Lehrveranstaltung Grundlagen von Datenbanken WS 2018/19. Gesamtpunktzahl 40 Ausgabe Do Abgabe Fr

Größe: px
Ab Seite anzeigen:

Download "Lehrveranstaltung Grundlagen von Datenbanken WS 2018/19. Gesamtpunktzahl 40 Ausgabe Do Abgabe Fr"

Transkript

1 Iformatiosmodellierug mit dem Etity-Relatioship-Modell Die Abteilug für Cyber Idetizierug Dieste (ACID) möchte ei eues Überwachugssystem für Mobilfukgespräche eiführe. Dabei soll eie relatioale Datebak zum Eisatz komme. [22 P.] Erfasse Sie die im Folgede beschriebee Iformatiosstrukture i eiem ER-Diagramm. Beziehe Sie sich dabei geau auf die gegebee Beschreibug, ohe weiteres Wisse zu möglicherweise ähliche Awedugsbereiche eiieÿe zu lasse. Markiere Sie i Ihrem Etwurf Primärschlüssel durch Uterstreichug ud otiere Sie die Abbildugstype i der Form :, :, :m. Verwede Sie ubedigt die aus der Vorlesug bekate Notatio. Ausahme: Die Zuordug bei :- Abbildugstype bleibt Ihe überlasse, muss aber eideutig als solche markiert werde (z.b. durch ei ausformuliertes Beispiel). Beutze Sie möglichst weige Etity-Type (Ausahme: Vererbug). Eie etwaige (Existez-)Abhägigkeit soll ur da modelliert werde, we dies eideutig aus der Beschreibug hervorgeht (z.b. durch die Agabe eies schwache Schlüssels). Jede Perso hat eie eideutige PNr, eie ud ei Geburtsdatum. Eie SIM-Karte (SIM), besitzt eie eideutige Telefoummer (TNr) ud eie Abieter ud ka vo maximal eier Perso registriert werde. Persoe köe allerdigs beliebig viele SIMs registriere. Jede SIM ist auÿerdem i geau eiem Lad gemeldet, wobei i eiem Lad beliebig viele SIMs gemeldet sei köe. Ei Lad wird eideutig über seie idetiziert ud hat eie Vorwahl. SIMs köe Ziel beliebig vieler Aufklärugsaufträge sei. Jeder Aufklärugsauftrag hat geau eie SIM als Ziel ud lässt sich ur über die Kombiatio aus Datum ud Uhrzeit im Zusammehag mit der Telefoummer der Ziel-SIM eideutig idetiziere. Aufzeichuge ud Ortuge sid Aufklärugsaufträge. Bei jeder Aufzeichug wird ei Dateiame hiterlegt ud geau eie SIM agerufe, währed SIMs beliebig oft agerufe werde köe. Auÿerdem gibt es och Koordiate, die eideutig über die Kombiatio aus Lägegrad ud Breitegrad bestimmt werde köe ud i maximal eiem Lad liege. I jedem Lad köe allerdigs beliebig viele Koordiate liege. Bei jeder Ortug köe mehrere Verfahre zum Eisatz komme. Ortuge köe i bis zu drei Koordiate resultiere. Jede Koordiate ka jedoch das Resultat beliebig vieler Ortuge sei.

2 PNr Geb. Nr Abieter Vorwahl Perso reg. SIM gemeldet Lad target liegt_i agerufe Datum Zeit Auftrag resultiert 3 Koordiate Dateiame Aufzeichug Ortug Läge Breite Verfahre 2

3 2 Iformatiosmodellierug: Beschreibug vo ER-Modelle Beschreibe Sie die Iformatioe, die durch die ute dargestellte ER-Diagramme modelliert sid, möglichst präzise ud vollstädig ud beatworte Sie die Frage. [0 P.] Das folgede Beispiel veraschaulicht, wie die Leserichtug der Abbildugstype ud Kardiialitätsrestriktioe zu iterpretiere ist: Schüler [2; 2] belegt [0; ] Leistugskurs Titel Ei Schüler hat eie eideutige ud belegt geau 2 Leistugskurse. Ei Leistugskurs hat eie eideutige Titel ud ka vo Schüler belegt werde. a) [2 P.] Straÿe gelege i Haus Hausummer [0; ] [; ] Eie Straÿe hat eie eideutige. I eier Straÿe köe beliebig viele Häuser liege. Ei Haus liegt i geau eier Straÿe. Jedes Haus hat eie Hausummer, die für die jeweilige Straÿe eideutig ist. Haus ist somit ei schwacher Etitätetyp, der vom Etitätetyp Straÿe abhägt. 3

4 b) [3 P.] Zuhörer [0; ] Witz erzähle Poite Vorame [; ] Perso Erzähler Nachame Jede Perso hat eie Vorame ud eie Nachame, dere Kombiatio eideutig ist. Jede Perso ka ei Zuhörer oder ei Erzähler sei. Ei Erzähler muss midestes eie Witz erzähle ud ka beliebig viele Witze erzähle. Eiem Zuhörer köe beliebig viele Witze erzählt werde. We ei Witz erzählt wird, sid immer geau ei Erzähler ud geau ei Zuhörer beteiligt, wobei es mehrere Poite gebe ka. c) Betrachte sie das ER-Diagram i Aufgabe 2b), wie viele Witze ka ei Erzähler eiem gaz bestimmte Zuhörer miimal ud maximal erzähle? [ P.] Ei kokreter Erzähler ka ur eimal über die Relatio Witz erzähle mit eiem kokrete Zuhörer i Verbidug stehe ud ihm somit auch ur miimal keie oder maximal eie Witz erzähle. 4

5 d) [4 P.] Poite Zuhörer [0; ] Witz erzähle [0; ] Witz Ihalt Vorame Perso [; ] Erzähler Jede Perso hat eie Vorame ud eie Nachame, dere Kombiatio eideutig ist. Zuhörer ud Erzähler sid Persoe. Witze habe eie eideutige, eie Ihalt ud mehrere Poite. We ei Witz erzählt wird, sid dara geau ei Witz, geau ei Zuhörer ud geau ei Erzähler beteiligt. Ei Erzähler muss midestes eie ud ka beliebig viele Witze erzähle. Ei Zuhörer ka beliebig oft eie Witz erzählt bekomme ud ei Witz ka beliebig oft erzählt werde. Amerkug: Im Gegesatz zu der Modellierug aus Aufgabe 2c) sid u folgede Dige möglich: Eizele Witze köe u idetiziert werde: Es wird modelliert, wer wem welche Witz erzählt, ud icht ur, wer wem (irged-)eie Witz erzählt. Es ka Witze gebe, die och icht erzählt wurde. Der eies Witzes wird u abgebildet. Der Ihalt eies Witzes wird u abgebildet. Ei Erzähler ka mehrere Leute deselbe Witz erzähle. Ei Erzähler ka dem selbe Zuhörer mehrere (verschiedee) Witze erzähle. 5

6 3 Schlüsselkadidate [8 P.] Betrachte Sie folgede Tabelle, die Date über Studierede eier Uiversität ethält: Vorame Nachame Geb.-Dat. Straÿe Haus-Nr PLZ Ort Telefor.. Fach 2. Fach Karl Schulz A-Str. 6 Aheim / 4598 If ET Paula Meier B-Str Bheim / If Math Has Weiÿ H-Str Ebach 0875 / If Phys Frak Brau A-Str. Aheim / 4368 If ET Frida Müller E-Str Fbach 028 / If Reli Amelie Brau D-Str Cfeld 0365 / If Phys a) Aus der Vorlesug ist bekat, dass ei Schlüsselkadidat eideutig ud miimal sei muss. Erläuter Sie diese beide Eigeschafte ahad der sechs i der obige Tabelle aufgelistete Etitäte. Nee Sie zudem eiige Attribute (bzw. Attributskombiatioe), welche im gegebee Kotext eie Schlüsselkadidate darstelle. Begrüde Sie, warum es sich bei der Attributkombiatio (Vorame, Nachame) um keie Schlüsselkadidat hadelt. [5 P.] (i.) Eideutigkeit: Ei Schlüsselkadidat idetiziert eie Etität ierhalb der Etitäte-Mege eies Etitäte-Types eideutig. Dies soll verhider, dass zwei oder mehrere Etitäte eier Ausprägugsmege mit demselbe Schlüssel existiere. Ei Schlüsselkadidat ka dabei aus eiem eizele oder aus mehrere Attribute bestehe. Für de Fall, dass es sich um eie Kombiatio vo Attribute hadelt, muss die Kombiatio i Hiblick auf die i ihr ethaltee Werte für die betrachtete Ausprägugsmege eideutig sei. (ii.) Miimalität: Ei Schlüsselkadidat ist miimal (irreduzibel). Dies bedeutet, dass alle a eiem Schlüsselkadidate beteiligte Attribute auch tatsächlich beötigt werde, um eie Etität eideutig zu idetiziere. Auch hierbei kommt es auf die betrachtete Ausprägugsmege a. Bei der obe agegebee Tabelle sid zum Beispiel sowohl Vorame, Geburtsdatum als auch Telefoummer Schlüsselkadidate, da jedes Attribut für die betrachtete Ausprägugsmege (Ausschitt) eideutig ist. Ei Beispiel für eie Schlüsselkadidate, welcher sich aus eier Kombiatio vo Attribute zusammesetzt, ist uter aderem Nachame ud Ort. Diese sid zwar jeweils eizel betrachtet icht eideutig (bei Nachame existiere zwei Etitäte mit dem Wert 'Kruse', bei Ort gibt es zwei Mal 'Sdorf'), zusammegesetzt idetiziert die Kombiatio jedoch jede Etität der betrachtete Ausprägugsmege eideutig. Die Kombiatio aus Vorame ud Nachame wäre higege kei Schlüsselkadidat, da (bei diese Date!) bereits das Attribut Vorame allei Eideutigkeit gewährleiste würde (Verstoÿ gege die Eigeschaft der Miimalität). 6

7 b) Werde icht ur die sechs explizit aufgeführte Studierede soder eie Mege vo Studete im Allgemeie betrachtet, da gestaltet sich die Idetikatio vo Schlüsselkadidate eher schwierig. Diskutiere Sie die Ursache hierfür ahad vo Beispiele. Welche Lösugsmöglichkeit bietet sich a? [3 P.] Die Mege der Studierede eier Uiversität variert im Laufe der Zeit (alte Studete werde exmatrikuliert ud eue Studete werde immatrikuliert). Aufgrud eier eimalige Aalyse über die Eideutigkeit ud Miimalität vo Attributkombiatioe bzgl. eier gegebee Datemege köe i diesem Fall demach keie groÿe Schlussfolgeruge getroe werde. Im allgemeie ka icht abgesehe werde, welche Schlüsselkadidate ach dem Eifüge euer Etitäte bestehe bleibe. Eie Kombiatio mehrerer Attribute würde lediglich die Wahrscheilichkeit miimiere, dass die Eideutigkeit durch das Eifüge vo eue Etitäte icht mehr gewährleistet ist. Selbst die Kombiatio aller Attribute köte i diesem Fall keie sichere Eideutigkeit gewährleiste. Als Lösugsmöglichkeit bietet sich die Eiführug eies küstliche Primärschlüssels a, desse Eideutigkeit auch bei eier Erweiterug der Datemege sichergestellt werde ka. Dies vermeidet uötige Äderugsaufwad beim Eifüge euer Datesätze. Ei passeder küstlicher Schlüssel für de dargestellte Awedugskotext wäre zum Beispiel die Eiführug eier eideutige Matrikelummer. Hiweis zur Lösug: Küstlich erzeugte Schlüssel sid häug icht represetativ ud existiere zumeist ur ierhalb der Datebak. Sie sollte daher ur verwedet werde, we es icht aders möglich ist. 7

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Aufgabezettel 2 (Lösugsvorschläge) Gesamtpuktzahl 40 Iformatiosmodellierug mit dem Etity-Relatioship-Modell Ei ahegelegeer Tierpark möchte ei eues System zur Verwaltug der Tierpopulatioe eiführe, bei dem

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell 1 Iforatiosodellierug it de Etity-Relatioship-Modell Die ACID-Dopig-Detektei beötigt für ihre Jagd ach Dopigsüder ei Iforatiossyste, bei de ei relatioales Datebaksyste zu Eisatz koe soll. [20 P.] i) Erfasse

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Iformatiosmodellierug mit dem Etity-Relatioship-Modell McAcid's beötigt ei eues Burgastisches Kassesystem, bei dem eie relatioale Datebak verwedet werde soll. [5 P.] Erfasse Sie die im Folgede beschriebee

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Relationale Datenbanken. Modellieren

Relationale Datenbanken. Modellieren Relatioale Datebake Modelliere Schulverwaltug Schüler Klasse Lehrer Peter Müller 5a Herr Mezel Fraz Maier 5b Frau Müller Berd Schmid Frau Träger Regie Hauser Miriam Schaller Judith Bauer Peter Müller 5a

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

Entity Relationship Modell

Entity Relationship Modell Etity Relatioship Modell A.Kaiser; WU-Wie MIS 90 Wahrehmug Systems vo Perso Wahrehmug Systems vo Perso 2 System (oder Ausschitt) Wahrehmug Systems vo Perso 3 Wahrehmug Systems vo Perso 4 Wahrehmug Systems

Mehr

ER Modell Relationenmodell

ER Modell Relationenmodell ER Modell Relatioemodell II Orgaisatio Orgaisatioseiheite Date Steuerug Fuktio ` Iformatiosobjekte Itegratio Aufgabe 0.06.006 Das Etity-Relatioship-Modell (ERM) Erster Schritt zum Aufbau eies datebakbasierede

Mehr

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures)

Einführung in die Computerlinguistik Merkmalsstrukturen (Feature Structures) Eiführug i die Computerliguistik Merkmalsstrukture (Feature Structures) Laura Heirich-Heie-Uiversität Düsseldorf Sommersemester 2013 Eileitug (1) Die i CFGs verwedete Nichttermiale sid i der Regel icht

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65)

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65) Lösugsvorschläge zu de Aufgabe der Lersituatio 20 (S. 64, 65) Aufgabe : a ERM für die Vermittlug vo Fahrradreise Kudeummer Vorame Nachame Straße ud Hausr. Telefoummer IBAN (FS) Buchugsummer Kudeummer (FS)

Mehr

Datenbasis - 3 Sichten

Datenbasis - 3 Sichten Etity Relatioship Modell A.Kaiser; WU-Wie MIS 76 Datebasis - 3 Sichte Kozeptioelle Sicht EER-Modell Extere Sicht Beutzerorietiert Itere Sicht Computer-orietiert A.Kaiser; WU-Wie MIS 77 Kozeptioelle Datemodelle

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K

Mehr

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014 Lehrstuhl für Praktische Iformatik III Prof. Dr. Guido Moerkotte Email: moer@db.iformatik.ui-maheim.de Marius Eich Email: marius.eich@ui-maheim.de Fisik Kastrati Email: kastrati@iformatik.ui-maheim.de

Mehr

Konzeptioneller DB-Entwurf: Entity-Relationship Modellierung Beispiel: Kontoführung

Konzeptioneller DB-Entwurf: Entity-Relationship Modellierung Beispiel: Kontoführung Techische Uiversität Müche WS 2003/04, Fakultät für Iforatik Datebaksystee I Prof. R. Bayer, Ph.D. Lösugsblatt 2 Dipl.-Ifor. Michael Bauer Dr. Gabi Höflig 3.. 2003 Kozeptioeller DB-Etwurf: Etity-Relatioship

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Lösung der Aufgabe 4, Blatt 05

Lösung der Aufgabe 4, Blatt 05 Lösug der Aufgabe 4, Blatt 05 10-PHY-BMA1 WS18/19 Auf Wusch eiiger StudetIe möchte ich hier ach eigeem Ermesse eiige Lösuge digital zur Verfügug stelle. Dazu solle ei paar der bereits besprochee Beweisaufgabe

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen:

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen: - 2 - - 22-2. Datebaketwurf mittels Etity-Relatioship - Modell (ERM) Ursprug: Che 976, heute viele Variate Bedeutug: grafisches Hilfsmittel zur sematische Modellierug der Diskurswelt (Awedugsgebiet) (d.h.

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /05/21 18:28:20 hk Exp $ $Id: covex.tex,v 1.18 2015/05/21 18:28:20 hk Exp $ 3 Kovexgeometrie 3.2 Die platoische Körper Ei platoischer Körper vo Typ (, m) ist ei kovexer Polyeder desse Seitefläche alle gleichseitige -Ecke ud i

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

Starke und schwache Einwegfunktionen

Starke und schwache Einwegfunktionen Starke ud schwache Eiwegfuktioe Daiela Weiberg weiberg@iformatik.hu-berli.de Semiar: Perle der theoretische Iformatik Dozete: Prof. Johaes Köbler, Olaf Beyersdorff Witersemester 2002/2003 2. Dezember 2002

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Fehlertext/ergaenzende.hinweise

Fehlertext/ergaenzende.hinweise Fehlercode Fehlertext/ergaezede.hiweise 30001 Als zustädig ist die Gemeide mit dem AGS XXXXXXXX gespeichert. 30002 30003 30004 30005 Die IdNr ist icht plausibel 30006 Die IdNr oder das VBM befidet sich

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Anwendungen der Wahrscheinlichkeit II. Markovketten

Anwendungen der Wahrscheinlichkeit II. Markovketten Aweduge der Wahrscheilichkeit II 1. Fragestelluge Markovkette Markovkette sid ei häufig verwedetes Modell zur Beschreibug vo Systeme, dere Verhalte durch eie zufällige Übergag vo eiem Systemzustad zu eiem

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Grundlagen der Mathematik (LPSI/LS-M1)

Grundlagen der Mathematik (LPSI/LS-M1) Fachbereich Mathematik Algebra ud Zahletheorie Christia Curilla Grudlage der Mathematik (LPSI/LS-M1) Übugsklausur WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegehage Liebe Studierede, im Folgede fide Sie eiige

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Aufgabe 1: Funktionale Modellierungen

Aufgabe 1: Funktionale Modellierungen Didaktik des Sachreches (Sek. I) Übugsblatt 4 Dr. Astrid Brikma Name, Vorame: Matrikelummer: Doppelte Lösuge führe zum Verlust aller Pukte beider Persoe-Gruppe. Die Lösuge sid hadschriftlich abzugebe.

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Eigenschaften von Texten

Eigenschaften von Texten Worthäufigkeite Eigeschafte vo Texte Eiige Wörter sid sehr gebräuchlich. 2 der häufigste Wörter (z.b. the, of ) köe ca. 0 % der Wortvorkomme ausmache. Die meiste Wörter sid sehr selte. Die Hälfte der Wörter

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 13. Besprechung in KW05/2018 Techische Uiversität Müche Witer 2017/18 Prof. J. Esparza / Dr. M. Lutteberger, S. Sickert 2018/02/08 HA-Lösug TA-Lösug Diskrete Strukture Tutoraufgabeblatt 13 Besprechug i KW05/2018 Beachte Sie: Soweit

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 4. Übugsblatt

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10 Musterlösug Name, Vorame, Matrikelummer Agabe sid freiwillig) Bitte ubedigt leserlich ausfülle Testklausur Vorkurs Iformatik, 27.09.20 Testklausur Vorkurs Iformatik 27.09.20 Musterlösug eite vo 0 Musterlösug

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL SQL Elmar Fuchs 2. Ausgabe, April 202 Grudlage ud Datebakdesig SQL 3 SQL - Grudlage ud Datebakdesig 3 Der Datebaketwurf I diesem Kapitel erfahre Sie wie sich der Datebak-Lebeszyklus vollzieht welche Etwurfsphase

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht

Sind Sie mit unserem Angebot zufrieden? ja nein weiß nicht STATISTIK Eiführug Statistik kommt vom italieische Wort statistica, was so viel wie Staatsma bedeutet. Früher verwedete ma de Begriff ur für eie Auswertug vo Date (Klima, Bevölkerug, Bräuche,...) eies

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst?

Probeklausur. (b) Was geschieht, wenn man ein Quantenbit in einem solchen Zustand misst? Quaterecher Witersemester 5/6 Theoretische Iformatik Uiversität Haover Dr. Matthias Homeister Dipl.-Math. Heig Schoor Probeklausur Hiweis: Diese Probeklausur ist kürzer als die tatsächliche Klausur.. a

Mehr

Beispiellösungen zu Blatt 105

Beispiellösungen zu Blatt 105 µ κ Mathematisches Istitut Georg-August-Uiversität Göttige Aufgabe 1 Beispiellösuge zu Blatt 105 Alva liebt Advetskaleder. Aber sie hat keie Lust, die Türe vo 1 bis i der ormale Reihefolge zu öffe. Daher

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

AUFGABEN. Verständnisfragen

AUFGABEN. Verständnisfragen AUFGABEN Gelegetlich ethalte die Aufgabe mehr Agabe, als für die Lösug erforderlich sid. Bei eiige adere dagege werde Date aus dem Allgemeiwisse, aus adere Quelle oder sivolle Schätzuge beötigt. eifache

Mehr

Kapitel 5. Ausrichten

Kapitel 5. Ausrichten Kapitel 5 Ausrichte Sucht ma i eier Datebak ach Zeichekette (Wörter, Name, Gesequeze), möchte ma oft aders als i de voragegagee Kapitel uterstellt icht ur exakte Treer, soder auch ähliche Vorkomme de.

Mehr

2.3 Einführung der Bruchzahlen

2.3 Einführung der Bruchzahlen . Eiführug der Bruchzahle..1 Bruchzahlaspekte Sei m (mit m ), eie Bruchzahl. (1) Teil vom Gaze (Siehe dazu de folgede Abschitt..!) () Maßzahl: Bezeichug vo Größe [Siehe Abschitt., Teil I (Größekozept).

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Zusammenfassung: Theorie

Zusammenfassung: Theorie Zusammefassug: Theorie Beweisprizipie Direkter Beweis bleitug der zu beweisede ussage durch mathematische Umformuge aus Voraussetzug eiaderreihug vo ussage = 1, 2, 3,, =B Notatio B (logisches Schließe

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Mathematisch-Naturwisseschaftliche Fakultät II Istitut für Iformatik Die Probabilistische Methode Prosemiar Das Buch der Beweise Dozet: Dr. Wolfgag Kössler Floria Becker 11. Februar 013 1 Ihaltsverzeichis

Mehr

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken

Seminar: Randomisierte Algorithmen Routenplanung in Netzwerken Semiar: Radomisierte Algorithme Routeplaug i Netzwerke Marie Gotthardt 3. Oktober 008 Ihaltsverzeichis 1 Routeplaug i Netzwerke 1.1 Laufzeit eies determiistische Algorithmus'................ 1. Radomisierter

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 5. Übungsblatt 5. Für die Übungen in der Woche vom 22. Mai bis 26.

Informationssysteme SS 2013 Lösungsvorschläge zu Übungsblatt 5. Übungsblatt 5. Für die Übungen in der Woche vom 22. Mai bis 26. Prof. Dr.-Ig. Stefa Deßloch AG Heterogee Iformatssysteme Fachbereich Iformatik Techische Uiversität Kaiserslauter Übugsblatt 5 Für die Übuge i der Woche vom 22. Mai bis 26. Mai 203 Aufgabe : E/R-Modellierug

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

18 2 Zeichen, Zahlen & Induktion *

18 2 Zeichen, Zahlen & Induktion * 18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,

Mehr