(X) H(X Y ) = H(Y ) H(Y X) 0,141 bit. Dirk Achenbach TGI-Übung 4 19/31

31 Aufgabe 3c Bestimmen Sie Irrelevanz und Äquivokation. H(Y X) = H(X, Y ) H(X) 0,793 bit. H(X Y ) = H(X, Y ) H(Y ) 0,777 bit. Bestimmen Sie die Transinformation. I(X; Y ) = H(X) H(X Y ) = H(Y ) H(Y X) 0,141 bit. Dirk Achenbach TGI-Übung 4 19/31

32 Aufgabe 3c Bestimmen Sie Irrelevanz und Äquivokation. H(Y X) = H(X, Y ) H(X) 0,793 bit. H(X Y ) = H(X, Y ) H(Y ) 0,777 bit. Bestimmen Sie die Transinformation. I(X; Y ) = H(X) H(X Y ) = H(Y ) H(Y X) 0,141 bit. Dirk Achenbach TGI-Übung 4 19/31

33 Aufgabe 3c Bestimmen Sie Irrelevanz und Äquivokation. H(Y X) = H(X, Y ) H(X) 0,793 bit. H(X Y ) = H(X, Y ) H(Y ) 0,777 bit. Bestimmen Sie die Transinformation. I(X; Y ) = H(X) H(X Y ) = H(Y ) H(Y X) 0,141 bit. Dirk Achenbach TGI-Übung 4 19/31

34 Aufabe 4 Zeigen Sie, dass p = 1 2 die Entropie einer binären Quelle H(X) mit P[X = 0] = p und P[X = 1] = 1 p maximiert. H(X) H(X) = p log p (1 p) log(1 p) Ableitungsregeln (log x) = x x Produktregel: (f g) = f g + f g Dirk Achenbach TGI-Übung 4 20/31

35 Aufabe 4 Zeigen Sie, dass p = 1 2 die Entropie einer binären Quelle H(X) mit P[X = 0] = p und P[X = 1] = 1 p maximiert. H(X) H(X) = p log p (1 p) log(1 p) Ableitungsregeln (log x) = x x Produktregel: (f g) = f g + f g Dirk Achenbach TGI-Übung 4 20/31

36 Aufgabe 4 Erste Ableitung H (X) = (p log p) ((1 p) log(1 p)) Zweite Ableitung = (log p + p 1 1 p ) ( log(1 p) p 1 p ) = (1 + log p) + log(1 p) + 1 = log(1 p) log p H (X) = 1 1 p 1 p = ( 1 p p ) Dirk Achenbach TGI-Übung 4 21/31

37 Aufgabe 4 Erste Ableitung H (X) = (p log p) ((1 p) log(1 p)) Zweite Ableitung = (log p + p 1 1 p ) ( log(1 p) p 1 p ) = (1 + log p) + log(1 p) + 1 = log(1 p) log p H (X) = 1 1 p 1 p = ( 1 p p ) Dirk Achenbach TGI-Übung 4 21/31

38 Aufgabe 4 Kurvendiskussion H (X) ist auf [0, 1] immer < 0. Maximum dort, wo H (X) = 0! Berechne: H (X) = 0 log p = log(1 p) p = 1 p 2p = 1 p = 1 2 Dirk Achenbach TGI-Übung 4 22/31

39 Aufgabe 5a Gegeben sei eine Informationsquelle Q über Σ = {0, 1}. Q gibt eine periodische Folge aus auf drei Nullen folgt also eine Eins, und so weiter. Bestimmen Sie den Informationsgehalt eines zum Zeitpunkt t ausgegebenen Zeichens X t für einen gedächtnislosen Empfänger. Empfänger Gedächtnislos: P[X = 0] = 3 4, P[X = 1] = 1 4. Damit: H(X) = 3 4 ld log 4 0,811 bit. Dirk Achenbach TGI-Übung 4 23/31

40 Aufgabe 5a Gegeben sei eine Informationsquelle Q über Σ = {0, 1}. Q gibt eine periodische Folge aus auf drei Nullen folgt also eine Eins, und so weiter. Bestimmen Sie den Informationsgehalt eines zum Zeitpunkt t ausgegebenen Zeichens X t für einen gedächtnislosen Empfänger. Empfänger Gedächtnislos: P[X = 0] = 3 4, P[X = 1] = 1 4. Damit: H(X) = 3 4 ld log 4 0,811 bit. Dirk Achenbach TGI-Übung 4 23/31

41 Aufgabe 5b Bestimmen Sie den Informationsgehalt eines zum Zeitpunkt t ausgegebenen Zeichens X t, wenn ein vorhergehendes Zeichen X t 1 bekannt ist. Nun bedingte Wahrscheinlichkeiten! P[X = 0 Y = 0] = 2 3, P[X = 0 Y = 1] = 1, P[X = 1 Y = 0] = 1 3, P[X = 1 Y = 1] = 0 Damit ist auch die Entropie bedingt: H(X Y ) = Σ y Y p(y)h(x Y = y) = Σ y Y p(y)σ x X p(x y) ld p(x y) = ( 3 4 (2 3 ld log 1 3 ) + (1 (0 log log 1)) 4 0,688 bit Dirk Achenbach TGI-Übung 4 24/31

42 Ganz kurz: Hamming-Codes Gegeben sei der Hamming-Code mit G := H := Wir wissen aus der Vorlesung Codiert wird durch G m = c. Das Syndrom ist bei fehlerfreier Übertragung null: H c = o. Dann decodiert man, indem man die Nachrichtenbits aus c extrahiert: Zeilen 3, 5, 6, 7. Dirk Achenbach TGI-Übung 4 25/31

43 Hamming-Codes Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e. Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. Dirk Achenbach TGI-Übung 4 26/31

44 Zur Klausur Es gibt keine Anmeldung zum Schein. Hauptklausur findet am um 8 Uhr statt. Nachklausur: Nachname Hörsaal: Webseite. Klausuranmeldung bis einschließlich Abholen von Übungsblättern bei uns (Raum 274, Geb ) möglich, wenn Blätter nicht zuvor im Tutorium abgeholt wurden. Es gibt ein Übungsblatt 8, keine Korrektur, aber klausurrelevant; Lösung stellen wir online. Dirk Achenbach TGI-Übung 4 27/31

45 Zur Klausur 60 Minuten, 60 Punkte 20 Punkte werden zum Bestehen der Klausur hinreichend sein Recherchieren Sie den Hörsaal im Vorfeld! Seien Sie pünktlich. PPPPP Proper Preparation Prevents Poor Performance. Dirk Achenbach TGI-Übung 4 28/31

46 Zur Klausur 60 Minuten, 60 Punkte 20 Punkte werden zum Bestehen der Klausur hinreichend sein Recherchieren Sie den Hörsaal im Vorfeld! Seien Sie pünktlich. PPPPP Proper Preparation Prevents Poor Performance. Dirk Achenbach TGI-Übung 4 28/31

47 Was kommt dran? Alles! Im Speziellen: Die wichtigen Maschinenmodelle und Konzepte: Kennen. Die besprochenen Verfahren: Können. Die wichtigen Definitionen und Zusammenhänge: Wissen. Übungsaufgaben: Kennen. Alte Klausuren: Üben. Dirk Achenbach TGI-Übung 4 29/31

48 Viel Erfolg in der Klausur! Dirk Achenbach TGI-Übung 4 30/31

49 Kurze Erinnerung: Anti-Prism-Party Am ab 18 Uhr: Kurzvorträge Live-Vorführungen Demos an Stationen Kryptologikum Führungszeiten für die TGI-Vorlesung: 16 Uhr und 17 Uhr. Dirk Achenbach TGI-Übung 4 31/31

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Begriffe aus der Informatik Nachrichten

Begriffe aus der Informatik Nachrichten Begriffe aus der Informatik Nachrichten Gerhard Goos definiert in Vorlesungen über Informatik, Band 1, 1995 Springer-Verlag Berlin Heidelberg: Die Darstellung einer Mitteilung durch die zeitliche Veränderung

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Nachklausur Theoretische Grundlagen der Informatik Wintersemester 203/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1 Information, Entropie und Redundanz Technische Informationsquelle Entropie und Redundanz Huffman Codierung Martin Werner WS 9/ Martin Werner, Dezember 9 Information und Daten Informare/ Informatio (lat.)

Mehr

Definition der Entropie unter Verwendung von supp(p XY )

Definition der Entropie unter Verwendung von supp(p XY ) Definition der Entropie unter Verwendung von supp(p XY ) Wir fassen die Ergebnisse des letzten Abschnitts nochmals kurz zusammen, wobei wir von der zweidimensionalen Zufallsgröße XY mit der Wahrscheinlichkeitsfunktion

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015 Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-05!"!## x 8 0 8 0 8 0 0, 0, 3 0 0, 05 $ $ % 3, 75 $ Geben Sie für das vorige Beispiel. (Bsp. ) die Anteile der jeweiligen

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Referat zum Thema Huffman-Codes

Referat zum Thema Huffman-Codes Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung

Mehr

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0.

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0. 7. Diskretes Kanalmodell I 7. a Aussagen über das digitale Übertragungsverfahren Bis auf die bereitzustellende Übertragungsrate [vgl. c)] sind keine Aussagen über das digitale Übertragungsverfahren möglich.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Informationstheorie und Codierung

Informationstheorie und Codierung Informationstheorie und Codierung 3. Codierung diskreter Quellen Gleichmäßiger Code Ungleichmäßiger Code Fano-, Huffman-Codierung Optimalcodierung von Markoff-Quellen Lauflängencodes nach Golomb und Rice

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Wählen Sie aus den folgenden sechs Aufgaben fünf Aufgaben aus. Die maximal erreichbare Punktezahl finden Sie neben jeder Aufgabe.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 31.01.08 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches Anmeldung Hauptklausur : allerspätestens

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Datenkompression: Verlustbehaftete Komprimierungsverfahren Einführung. H. Fernau

Datenkompression: Verlustbehaftete Komprimierungsverfahren Einführung. H. Fernau Datenkompression: Verlustbehaftete Komprimierungsverfahren Einführung H. Fernau email: fernau@uni-trier.de WiSe 2008/09 Universität Trier 1 Verlustbehaftete Komprimierung: Grundlagen X C X c D Y Eingabe

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Grundlagen der Nachrichtentechnik 4

Grundlagen der Nachrichtentechnik 4 Grundlagen der Prof. Dr.-Ing. Andreas Czylwik S. Organisatorisches Vorlesung 2 SWS Übung SWS, Betreuer: Dipl.-Ing. Lars Häring Folienkopien sind verfügbar Prüfung: schriftlich Neue Forschungsthemen im

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:... VORNAME:... MAT. NR.:... Prüfung 389.53 Musterlösung A Datenkommunikation Institute of Telecommunications Görtz, Goiser, Hlawatsch, Matz, Mecklenbräuker, Rupp, Zseby TU-Wien 8.6.4 Bitte beachten

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Stochastische Lernalgorithmen

Stochastische Lernalgorithmen Stochastische Lernalgorithmen Gerhard Jäger 14. Mai 2003 Das Maximum-Entropy-Prinzip Der Entropiebegriff Entropie: Chaos, Unordung, Nicht-Vorhersagbarkeit,... Begriff kommt ursprünglich aus der Physik:

Mehr

Einführung in die Informatik und Medieninformatik

Einführung in die Informatik und Medieninformatik Name, Vorname Matrikelnummer Klausur zur Vorlesung Einführung in die Informatik und Medieninformatik LVNr. 36 600, WS 2012/13, im Studiengang Medieninformatik Dienstag, 12. Februar 2013 16:00 18:00 Uhr

Mehr

Grundlagen Rechnernetze und Verteilte Systeme (GRNVS)

Grundlagen Rechnernetze und Verteilte Systeme (GRNVS) Lehrstuhl für Netzarchitekturen und Netzdienste Fakultät für Informatik Technische Universität München Grundlagen Rechnernetze und Verteilte Systeme (GRNVS) IN SoSe 26 Prof. Dr.-Ing. Georg Carle Johannes

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften

1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften 1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion

Mehr

FH München, FB 03 FA WS 06/07. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz

FH München, FB 03 FA WS 06/07. Ingenieurinformatik. Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz FH München, FB 03 FA WS 06/07 Ingenieurinformatik Name Vorname Matrikelnummer Sem.Gr.: Hörsaal Platz Zulassung geprüft vom Aufgabensteller: Teil I Aufg. 2 Aufg. 3 Aufg. 4 Aufg. 5 Summe Note Aufgabensteller:

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 2 AM 06./07.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle

Mehr

Einführung in die Informatik

Einführung in die Informatik Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2 Probe-Klausur Mathematik f. Bau-Ing + Chem.Modul. (a) Durch die Punkte und gehe eine Ebene E, die auf der Ebene E : x + y z = 0 senkrecht steht. Bestimmen Sie die Gleichung der Ebene E. (b) Bestimmen Sie

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Automaten und Formale Sprachen

Automaten und Formale Sprachen Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur.

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur. Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Verlauf

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

Einführung in die Informatik und Medieninformatik

Einführung in die Informatik und Medieninformatik Name, Vorname Matrikelnummer Klausur zur Vorlesung Einführung in die Informatik und Medieninformatik LVNr. 36 600, SS 2013, im Studiengang Medieninformatik Dienstag, 23. Juli 2013 12:00 14:00 Uhr (120

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Informationstheorie Prof Dr. Matthew Crocker Universität des Saarlandes 22. Juni 205 Matthew Crocker (UdS) Mathe III 22. Juni 205 / 43 Informationstheorie Entropie (H) Wie

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Weiterführende Literatur zum Thema Informationstheorie:

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 26. Feb. 2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 10 Punkte Aufgabe 2. Teilmengenkonstruktion

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 32 Philipp Oppermann 13. November 2013 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de

Informationstheorie und Codierung. Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Informationstheorie und Codierung Prof. Dr.-Ing. Lilia Lajmi l.lajmi@ostfalia.de Inhaltsverzeichnis 3. Kanalcodierung 3.1 Nachrichtentheorie für gestörte Kanäle 3.1.1 Transinformation 3.1.2 Kanalkapazität

Mehr