Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17

Größe: px
Ab Seite anzeigen:

Download "Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17"

Transkript

1 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 6. Vorlesung Pawel Romanczuk WS 2016/17

2 Zusammenfassung letzte VL Streuzustände Potentialschwelle Potentialbarriere/Tunneleffekt Endlicher Potentialtopf Gebundene Zustände Streuung

3 Formalismus der Quantentheorie In den vergangenen VL-en haben wir einige einfache quantenmechanische Modellsysteme kennengelernt, und erste Erfahrungen mit Wellenfunktionen und Operatoren gemacht. Allgemeine Eigenschaften der Quantentheorie, wie z.b. die Orthogonalität von Eigenfunktionen, ergeben sich direkt aus der grundlegenden mathematischen Struktur der Theorie (Operatorentheorie auf dem Hilbertraum). Im folgenden wollen wir diesen Formalismus kurz kennenlernen, mit Rückgriffen auf die Inhalte der letzten Vorlesungen und Analogien zur linearen Algebra (streng genommen handelt es sich um eine Generalisierung der bekannten linearen Algebra) Kennenlerenen der sogenannten Dirac-Notation (Bra-Ket Notation)

4 Zustandsraum Hilbertraum klassisch: als Vektorraum der physikalischen Zustände QM: Die Zustände leben in einem potentiell unendlich dimensionalen Vektorraum komplexer Funktionen Hilbertraum QM: Zwei 'Vektoren' im Hilbertraum die sich um einen konstanten skalaren Faktor unterscheiden, entsprechen dem gleichen physikalischen Zustand

5 Eigenschaften - Hilbertraum Sei ein komplexer, linearer Vektorraum Dann gelten folgende Beziehungen: Addition: Multiplikation: Assoziativität: Nullvektor: Inverse bezüglich Addition: Distributivität:

6 Dimension Hilbertraum Die Menge von Vektoren heißt linear unabhängig falls nur durch für alle i erfüllt ist. Die Dimension von ist die maximale Anzahl linear unabhängiger Vektoren in. Analog zum linear abhängig linear unabhängig

7 Skalarprodukt Der Hilbertraum ist ein unitärer Vektorraum. Einem paar von Vektoren ist ein Skalarprodukt zugeordnet mit folgenden Eigenschaften: (Index * bedeutet komplex konjugiert) Für komplexe Funktionen Skalarprodukt als Faltung:

8 Orthogonalität und Norm 1) Zwei Vektoren heißen orthogonal wenn 2) Die Norm von wird durch das Skalarprodukt bestimmt: Die Norm erfüllt die Schwartz'sche Ungleichung Dreiecksungleichung

9 Orthonormalbasis Für endlich dimensionale Orthonormalbasis mit Dimension n existiert eine vollständige mit Jeder beliebige Vektor dargestellt werden: kann als linear Kombination von Basisvektoren mit

10 Vollständigkeit und Separabilität ist vollständig: Jede Cauchy-Folge konvergiert in. hat keine Löcher ist separabel: Für jedes Element existiert eine Cauchy-Folge mit als Grenzvektor.

11 Unendlich Dimensionaler Raum ist abzählbar unendlich dimensional Entwicklung beliebiger Elemente

12 Dualer Raum bra Element von ket Element von Dualer Raum zu : Die Menge aller linearen Abbildungen von auf. Analogie zu Spalten- und Zeilenvektoren im :

13 Uneigentliche Diracvektoren Formal: Übergang möglich von diskreten ( eigentliche Vektoren ) zu kontinuierlichen uneigentliche Vektoren Erweiterter Hilbertraum die Menge der eigentlichen und uneigentlichen Vektoren Einheitliche Schreibweise:

14 Lineare Operatoren Lineare Operatoren lineare Abbildungen auf dem Hilbertaum Eigenschaften: Nulloperator: Einheitsoperator: Analogie zu : Lineare Operatoren Matrizen

15 Adjungierte Operatoren Adjungierter Operator zu : mit Es gilt: Der adjungierte Operator wirkt im wie in Analogie zur linearen Algebra: adjungierter Operator korrespondiert zu transponierter Matrix.

16 Hermitische Operatoren Hermitischer (selbt-adjungierter) Operator: QM: Observablen werden durch hermitesche Operatoren dargestellt. Eigenwertproblem für hermitesche Operatoren: Eigenvektor Eigenwert

17 Eigenschaften Hermitische Operatoren Erwartungswerte ( Messungen ) eines hermiteschen Operators sind reel : Eigenwerte sind reel: Die Eigenzustände sind vollständig und zueinander orthogonal ( Basis): Eigenvektoren zu korrespondieren zu sogenannten determinierten Zuständen: Die Messung des Erwartungswertes ergibt immer die gleiche Zahl.

18 Spektrum eines Hermiteschen Operators Die Menge aller Eigenwerte eines hermiteschen Operators bezeichnet man als dessen Spektrum. diskret Beispiel: unendl. Potentialtopf, harm. Oszillator kontinuierlich Beispiel: freies Teilchen diskret+ kontinuierlich Beispiel: endl. Potentialtopf

19 Paar wichtige Operatorentypen Projektionsoperator: Projiziert einen beliebigen Zustand auf einen anderen: Projektion über eine vollständiges Set von Eigenfunktionen: Inverser Operator zu :

20 Paar wichtige Operatorentypen Unitäre Operatoren: häufig dargestellt mit Hilfe eines hermiteschen Operators : Sie definieren unitäre Transformationen: Unitäre Transformationen lassen Skalarprodukte, Erwartungswerte, und Eigenwerte unverändert. Unitäre Transformationen lassen die Physik unverändert! Beispiel aus der linearen Algebra: Rotation des Raumes um einen festen Winkel (Rotationsmatrix) is eine unitäre Transformation.

21 Matrixdarstellung eines Operators Gegeben sei eine abzählbare Orthonormalbasis Dann können wir einen Operator als Matrix in der Basis darstellen:

22 Der Messprozess als Determinator Gedankenexperiment Messung von : Die Messaparatur ist ein Trenner mit Blenden der den Zustand auf die Eigenzustände projiziert alle Blenden offen keine Messung nur ein Blende geöffnet Messung von Messergebnis Zustand wurde präpariert als

23 Der Messprozess als Determinator Trenner mit zwei geöffneten Blenden Endzustand: Überlagerung zweier Eigenzustände

24 Der Messprozess als Determinator Wiederholte Messung der Observable Die gleiche Blende geöffnet ( veträglich ) liefert das gleiche Ergebnis

25 Der Messprozess als Determinator Wiederholte Messung der Observable Verschiedene Blenden geöffnet ( unveträglich ) Nullzustand

26 Messung zweier verträglicher Observablen Hinteinanderschaltung von Messung zweier simultan messbarer Observablen und Observablen sind verträglich, wenn die entsprechenden Operatoren kommutieren Schaltet man alle möglichen verträglichen Trenner hintereinander erhält man einen sogenannten reinen Zustand.

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

Projektarbeit Quantenmechanik II

Projektarbeit Quantenmechanik II Projektarbeit Quantenmechanik II Konzepte der Quantenmechanik Kets, Bras und Operatoren Gruppe Born Stefan Brünner, Corinna Gressl, Barbara Krebl Stefan Sattler, Hans-Peter Zach Sommersemester 2008 Abstract

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Quantenmechanik-Grundlagen Klassisch: Quantenmechanisch:

Quantenmechanik-Grundlagen Klassisch: Quantenmechanisch: Quantenmechanik-Grundlagen HWS DPI 4/08 Klassisch: Größen haben i. Allg. kontinuierliche Messwerte; im Prinzip beliebig genau messbar, auch mehrere gemeinsam. Streuung nur durch im Detail unbekannte Störungen

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Ferienkurs Quantenmechanik. Grundlagen und Formalismus

Ferienkurs Quantenmechanik. Grundlagen und Formalismus Ferienkurs Quantenmechanik Sommersemester 203 Seite Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Grundlagen und Formalismus In der Quantenmechanik werden Zustände

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 10. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 10. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Der Spin Grundlegende Eigenschaften Spin

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Kapitel 1: Die Mathematik der Quantenmechanik

Kapitel 1: Die Mathematik der Quantenmechanik Kapitel 1: Die Mathematik der Quantenmechanik Übersicht: 1.1 Die lineare Algebra der Quantenmechanik 1.2 Bracket-Notation 1.3 Matrixdarstellung von Operatoren Literatur: K. Nipp, D. Stoffer, Lineare Algebra,

Mehr

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002

Vorlesungsmitschrift. Quantencomputer. 2002/2003 Prof. Dr. Grädel. Jan Möbius,David Bommes. 9. Dezember 2002 Vorlesungsmitschrift Quantencomputer WS /3 Prof. Dr. Grädel Jan Möbius,David Bommes 9. Dezember Inhaltsverzeichnis Einleitung. Historischer Überblick......................................... Experiment................................................

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

(a) Der Anfangszustand ist, dass das Teilchen am Ort 1 ist. Wir bezeichnen dies mit:

(a) Der Anfangszustand ist, dass das Teilchen am Ort 1 ist. Wir bezeichnen dies mit: 76 KAPITEL 3. DER MATHEMATISCHE APPARAT DER QUANTENMECHANIK 1. Wir können nun Zustände in einer einfachen Notation beschreiben. Hierbei verwnden wir bra - und ket - Zustände 2, die denanfangs- und Endzuständen

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 3. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 3. Vorlesung Pawel Romanczuk WS 2017/18 1 Zusammenfassung letzte VL Quantenzustände als Wellenfunktionen (Normierung) Operatoren (Orts-, Impuls

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

10. Übung zur Linearen Algebra II -

10. Übung zur Linearen Algebra II - 0. Übung zur Linearen Algebra II - Lösungen Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 7 Der ( linearen ) Abbildung ϕ : R R sei bzgl. der kanonischen Basis die Matrix zugeordnet.

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 9. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching November, 07 Erinnerung Ein Skalarprodukt ist eine Abbildung, : E n E n E, (v, w) v, w n k v kw k so dass:

Mehr

Das Stern-Gerlach Experiment Basisvektoren für Spin- 1 2Teilchen Spin 1 2. Operatoren... 47

Das Stern-Gerlach Experiment Basisvektoren für Spin- 1 2Teilchen Spin 1 2. Operatoren... 47 Inhaltsverzeichnis Einleitung 1 Literatur 3 1 Wellen und Teilchen 7 1.1 Das Doppelspaltexperiment mit klassischen Teilchen........ 8 1.1.1 Kugeln............................... 8 1.1.2 Wasserwellen...........................

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 9. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 9. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 9. Vorlesung Pawel Romanczuk WS 2017/18 http://lab.romanczuk.de/teaching 1 Zusammenfassung letzte VL Wasserstoffatom Quantenmechanisches Zweikörperproblem

Mehr

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit

2.3 Operatoren und Eigensysteme. Gruppe Dirac. Projektarbeit Karl-Franzens Universität Graz Institut für Physik.3 Operatoren und Eigensysteme Gruppe Dirac Projektarbeit Markus Hopfer Therese Rieckh Patrick Tiefenbacher Arno Tripolt Andreas Windisch Graz, 17. Juni

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt:

Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt: Hilbertraum Durch Verallgemeinerung der aus der Linearen Algebra bekannten Konzepte wie Basis, Orthogonalität und Projektion lassen sich die Eigenschaften des Hilbertraumes verstehen. Vorweg eine kurze

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H.BOSECK MIT 14 ABBILDUNGEN Zweite^ berichtigte Auflage

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)

Mehr

Zur Struktur der Quantenmechanik

Zur Struktur der Quantenmechanik Kapitel 1 ur Struktur der Quantenmechanik 1.1 Der quantenmechanische Hilbert Raum Linearer ustandsraum Die quantenmechanischen ustände (z.b. ψ( x,t) für 1 Teilchen) bilden einen linearen Raum. Sind ψ 1

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Symmetrisches und antisymmetrisches Tensorprodukt, direkte Summe und Fockraum

Symmetrisches und antisymmetrisches Tensorprodukt, direkte Summe und Fockraum Symmetrisches und antisymmetrisches Tensorprodukt, direkte Summe und Fockraum Michael Zirpel (mz@qlwi.de), München 3. April 203 Im Folgenden ist (H,+,0,,C,, ) ein komplexer, separabler Hilbertraum, ϕ =

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 2. Vorlesung Pawel Romanczuk WS 2017/18 1 Eine kurze Exkursion in die Wahrscheinlichkeitstheorie 2 Diskrete Variable Wahrscheinlichkeit Wert

Mehr

2. Grundlagen der Funktionalanalysis

2. Grundlagen der Funktionalanalysis 2. Grundlagen der Funktionalanalysis Die Funktionalanalysis beschäftigt sich mit Vektorräumen und stetigen Abbildungen auf diesen. Wichtig ist dabei der Begriff des Funktionals, d.h. einer Abbildung von

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

B) Lineare Operatoren 7. Algebra, Norm, Konvergenzen, Strukturen

B) Lineare Operatoren 7. Algebra, Norm, Konvergenzen, Strukturen B) Lineare Operatoren 7. Algebra, Norm, Konvergenzen, Strukturen 7.1. Def: Linearer Operator: Lineare Abbildung zwischen Vektorräumen A( ) AA A: V W Spezieller: zwischen normierten Räumen, Banachräumen

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

Lineare Algebra für PhysikerInnen

Lineare Algebra für PhysikerInnen Universität Wien, SS 2015 Lineare Algebra für PhysikerInnen Beispiele für Multiple-Choice-Fragen Punkteschlüssel: [Typ 1 aus 4] und [Typ 3 aus 4]... 0.8 Punkte [Typ 2 aus 4]... 1 Punkt Bei der schriftlichen

Mehr

Zusammenfassung: Wigner-Eckart-Theorem

Zusammenfassung: Wigner-Eckart-Theorem Zusammenfassung: Wigner-Eckart-Theorem Clebsch-Gordan- Reihe: Def. vontensor - Algebraische Version, (via infinitesimaler Rotation): Clebsch-Gordan- Reihe für Tensoren: Wigner-Eckart- Theorem: Geometrie

Mehr

Lineare Algebra Zusammenfassung

Lineare Algebra Zusammenfassung Lineare Algebra Zusammenfassung Gruppen, Körper, Vektorräume Gruppen Def.: Eine Gruppe (G, )besteht aus einer nicht-leeren Menge G und einer Verknüpfung zwischen Elementen dieser Gruppe. Folgende Eigenschaften

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

Mathematik für Naturwissenschaftler II

Mathematik für Naturwissenschaftler II Mathematik für Naturwissenschaftler II Dr Peter J Bauer Institut für Mathematik Universität Frankfurt am Main Sommersemester 27 Lineare Algebra Der mehrdimensionale Raum Vektoren Im Teil I dieser Vorlesung

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Quantenmechanik BancM

Quantenmechanik BancM Albert Messiah Quantenmechanik BancM Aus dem Französischen übersetzt von Joachim Streubel 2., verbesserte Auflage w DE G Walter de Gruyter Berlin New York 1991 Inhalt Erster Teil Der Formalismus und seine

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr