ANALYSIS 1 Kapitel 5: Unendliche Reihen

Größe: px
Ab Seite anzeigen:

Download "ANALYSIS 1 Kapitel 5: Unendliche Reihen"

Transkript

1 ANALYSIS 1 Kapitel 5: Unendliche Reihen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz

2 5.1 Grundbegrie Denition (1) Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n := n ) a i n k der Partialsummen s n. Die unendliche Reihe a i heiÿt konvergent [bzw. divergent bzw. bestimmt divergent gegen ± ], wenn die Folge (s n ) n k die entsprechende Eigenschaft besitzt. Im Falle (s n ) n k a C R nennt man a die Summe der Reihe. Schreibweise: a = a i = lim s n. n Die Reihe a i heiÿt absolut konvergent, wenn a i konvergiert.

3 5.1 Grundbegrie Denition (1) Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n := n ) a i n k der Partialsummen s n. Die unendliche Reihe a i heiÿt konvergent [bzw. divergent bzw. bestimmt divergent gegen ± ], wenn die Folge (s n ) n k die entsprechende Eigenschaft besitzt. Im Falle (s n ) n k a C R nennt man a die Summe der Reihe. Schreibweise: a = a i = lim s n. n Die Reihe a i heiÿt absolut konvergent, wenn a i konvergiert.

4 Satz (1) Es seien a i = a und b i = b konvergente Reihen. Dann gilt: a) Für alle m k ist die Reihe i=m a i konvergent und es gilt: i=m m 1 a i = a a i. b) Für alle α, β C gilt: c) a i = a. (αa i + βb i ) = αa + βb.

5 Satz (2) (Cauchysches Konvergenzkriterium) Die Reihe a i konvergiert genau dann, wenn es zu jedem ε > 0 ein N N gibt, sodass für alle n, m N mit n > m N gilt: n a i < ε. i=m+1 Korollar a) Ist die Reihe a i absolut konvergent, so ist sie auch konvergent. b) Ist die Reihe a i konvergent, so gilt lim a n = 0. n

6 Satz (2) (Cauchysches Konvergenzkriterium) Die Reihe a i konvergiert genau dann, wenn es zu jedem ε > 0 ein N N gibt, sodass für alle n, m N mit n > m N gilt: n a i < ε. i=m+1 Korollar a) Ist die Reihe a i absolut konvergent, so ist sie auch konvergent. b) Ist die Reihe a i konvergent, so gilt lim a n = 0. n

7 5.2 Reihen mit reellen Summanden Alternierende Reihen: Eine Reihe mit reellen Summanden und,,abwechselnden Vorzeichen (d. h.: 0 sgn(a i ) = sgn(a i+1 )) heiÿt alternierend. Satz (3) (Leibnizkriterium) Es sei (a i ) i 0 eine monoton fallende Nullfolge. Dann ist die Reihe ( 1) i a i = a 0 a 1 + a 2 a i=0 konvergent, und für ihre Summe a gilt: n a ( 1) i a i a n+1. i=0

8 Reihen mit nicht-negativen Gliedern: a i mit 0 a i R. Für solche Reihen gilt: die Folge der Partialsummen (s n ) n 1 ist (nicht negativ und) monoton wachsend. Nach Ÿ4 (Sätze 5, 6 und Denition 4) gilt daher: es existiert lim n s n [0, ]. Satz (4) (Vergleichskriterium) Es seien a i und b i Reihen und k N so, dass für alle i k gilt: a i b i. Dann gilt: a i b i.

9 Satz (4) (Vergleichskriterium) (Fortsetzung) Insbesondere gilt: a) Konvergiert b i, so ist a i absolut konvergent (also auch konvergent), und b i heiÿt (konvergente) Majorante für a i. b) Ist a i divergent, so divergiert auch b i, und a i heiÿt (divergente) Minorante für b i.

10 5.3 Quotienten- und Wurzelkriterium Satz (5) (Quotientenkriterium) Es sei a i eine Reihe mit a i 0 für fast alle i N. a) Gibt es ein q (0, 1) und ein N N derart, dass für alle n N gilt: a n+1 q, a n so ist a i absolut konvergent. b) Gibt es ein N N, sodass für alle n N gilt: 1 a n+1, a n so ist a i divergent.

11 Satz (6) (Wurzelkriterium) Es sei a i eine Reihe und s = lim sup n a) Ist s < 1, so ist a i absolut konvergent. n an. Dann gilt: b) Gibt es unendlich viele n N mit 1 n a n, so ist divergent. a i

12 5.4 Umordnung und Produkt von Reihen Satz (7) Es sei a i eine absolut konvergente Reihe und ϕ: N N eine bijektive Funktion (= eine Umordnung der Indices). Dann konvergiert auch a ϕ(i) absolut, und es gilt a i = a ϕ(i).

13 Denition (2) Es seien a i und b i Reihen, und für alle k N 0 sei i=0 i=0 k d k = a i b k i = a 0 b k + a 1 b k 1 + a 2 b k a k b 0. i=0 Dann heiÿt die Reihe ( k ) d k = a i b k i k=0 k=0 i=0 das Cauchyprodukt der Reihen a i und b i. i=0 i=0

14 Satz (8) Es seien a = a i und b = b i absolut konvergente Reihen. i=0 i=0 Dann konvergiert auch das Cauchyprodukt der beiden Reihen absolut, und es gilt d k = k=0 k=0 i=0 ( k ) a i b k i = a b. Additionssatz der Binomialreihen: Für s, t C und z K 1 (0) = {z C z < 1} gilt: B s (z) B t (z) = B s+t (z).

15 Satz (8) Es seien a = a i und b = b i absolut konvergente Reihen. i=0 i=0 Dann konvergiert auch das Cauchyprodukt der beiden Reihen absolut, und es gilt d k = k=0 k=0 i=0 ( k ) a i b k i = a b. Additionssatz der Binomialreihen: Für s, t C und z K 1 (0) = {z C z < 1} gilt: B s (z) B t (z) = B s+t (z).

16 5.5 Potenzreihen Denition (3) Es sei (a n ) n 0 eine Folge in C und z C. Dann heiÿt die unendliche Reihe P = a n z n = a 0 + a 1 z + a 2 z 2 + a 3 z die Potenzreihe in z mit Koezientenfolge (a n ) n 0. Die Menge D P = {z C P konvergiert für z} 0 heiÿt Konvergenzbereich von P, und die (ebenfalls mit P bezeichnete) Funktion P : D P C z P(z) = a n z n heiÿt die durch die Potenzreihe P dargestellte Funktion. ρ P = sup{r R P(r) konvergiert} [0, ] heiÿt der Konvergenzradius von P.

17 5.5 Potenzreihen Denition (3) Es sei (a n ) n 0 eine Folge in C und z C. Dann heiÿt die unendliche Reihe P = a n z n = a 0 + a 1 z + a 2 z 2 + a 3 z die Potenzreihe in z mit Koezientenfolge (a n ) n 0. Die Menge D P = {z C P konvergiert für z} 0 heiÿt Konvergenzbereich von P, und die (ebenfalls mit P bezeichnete) Funktion P : D P C z P(z) = a n z n heiÿt die durch die Potenzreihe P dargestellte Funktion. ρ P = sup{r R P(r) konvergiert} [0, ] heiÿt der Konvergenzradius von P.

18 5.5 Potenzreihen Denition (3) Es sei (a n ) n 0 eine Folge in C und z C. Dann heiÿt die unendliche Reihe P = a n z n = a 0 + a 1 z + a 2 z 2 + a 3 z die Potenzreihe in z mit Koezientenfolge (a n ) n 0. Die Menge D P = {z C P konvergiert für z} 0 heiÿt Konvergenzbereich von P, und die (ebenfalls mit P bezeichnete) Funktion P : D P C z P(z) = a n z n heiÿt die durch die Potenzreihe P dargestellte Funktion. ρ P = sup{r R P(r) konvergiert} [0, ] heiÿt der Konvergenzradius von P.

19 Satz (9) Es sei P = a n z n eine Potenzreihe. a) Konvergiert P in einem Punkt z 0 C, so ist P absolut konvergent für alle z C mit z < z 0. b) P ist für alle z C mit z < ρ P absolut konvergent und für alle z C mit z > ρ P divergent; d. h.: K ρp (0) D P K ρp (0) =: {z C z ρ P } c) Es gilt bzw. ρ P = 1 n lim sup an n ρ P = lim n a n a n+1 [Cauchy-Hadamard] [Euler], falls die Folge ( a n a n+1 )n 0 konvergiert oder bestimmt divergiert.

20 Satz (9) Es sei P = a n z n eine Potenzreihe. a) Konvergiert P in einem Punkt z 0 C, so ist P absolut konvergent für alle z C mit z < z 0. b) P ist für alle z C mit z < ρ P absolut konvergent und für alle z C mit z > ρ P divergent; d. h.: K ρp (0) D P K ρp (0) =: {z C z ρ P } c) Es gilt bzw. ρ P = 1 n lim sup an n ρ P = lim n a n a n+1 [Cauchy-Hadamard] [Euler], falls die Folge ( a n a n+1 )n 0 konvergiert oder bestimmt divergiert.

21 Denition (4) Es seien P = a n z n und Q = b n z n Potenzreihen in z und c C. Dann deniert man: P ± Q = (a n ± b n )z n c P = c a n z n und ( n ) P Q = a i b n i z n. i=0

22 Satz (10) Sind P = a n z n und Q = b n z n Potenzreihen in z mit Konvergenzradien ρ P, ρ Q > 0, so gilt mit ρ = min{ρ P, ρ Q }: Jede der Potenzreihen P ± Q, P Q und c P (c C) hat einen Konvergenzradius ρ, und für alle z K ρ (0) gilt: (P ± Q)(z) = P(z) ± Q(z) (P Q)(z) = P(z) Q(z) und (c P)(z) = c P(z).

23 Satz (11) Es sei P = a n z n eine Potenzreihe in z mit Konvergenzradius ρ = ρ P > 0. Dann gilt: a) [Approximationssatz] Variante 1: Für jedes r mit 0 < r < ρ und jedes N N gibt es ein (von r und N abhängiges!) c R, sodass für alle z C mit z r gilt: N 1 P(z) a n z n = a n z n c z N n=n

24 Satz (11) (Fortsetzung) Variante 2: Ist 0 < r < r < ρ, so gibt es ein N 0 N, sodass für alle N N 0 und für alle z C mit z r gilt: N 1 P(z) a n z n r r r ( r r ) N b) Sind nicht alle a n = 0, so gibt es ein r > 0, sodass für alle z K r (0) \ {0} gilt: P(z) 0.

25 Korollar (Identitätssatz für Potenzreihen) Sind P = a n z n und Q = b n z n Potenzreihen mit Konvergenzradien ρ P, ρ Q > 0, ρ = min{ρ P, ρ Q }, und gibt es eine Nullfolge (z k ) k N in K ρ (0) mit z k 0 und P(z k ) = Q(z k ) für alle k N, so gilt: für alle n N 0 ist a n = b n (d. h.: P = Q).

26 Satz (12) (Einsetzen von Potenzreihen in Potenzreihen) Es seien P = a n z n und Q = b n z n Potenzreihen mit Konvergenzradien ρ P, ρ Q > 0. Für n N 0 sei Q n = Q Q... Q = }{{} n k=0 b (n) k zk das (n 1)-fache Cauchyprodukt von Q mit sich. Ist b 0 < ρ P, so existiert ein ρ > 0, sodass für alle z K ρ (0) gilt: Q(z) < ρ P und ( ) ( ) P(Q(z)) = a n b (n) k zk = a n b (n) k z k. k=0 k=0 Diese Potenzreihe bezeichnet man mit P(Q).

5. Unendliche Reihen [Kö 6]

5. Unendliche Reihen [Kö 6] 25 5. Unendliche Reihen [Kö 6] 5.1 Grundbegriffe Definition 1. Es sei k Z und (a i ) i k eine (komplexe) Folge. Unter der unendlichen Reihe a i versteht man die Folge (s n ) n k der Partialsummen s n :=

Mehr

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen

ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen ANALYSIS 1 Kapitel 4: Folgen von (reellen und komplexen) Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung Kapitelgliederung 3. Folgen und Reihen 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung 3.5 Reihen 3.6 Absolut

Mehr

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38

LS Informatik 4 & Folgen und Reihen. Buchholz / Rudolph: MafI 2 38 3. Folgen und Reihen Buchholz / Rudolph: MafI 2 38 Kapitelgliederung 3.1 Folgen und Grenzwerte 3.2 Rechenregeln für konvergente Folgen 3.3 Monotone Folgen und Teilfolgen 3.4 Ein Algorithmus zur Wurzelberechnung

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Reihen, Exponentialfunktion Vorlesung

Reihen, Exponentialfunktion Vorlesung Reihen, Exponentialfunktion Vorlesung Marcus Jung 5.03.20 Inhaltsverzeichnis Inhaltsverzeichnis Reihen 3. Denition.................................... 3.2 Konvergenzkriterien für Reihen........................

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe

k=1 {S n } n N konvergiert, so schreibt man: a n n=1 und spricht dann von Konvergenz oder Divergenz der unendlichen Reihe 7 Reihen sind spezielle Folgen, die durch Summation entstehen. Definition 7. : {a n } n N sei Folge in C; S n := n Folge {S n } n N unendliche Reihe. Falls a k statt lim S n. a k heißt {S n } n N konvergiert,

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt.

Mehr

ANALYSIS 1 Kapitel 6: Stetige Funktionen

ANALYSIS 1 Kapitel 6: Stetige Funktionen ANALYSIS 1 Kapitel 6: Stetige Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 6.1 Grundbegrie

Mehr

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008 Ferienkurs Analysis 1, SoSe 2008 Unendliche Reihen Florian Beye August 15, 2008 1 Reihen und deren Konvergenz Definition 1.1. Eine reelle bzw. komplexe Reihe ist eine unendliche Summe über die Glieder

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

HM I Tutorium 5. Lucas Kunz. 21. November 2018

HM I Tutorium 5. Lucas Kunz. 21. November 2018 HM I Tutorium 5 Lucas Kunz 2. November 208 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Wichtige Reihen................................. 2.3 Absolute Konvergenz..............................

Mehr

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen

ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen ANALYSIS 1 Kapitel 7: Einige Typen von speziellen Funktionen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Vorbereitungskurs Mathematik zum Sommersemester 2015 Folgen und Reihen Susanna Pohl Vorkurs Mathematik TU Dortmund 12.03.2015 Folgen und Reihen Folgen und Grenzwerte Rechenregeln für konvergente Folgen

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Kapitel 3. Reihen und ihre Konvergenz

Kapitel 3. Reihen und ihre Konvergenz Kapitel 3 Reihen und ihre Konvergenz Abschnitt 3.1 Der Reihenbegri und erste Beispiele Denitionen zu Reihen, 1 Denition. Sei (a n ) n N0 eine Folge reeller Zahlen. Für n N 0 heiÿt dann die Zahl s n :=

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

10 Kriterien für absolute Konvergenz von Reihen

10 Kriterien für absolute Konvergenz von Reihen 10 Kriterien für absolute Konvergenz von Reihen 10.1 Majoranten- und Minorantenkriterium 10.3 Wurzelkriterium 10.4 Quotientenkriterium 10.9 Riemannscher Umordnungssatz 10.10 Äquivalenzen zur absoluten

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

4. Folgen von (reellen und komplexen) Zahlen [Kö 5]

4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 20 4. Folgen von (reellen und komplexen) Zahlen [Kö 5] 4.1 Grundbegriffe Definition 1. a) Eine Folge (reeller bzw. komplexer) Zahlen ist eine Abbildung a: Z k C mit einem k Z. Schreibweise: a(n) = a n

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

Analyis I - Reihen und Potenzreihen

Analyis I - Reihen und Potenzreihen Analyis I - Reihen und January 13, 2009 Analyis I - Reihen und Definition (Reihen) Reihen Sei (a k ) k N eine Folge und n N. Dann heißt (s k ) k N mit s n = n k=1 die Partialsummenfolge von (a k ) k N.

Mehr

HM I Tutorien 6 und 7

HM I Tutorien 6 und 7 HM I Tutorien 6 und 7 Lucas Kunz. Dezember 207 und 8. Dezember 207 Inhaltsverzeichnis Vorwort 2 2 Theorie 2 2. Definition einer Reihe.............................. 2 2.2 Absolute Konvergenz..............................

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 20/2 R. Steuding (HS-RM) NumAna Wintersemester 20/2 / 20 2. Reihen R. Steuding (HS-RM) NumAna

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

HM I Tutorium 5. Lucas Kunz. 24. November 2016

HM I Tutorium 5. Lucas Kunz. 24. November 2016 HM I Tutorium 5 Lucas Kunz 24. November 206 Inhaltsverzeichnis Theorie 2. Definition einer Reihe.............................. 2.2 Wichtige Reihen................................. 2.3 Limites inferior

Mehr

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent. Definition 3.8 Eine Reihe n=1 a n heißt absolut konvergent, wenn die Reihe konvergent ist. a n n=1 Beispiel 3.9 Die alternierende harmonische Reihe aber nicht absolut konvergent. n=1 ( 1)n 1 n ist zwar

Mehr

Analysis I - Ferienkurs

Analysis I - Ferienkurs TU-München, Dienstag, der 6.03.200 Analysis I - Ferienkurs Andreas Schindewolf 5. März 200 Inhaltsverzeichnis. Folgen 3.. Konvergenz und Cauchy-Folgen..................... 3.2. Konvergenz-Kriterien für

Mehr

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen Mathematik I Herbstsemester 208 Kapitel 6: Potenzreihen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 58 6. Potenzreihen Reihen (Zahlenreihen) Konvergenzkriterien für Reihen Notwendiges

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Analysis I (HS 2016): SUMMIERBARE FAMILIEN

Analysis I (HS 2016): SUMMIERBARE FAMILIEN Analysis I (HS 2016: SUMMIERBARE FAMILIEN Dietmar A. Salamon ETH-Zürich 26. Oktober 2016 Zusammenfassung Dieses Manuskript enthält eine Einführung in den Begriff einer summierbaren Familie reeller oder

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Mathematik I. Vorlesung 24. Reihen

Mathematik I. Vorlesung 24. Reihen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 24 Reihen Wir betrachten Reihen von komplexen Zahlen. Definition 24.1. Sei ( ) k N eine Folge von komplexen Zahlen. Unter der Reihe versteht

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Kapitel 4 Unendliche Reihen; Potenzreihen. 4.1 Konvergenz von Reihen. Wir betrachten zunächst die (formale) unendliche Summe 4/0/0

Kapitel 4 Unendliche Reihen; Potenzreihen. 4.1 Konvergenz von Reihen. Wir betrachten zunächst die (formale) unendliche Summe 4/0/0 63 Kapitel 4 Unendliche Reihen; Potenzreihen Wir betrachten zunächst die (formale unendliche Summe 4/0/0 a i = a 0 + a + a + a 3 + und setzen S n = a 0 + + a n für n 0. Dadurch entsteht eine Folge (S n

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Günter Lettl WS 2013/2014 1. Grundbegriffe der Mengenlehre und der Logik 1.1 Naive Mengenlehre Definition einer Menge nach Georg Cantor (1845 1918):,,Eine Menge M ist eine Zusammenfassung

Mehr

Unendliche Reihen - I

Unendliche Reihen - I Unendliche Reihen - I Zur Wiederholung. Sei eine Folge ( ) N aus R (bzw. C) gegeben (die Folge der Summanden). Die Folge (s n ) n N in der Form Die Reihe mit s n = n heißt unendliche Reihe und wird geschrieben.

Mehr

Kapitel 3: Folgen und Reihen

Kapitel 3: Folgen und Reihen Kapitel 3: und Reihen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 3: und Reihen 1 / 29 Gliederung 1 Grundbegriffe 2 Abbildungen und elementare

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 22.11.2016 3. Mächtigkeit und die komplexe Zahlen Komplexe Zahlen Definition Die komplexe Zahlen sind definiert als C = R 2 = R R, mit (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

5. Reihen. k=1 x k = s. Oft startet man die Folge/Reihe auch bei k =0oder einem anderen Wert. Für Konvergenzfragen macht das keinen Unterschied.

5. Reihen. k=1 x k = s. Oft startet man die Folge/Reihe auch bei k =0oder einem anderen Wert. Für Konvergenzfragen macht das keinen Unterschied. 5 5. Reihen Im Folgenden sei X K n oder ein beliebiger K-Vektorraum mit Norm. 5.. Definition. Es sei (x k ) Folge in X. DieFolge n s n x k n,,... der Partialsummen heißt (unendliche) Reihe und wird mit

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Mathematische Anwendersysteme Einführung in MuPAD

Mathematische Anwendersysteme Einführung in MuPAD Mathematische Anwendersysteme Einführung in MuPAD Tag 6 Folgen Konvergenzkriterien Reihen Potenzreihen 2322004 Gerd Rapin grapin@mathuni-goettingende Gerd Rapin Mathematische Anwendersysteme: Einführung

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie

Höhere Mathematik I. G. Herzog, Ch. Schmoeger. Wintersemester 2018/19. Karlsruher Institut für Technologie Höhere Mathematik I G. Herzog, Ch. Schmoeger Wintersemester 208/9 Karlsruher Institut für Technologie Inhaltsverzeichnis Reelle Zahlen 2 2 Folgen und Konvergenz 2 3 Unendliche Reihen 3 4 Potenzreihen 45

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a

Reihen. Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder. a i, n = 0, 1, 2,... s n = a 0 + a Reihen Definition 16 Zu einer Zahlenfolge{a n} n=0,1,2,... definieren die Glieder s n = a 0 + a 1 +...+a n = n a i, n = 0, 1, 2,... i=0 die zugehörige Reihe {s n} n=0,1,2,... Es wird s n auch die nte Partialsumme

Mehr

Mathematik III für MW: (nur!) WS 18/19. Karsten Eppler (Vertretung Prof. Sander) Technische Universität Dresden Institut für Numerische Mathematik

Mathematik III für MW: (nur!) WS 18/19. Karsten Eppler (Vertretung Prof. Sander) Technische Universität Dresden Institut für Numerische Mathematik Mathematik III für MW: (nur!) WS 18/19 Karsten Eppler (Vertretung Prof. Sander) Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung SS 17: Woche vom Übungsaufgaben 14. Übung SS 17: Woche vom 10. 7. - 14. 7. 2017 Heft Ü 2: 18.19 (a,c); 18.23; 18.28; 18.36; 1 Zusatzaufgabe zum Newtonverfahren Achtung(!): Tutoren gesucht! Für Mathematik I (für MW) ab

Mehr

3 Folgen, Reihen und stetige Funktionen

3 Folgen, Reihen und stetige Funktionen Höhere Mathematik 101 3 Folgen, Reihen und stetige Funktionen 3.1 Folgen und Reihen: Definitionen und Beispiele Eine reelle oder komplexe Zahlenfolge ist eine Abbildung, die jeder natürlichen Zahl n eine

Mehr

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder. Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung Statt dann als schreibt man auch oder ähnlich, die Folge wird notiert, und das wird abgekürzt mit. Die nennt man die Folgenglieder. Mathematik

Mehr

Man schreibt dann lim. = bzw. lim

Man schreibt dann lim. = bzw. lim Die Funktion f : R R geht für x nach (bzw. ), fallses für allem R + ein t(ε) R + gibt, so dass gilt ist x > t(ε), dann folgt f(x) > M bzw. ist x > t(ε), dann folgt f(x) < M. Man schreibt dann lim x = bzw.

Mehr

6 - Unendliche Reihen

6 - Unendliche Reihen Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

Konvergenz von Folgen

Konvergenz von Folgen " Mathematische Anwendersysteme Einführung in MuPAD Tag 6 Folgen Reihen 1005 Gerd Rapin Übersicht Folgen Konvergenz von Folgen Realisierung in MuPAD Reihen Eponentialfunktion Logarithmus Sinus Cosinus

Mehr

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n

1 k = = Sie ist also gerade der Grenzwert der zur Folge (r k 10 k ) k N0 gehörenden Reihe( n Die zur Folge ( k ) k N gehörende Reihe ( n k ) n N ist divergent, genauer k =. 2. Dezimalzahlen: Eine Zahl r = r 0,r r 2 r 3 mit r 0 N 0 und r n {0,...,9} für n hat den Wert r = r 0 +r 0 +r 2 00 +...

Mehr

1 k k konvergent? und

1 k k konvergent? und 28 Reihen 27 28 Reihen Aufgabe: Sind die Reihen ( + und onvergent? 28. Komplexe Reihen. a Für eine Folge (a in C heißt die Reihe a onvergent, falls die Folge der Partialsummen (s n := n a onvergiert. In

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015 Fakultät Grundlagen März 015 Fakultät Grundlagen Grundlagen: und endliche Beispiele Geometrische Reihe, Konvergenzkriterien Fakultät Grundlagen Folie: Übersicht Grundlagen: und endliche Artithmetische

Mehr

Folgen und Reihen. Mathematik-Repetitorium

Folgen und Reihen. Mathematik-Repetitorium Folgen und Reihen 1.1 Vollständige Induktion 1.2 Zahlenfolgen 1.3 Eigenschaften konvergenter Zahlenfolgen 1.4 Konvergenzkriterien 1.5 Unendliche Reihen 1.6 Eigenschaften unendlicher Reihen 1.7 Rechnen

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr