Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )

Größe: px
Ab Seite anzeigen:

Download "Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )"

Transkript

1 Technische Universität Dresden Seite 1 Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom ) Beachte: In der Vorlesung wurden z. T. andere Symbole verwendet. Vorlesung Ergänzungsskript Bezeichnung t ϑ Temperatur [ ] τ t Zeit [s] ξ X dimensionslose Länge [-] ϑ Θ dimensionslose Temperatur [-] φ(ξ) f(x) Funktion von ξ [-] ψ( Fo ) g(fo) Funktion von Fο [-] Allgemeines Bei der instationären Wärmeleitung ist die Temperatur an einem bestimmten Ortspunkt P ( x,y,z) zeitlich veränderlich, d.h., in einem Körper ist das Temperaturfeld eine Funktion von Ort und Zeit ϑ = ϑ( x,y,z,t ). Das Temperaturfeld wird dann durch Lösungen der bereits in Abschnitt 3 hergeleiteten Differentialgleichungen des Temperaturfeldes beschrieben (z.b. Gleichung (3-1)). Je nach Aufgabenstellung kann man die Lösungen durch analytische Integration, durch numerische oder grafische Integrationsverfahren ermitteln. Analytische Lösungen ergeben sich nur in wenigen Fällen mit ganz speziellen Voraussetzungen bzw. Vereinfachungen. Abgesehen von der bereits im vorangegangenen Abschnitt 4 besprochenen stationären Wärmeleitung ist die analytische Lösung nur bei geometrisch einfachen Körpern für bestimmte Spezialfälle der Anfangs- und Randbedingungen möglich. Technische Prozesse, z.b. aus dem Bereich der Werkstofftechnik und Baustoffverfahrenstechnik wie die periodische Aufheizung und Abkühlung von Mauerwerk in hargenöfen, die Wärmespeicherung in Regeneratoren, die Abkühlung mit hohen Abkühlgeschwindigkeiten z.b. zum Härten, müssen in der Regel durch numerische Simulationen beschrieben werden. Mit Hilfe der analytischen Lösungen für einfache Spezialfälle lassen sich jedoch mitunter bereits wichtige Hinweise auch für komplexe technische Prozesse finden. In dem hier gesteckten Rahmen wird daher nur auf einige Spezialfälle mit vereinfachten Bedingungen eingegangen. Stand: Okt. 006

2 Technische Universität Dresden Seite Ebene Platte (Analytische Lösung von Gröber 1 ) Für die ebene Platte mit einer endlichen Dicke bei konstanten Stoffwerten und ohne innere Wärmeuellen vereinfacht sich die Differentialgleichung des Temperaturfeldes (Gleichung (3-18)): ϑ ϑ = a t x (5-1) zu der Fourier-Differentialgleichung für den eindimensionalen Fall. Die bei der ebenen Platte vorausgesetzten großen Ausdehnung in y- und z-richtung führen zu: ϑ ϑ = = 0 y z Abb Zeitliche Änderung (t 0 bis t ) des Temperaturverlaufes in einer Platte bei Abkühlung. (5-) Für dieses Beispiel ist in Abb. 5-1 für verschiedene Zeiten t der Temperaturverlauf in x- Richtung in der Platte dargestellt. Die Platte hat zum Zeitpunkt t = 0 die konstante Anfangstemperatur ϑ 0 und wird nun konvektiv abgekühlt, wobei die Umgebungstemperatur unveränderlich ϑ = const u. ist. Zur Verallgemeinerung des Problems werden nun dimensionslose Größen eingeführt. Da es sich um ein symmetrisches Problem handelt, genügt die Betrachtung nur einer Seite, ausgehend von x = 0. Es werden x X = (dimensionsloser Abstand zur Plattenmitte) (5-3) s und 1 Gröber, H.; Erk, S.: Die Grundgesetze der Wärmeübertragung.. Auflage, Springer-Verlag Berlin, Stand: Okt. 006

3 Technische Universität Dresden Seite 3 Θ ϑ ϑ ϑ ϑ u = (dimensionslose Temperatur) (5-4) o u gesetzt. Damit ergibt sich aus Gleichung (5-1) Θ a t s = Θ X (5-5). Fasst man den Ausdruck ( ) a t s als neue dimensionslose Gruppe zusammen mit a t im Körper geleitete Wärme Fo = = (5-6) ( s ) im Körper gespeicherte Enthalpie so ergibt sich aus Gleichung (5-5): Θ Θ = Fo X (5-7) die Differentialgleichung für das Temperaturfeld der ebenen Platte in dimensionsloser Schreibweise bzw. die dimensionslose Formulierung der Fourier-Differentialgleichung für den eindimensionalen Fall. Die Differentialgleichung lässt sich z.b. mit dem Produktansatz ( X ) g Θ = f (5-8) g, wobei f nur vom dimensionslosen Ort X und g nur von der dimensionslosen Zeit Fo abhängen. lösen. Die Lösung ergibt sich aus dem Produkt der beiden Funktionen f ( X ) und Stand: Okt. 006

4 Technische Universität Dresden Seite 4 Differenziert man diese Lösung (Gleichung (5-8)) zweimal nach dx und einmal nach d und setzt die Differenziale in die Differentialgleichung (Gleichung 5-7) ein, so erhält man f ( X ) ( X ) dg d f = g (5-9) dfo dx oder für f ( X ) g 0 1 g 1 d f ( X ) dg = (5-10) dfo f ( X ) dx bzw. g' g ' ( X ) ( X ) f' = (5-11). f Die linke Seite der Gleichung hängt nur von Fo, die rechte Seite nur von X ab. Damit beide Seiten gleich sein können, müssen sie konstant sein: g' g = f' ' f ( X ) ( X ) = β (5-1). Damit hat man aus der partiellen Differentialgleichung zwei gewöhnliche Differentialgleichungen erhalten: g' g = β (5-13) f' ' ( X ) f ( X ) = β (5-14). Als Lösungen für diese gewöhnlichen Differentialgleichungen ergeben sich: Stand: Okt. 006

5 Technische Universität Dresden Seite 5 g ( Fo) = exp β (5-15) und ( ± X ) f = exp β (5-16). Mit dem Produktansatz erhält man somit als Partikularlösung (ohne stationären Fall mit β = 0 ): ± β X β Θ = e e (5-17). β kann nun theoretisch positiv und negativ reell sowie imaginär sein. Damit ergeben sich acht verschiedene Typen von Partikulärlösungen, von denen durch physikalische Einschränkungen einige entfallen: β kann nicht positiv reell sein, da bei konstanter Umgebungstemperatur, die Temperatur im Körper nicht unendlich steigen kann mit zunehmender Zeit, sondern sich an die Umgebungstemperatur ϑ u angleichen muss. β kann auch nicht imaginär sein, da dann gemäß der Eulerschen Beziehung e ± i β = cos ( β ) ± i sin( β ) (5-18) die Temperatur an einem Punkt P ( x,y,z) im Körper zeitlich ( Fo ) schwingen würde. Folglich kann β nur negativ reell sein. Mit β = (5-19) ergibt sich aus der Gleichung (5-17) ± i X Θ = e e (5-0). Stand: Okt. 006

6 Technische Universität Dresden Seite 6 Wendet man auf diese Gleichung erneut die Euler-Beziehung an, so ergibt sich [ cos( X ) ± i sin( X )] e Θ = (5-1). Die Lösung der linearen Differentialgleichung ist damit eine komplexe Funktion, woraus weiter folgt, das sowohl der Realteil als auch der Imaginärteil sowie Linearkombinationen aus beiden Teilen Lösungen der Differentialgleichung sind. Daher ergibt sich als allgemeine Lösung: c s ( X ) e + sin( X ) e Θ = cos (5-). s s Bei symmetrischen Randbedingungen entfällt der Term mit ( X ) Lösung: sin s und es verbleibt als ( X,Fo) = cos( X ) e Θ (5-3). Diese Gleichungen sind damit Lösung der Differentialgleichung (5-7). Die, s sowie und s sind nun entsprechend der Anfangs- und Randbedingungen zu bestimmen. Für das Beispiel in Abb. 5-1 kann aufgrund der Symmetrie die Lösung in Gleichung (5-3) gewählt werden. Somit muss aus der Randbedingung zunächst nur bestimmt werden. Die Randbedingungen an der Oberfläche der Platte ist so gegeben, dass ein Wärmestrom & konv konvektiv abgeführt wird und dieser aus dem Inneren an die Oberfläche gelangen muss: & ϑ = λ = α ( ϑw ϑu ) (5-4). x w Der Index W bezieht sich auf die Wandoberfläche. In dimensionsloser Schreibweise erhält man daraus: Stand: Okt. 006

7 Technische Universität Dresden Seite 7 Θ X w α = λ ( s ) Θ w (5-5). Die dimensionslose Gruppe ( s ) α λ stellt die Biot-Kennzahl dar: ( s ) α Bi = = λ konvektiv übertragene Wärme im Körper geleitete Wärme (5-6). Aus Gleichung (5-3) ergibt sich durch Differentiation für die Stelle X = 1 (äußerer Rand) Θ X w = sin ( ) e = Bi Θ = Bi cos( ) e w (5-7) bzw. Abb. 5-. Graphische Bestimmung der Eigenwerte. cot = Bi (5-8). ( ), die aufgrund der Randbedingung ( ) Die jeweiligen Bi die Gleichung (5-8) erfüllen, heißen Eigenwerte und müssen iterativ oder aber aus Tabellen oder grafisch bestimmt werden. Aus der Abb. 5- erkennt man, dass es theoretisch unendlich viele solcher Eigenwerte gibt, die eine bestimmte Randbedingung befriedigen. Mit den Eigenwerten, i nimmt die Lösung folgende Form an: i = 1,i [,i cos(,i X ) e ] Θ = (5-9). Die noch unbekannten Konstanten, i müssen nun so bestimmt werden, dass die Anfangsbedingungen erfüllt werden. Das erfolgt mit Hilfe der Fourier-Analyse. Stand: Okt. 006

8 Technische Universität Dresden Seite 8 Zum Zeitpunkt t = 0 ist ϑ = ϑ0, d.h. ( 0, X ) 1 Θ = Θ (5-30). 0 =,i Für den Ausdruck e ergibt sich mit t = 0 bzw. Fo = 0 demnach e 0 = 1. Um die einzelnen, i zu berechnen multipliziert man Gleichung (5-9) dann mit cos(, K X ) und integriert sie zwischen den Grenzen 1 bis +1. (,k X ) dx =,i cos(,i X ) cos(,k X ) dx Θ 0 cos (5-31). i = 1 Mit Θ 0 = 1 ergibt sich für das linke Integral,k 1 cos(,k X ) dx = sin(,k X ) = sin, k (5-3).,k Die Summen- und Integralzeichen können vertauscht werden: i = 1,i cos (,i X ) cos(,k X ) dx = sin, k.k (5-33) cos ( X ) cos( X ) = 0,i, k für i k (5-34) Für i = k wird hingegen: x1 + x x1 x sin x1 + sin x = cos sin Stand: Okt. 006

9 Technische Universität Dresden Seite 9 cos ( X ) sin( ),k cos (,k X ) dx = dx = 1 +,k,k (5-35). Mit Gleichung (5-3) erhält man,k sin 1 + sin,k,k sin,k = (5-36) (,k ),k + sin,k cos, k,k = und schließlich die allgemeine Lösung für die instationäre Wärmeleitung einer ebenen Platte mit konvektivem Wärmeaustauscher mit der Umgebung bei konstanter Anfangstemperatur ϑ 0 und konstanter Umgebungstemperatur ϑ n : ( ) cos( X ) sin,k = Θ exp,k,k (5-37). + sin cos k,k,k, k Die Eigenwerte, k hängen wie gezeigt nur von der Biot-Zahl ab (Gleichung 5-8). Damit ist das Temperaturfeld in dimensionsloser Schreibweise eine Funktion der Größen Bi, Fo und X: ( Bi,Fo, X ) Θ = Θ (5-38). In der Plattenmitte (Scheitelpunkt) ist X M = 0 und M Θ M ( Bi,Fo) Θ = (5-39). An der Wandoberfläche gilt analog dazu X W = 1 W W ( Bi,Fo 1, ) Θ ( Bi,Fo) Θ = Θ = (5-40). W Für die mittlere Temperatur Θ ergibt sich: Stand: Okt. 006

10 Technische Universität Dresden Seite 10 ( Bi,Fo) Θ = Θ (5-41) nach Integration über die Plattendicke. (5-4). Stand: Okt. 006

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

Mehr

Verbesserung des Wärmetransports:

Verbesserung des Wärmetransports: 7. Wärmeübertragung durch berippte Flächen A b ϑ ϑ ) ( a Grundgleichung i Verbesserung des Wärmetransports: k zeigt 3 Möglichkeiten für 1.) Vergrößerung der Temperaturdifferenz: Durchführbarkeit: Meist

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN

WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN Bernd Glück WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN Verlag für Bauwesen Inhaltsverzeichnis 1. Grundprobleme der Wärmeübertragung 13 2. Leitung 14 2.1. Temperaturfeld 14 2.2. FouRiERsch.es

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 27. Juli 202 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

1 Näherung quasistatische Temperaturverteilung

1 Näherung quasistatische Temperaturverteilung 1 Näherung quasistatische Temperaturverteilung Behandelt wird das Braten von Fleisch, insbesondere das Braten einer Gans Die Gans wird als kugelförmig mit dem Radius r a angenommen Im Anfangszustand habe

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung...3 1.2 Definitionen... 5 1.2.1 Wärmestrom und Wärmestromdichte... 5 1.2.2 Wärmeübergangszahl und Wärmedurchgangszahl...5

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

Thermodynamische Prozesse in Untergrundspeichern für Gase

Thermodynamische Prozesse in Untergrundspeichern für Gase Thermodynamische Prozesse in Untergrundspeichern für Gase Prof. Dr.-Ing. Reinhard Scholz, TU Clausthal Prof. Dr.-Ing. Michael Beckmann, TU Dresden Prof. Dr.-Ing. Uwe Gampe, TU Dresden Prof. Dr.-Ing. Hans

Mehr

Inhaltsverzeichnis. Formelzeichen...

Inhaltsverzeichnis. Formelzeichen... Inhaltsverzeichnis Formelzeichen... xv 1 Einführung. Technische Anwendungen... 1 1.1 Die verschiedenen Arten der Wärmeübertragung... 1 1.1.1 Wärmeleitung... 2 1.1.2 Stationäre, geometrisch eindimensionale

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Wärme- und Stoffübertragung

Wärme- und Stoffübertragung Wärme- und Stoffübertragung von Hans Dieter Baehr, Karl Stephan 6., neu bearb. Aufl. Springer 2008 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 540 87688 5 Zu Leseprobe schnell und portofrei erhältlich

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung

mit der Anfangsbedingung u(x, 0) = cos(x), x R. (i) Laut besitzt die Lösung folgende Darstellung Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 0./.08.008 Kurseinheit 5: Die Wärmeleitungsgleichung Aufgabe : Gegeben ist das Anfangswertproblem

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

Skript zur Vorlesung. Technische Thermodynamik II Wärmeübertragung. Fakultät Maschinenwesen Fachgebiet Technische Thermodynamik

Skript zur Vorlesung. Technische Thermodynamik II Wärmeübertragung. Fakultät Maschinenwesen Fachgebiet Technische Thermodynamik Skript zur Vorlesung Technische Thermodynamik II Wärmeübertragung Fakultät Maschinenwesen Fachgebiet Technische Thermodynamik von Prof. Dr.-Ing. habil. H.-J. Kretzschmar Dr.-Ing. S. Herrmann Dipl.-Ing.

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

(a) Motivation zur Definition komplexer Zahlen

(a) Motivation zur Definition komplexer Zahlen 1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Skalarprodukte im Funktionenraum und orthogonale Funktionen

Skalarprodukte im Funktionenraum und orthogonale Funktionen 1 Skalarprodukte im Funktionenraum und orthogonale Funktionen Im Allgemeinen muss ein reelles Skalarprodukt (, ) (wir betrachten reelle Funktionen) folgende Eigenschaften ausweisen: Bilinearität (Linearität

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben Rudi Marek, Klaus Nitsche Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben ISBN-10: 3-446-40999-8 ISBN-13: 978-3-446-40999-6 Inhaltsverzeichnis Weitere Informationen oder Bestellungen

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

10 Erzwungene Schwingungen durch inhomogene Randbedingungen

10 Erzwungene Schwingungen durch inhomogene Randbedingungen 63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Wärmeübertragung. Heinz Herwig Andreas Moschallski

Wärmeübertragung. Heinz Herwig Andreas Moschallski Heinz Herwig Andreas Moschallski Wärmeübertragung Physikalische Grundlagen - Illustrierende Beispiele - Übungsaufgaben mit Musterlösungen 2., überarbeitete und erweiterte Auflage Mit 115 Abbildungen und

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr