Galilei-Transformation
|
|
|
- Monika Stieber
- vor 6 Jahren
- Abrufe
Transkript
1 Galilei-Transformation Zur Erinnerung: Newtons Bwgl. gelten nur in Inertialsystemen (IS). In IS sind Bewegungsgleichungen besonders einfach (es gibt keine Scheinkräfte) Frage: Bessere Formulierung: Wie viele IS gibt es? Welche Koord.-Transf. von einem kartesischen Koord.-System zu einem anderen lassen N1 (Definition von IS) invariant? zeitunabhängige Drehmatrix zeitunabhängige Geschwindigkeit Antwort: Transf. der Form: 'Galilei-Transf.' Check: Anmerkung: Galilei-Transf. bilden eine "Gruppe" Relativitätsprinzip von Galilei: alle IS sind gleichwertig (sehen gleich aus) Genauer: (Alle) Inertialsysteme sind für Beschreibung (aller) physikalischer Gesetze äquivalent. (Labor im Zug = Labor im Bahnhof) Konkret: N1, N2, N3 sind forminvariant (oder "kovariant") unter Transformation von IS zu IS' ("Galilei-Transformation") Dasselbe Ereignis habe in Koordinaten In IS: Galilei-Prinzip besagt: In IS' haben N1, N2 dieselbe Form: (keine zusätzlichen Terme!)
2 (2.3) und (2.4) beschreiben dasselbe physikalische System, aber aus verschiedenen IS betrachtet. "Galilei-Transf." ist allgemeinste Transf., die diese "Kovarianz" gewährleistet: Transformation der Komponenten: zeitunabhängige Drehmatrix zeitunabhängige Relativgeschw. Verschiebung d. Ursprungs in Raum und Zeit Check: Also: N2 ist form-invariant, falls wir ansetzen: (Komponenten d. im rotierten System) Galilei-Transf. gewährleistet also Forminvarianz Bemerkung: die Komponenten und haben im Allgemeinen unterschiedliche Form, denn sie beziehen sich auf unterschiedlichen Bezugsysteme. ZB: Dennoch beschreiben sie dieselben Vektoren.
3 Interpretation der Galilei-Transf.: (i) Passive Transf.: Ein physikalisches System wird von zwei Inertialsystemen aus betrachtet. Beide Experimentatoren sehen die gleichen physikalischen Gesetze => "Forminvarianz " der Bew.gl. (ii) Aktive Transf.: Betrachte zwei physikalische Systeme vom gleichen Inertialsystem aus, welche durch Galilei-Tr. ineinander übergehen. Auch hier gilt Forminvarianz der Bew.Gl. Einschränkung: Galilei-Invarianz stimmt nur für nicht-relativistische Geschwindigkeiten: Beobachtung: Vakuumlichtgeschw. ist in allen Bezugssystemen konstant (gleich) => Widerspruch zu Beschleunigte Bezugssysteme: Wird O' relativ zu O beschleunigt, mißt O' andere Kräfte als O und merkt so die Beschleunigung. => O' ist kein IS. Beobachtungen von O und O' sind nicht äquivalent. Beispiel: Wagen wird nach beschleunigt, Scheibe rutscht nach auf der Eisplatte! O sagt: Ich ruhe, Scheibe bewegt sich nicht, spürt also keine, O' sagt: Ich ruhe, Scheibe beschleunigt sich mit nach rechts spürt also = "Scheinkraft" = "Trägheitskraft" Eine Scheinkraft oder Trägheitskraft ist keine wirkliche. Wird nur gebraucht, um Messung im beschleunigten Bezugssystem (BS) O' zu interpretieren, falls Beschleunigung nicht berücksichtigt wird. In einem IS (O) sind alle Scheinkräfte = 0.
4 Allgemeine Transformationsregel: Sei O (z.b. raumfest) ein IS, O' (z.b. rotierend), kein IS: zeitabhängig! momentane Winkelgeschwindigkeit [siehe ES(8.8), MED(6.10)] Ortsvektor: Einsteinsche Summenregel Geschwindigkeit: Interpretation: Geschw. v. P laut O Geschw. v. O' relativ zu O Geschw. v. P laut O' Geschw. eines starr mit O' mitrotierenden Punktes, v. O aus (nur Richtung ändert sich) Vektornotation: Zeitableitung von O' aus gesehen, betrifft nur Komponenten (nicht ) Analog für Beschleunigung: Umgestellt: Zeitableitung von O' aus gesehen, betrifft nur Komponenten (nicht )
5 Bewegungsgleichung: in O (=IS) : in O' ( IS) : linearbeschleunigende Coriolis- Zentrifugal- namenlos Die Scheinkräfte werden in O' (aber nicht O) benötigt, (weil O' IS), um die in O' gemessenen (sehr realen!) Beschleunigungen zu interpretieren. Gaspard Gustave de Coriolis (* 21. Mai 1792 in Nancy; 19. September 1843 in Paris) war ein französischer Mathematiker und Physiker. Beispiel: Coriolis-: Foucaultsches Pendel am Nordpol, Blick von oben Aufgaben zum Selberrechnen: - wie sieht das Schwingungsmuster am Südpol aus? - " " " " am Äquator "?
6 Jean Bernard Léon Foucault (* 18. September 1819 in Paris; 11. Februar 1868 ebenda) war ein französischer Physiker. Foucault wurde in Paris geboren. Seine Ausbildung erhielt er von einem Privatlehrer, da ihm mangels Fleiß und Betragen nahegelegt wurde, die Schule zu verlassen. Er begann ein Medizinstudium, musste aber auch dieses abbrechen, da er den Ekel beim Sezieren nicht überwinden konnte. Ohne Universitäts-Studium widmete er sich der Physik und erarbeitete sich alles autodidaktisch. In den 1840er Jahren trug er zu den Comptes Rendus, einer Beschreibung eines elektromagnetischen Regulators für die elektrische Bogenlampe bei und veröffentlichte zusammen mit Henri Victor Regnault eine Arbeit über binokulares Sehen führte er das nach ihm benannte Foucaultsche Pendel der Öffentlichkeit vor. Dieses ursprünglich von Vincenzo Viviani übernommene Experiment zeigte laientauglich erstmals die Erdrotation. Ein Jahr später gelang ihm mit Hilfe der Drehspiegelmethode eine sehr genaue Messung der Lichtgeschwindigkeit, die er auf km/s bestimmte. Er verwendete dabei einen Drehspiegel, der dem von Sir Charles Wheatstone ähnelte. Außerdem bewies er, dass die Lichtgeschwindigkeit in Wasser niedriger als in Luft ist, womit gleichzeitig die Wellennatur des Lichts bestätigt wurde. In der Optik wird das von ihm entwickelte foucaultsche Schneidenverfahren zur Prüfung optischer Flächen oder ganzer optischer Systeme verwendet. Weiter untersuchte Foucault Wirbelströme in Metallen, wofür er die Copley Medaille erhielt, entwickelte ein leistungsfähiges Spiegelteleskop und erfand 1852 das Gyroskop, basierend auf Johann Gottlieb Friedrich von Bohnenbergers Maschine von Er wurde 1865 in die französische Akademie der Wissenschaften aufgenommen. Foucault erkrankte an Aphasie und starb, fast blind und stumm, am 11. Februar 1868 in Paris. Wirbelstürme Hurricane Mitch Hurricane Katrina Drehrichtung in Nordhalbkugel: Gegen Uhrzeigersinn!
7 Wirbelstürme: Warme Luft über dem Ozean steigt auf, erzeugt ein Niedrigdruckgebiet, das Luft lateral ansaugt Die Coriolis- lenkt die angesaugte Luft ab, sodass ein Wirbel entsteht. Drehrichtung der Erde Naiv: Uhrzeigersinn? Druckgradientenkraft berücksichtigen: Äquator Angesaugte Luft Druck groß Am Äquator: keine Wirbelstürme!! Auf Kreisbahn: Druckgradientenkraft und Corioliskraft gleichen sich aus! Druck klein Zusammenfassung: Galileo-Transformation Relativitätsprinzip von Galilei: alle IS sind gleichwertig N1, N2, N3 sind forminvariant unter Galilei-Transformationen: Zusammenfassung: Beschleunigte Bezugssysteme: Wird O' relativ zu einem Inertialsystem O beschleunigt, mißt O' andere Kräfte als O und merkt so die Beschleunigung. => O' ist kein Inertialsystem. Eine Scheinkraft / Trägheitskraft wird nur gebraucht, um Messung im beschleunigten Bezugssystem (BS) O' zu interpretieren, falls Beschleunigung nicht berücksichtigt wird. In einem IS (O) sind alle Scheinkräfte = 0. in O (=IS) : in O' ( IS) : linearbeschleunigende Coriolis- Zentrifugal- namenlos
Inertialsysteme, Galilei-Transformation
Inertialsysteme, Galilei-Transformation N1 liefert Definition von Inertialsystem (IS) Relativitätsprinzip von Galilei: alle IS sind gleichwertig sehen gleich aus Genauer: (Alle) Inertialsysteme sind für
Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.
Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche
Experimentalphysik E1
Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)
3 Bewegte Bezugssysteme
3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Grundlagen der Physik 1 Mechanik und spezielle Relativität
Grundlagen der Physik 1 Mechanik und spezielle Relativität 09. 12. 2005 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. 1/30 Weihnachtsvorlesung (c) Ulm
1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen
1.7 Bezugssysteme und Trägheitskräfte Physikalische Größen sind Angaben über Messgrößen z.b.: Ort: Festlegung der Nullpunkte Klassische Mechanik a) Zeitnullpunkt und Maßstab unabhängig von Ort und sonstigen
3.1 Trägheitskräfte bei linearer Bewegung. 3.2 Trägheitskräfte in rotierenden Bezugssystemen. 3.5 Die Erde als rotierendes System
3 Beschleunigte Bezugssysteme und Trägheitskräfte 3.1 Trägheitskräfte bei linearer Bewegung 3. Trägheitskräfte in rotierenden Bezugssystemen 3.3 Corioliskraft 3.4 Trägheitskräfte R. Girwidz 1 3.1 Trägheitskräfte
Dieses Buch enthält eine kurze Einführung in die relativistische
Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits
Spezielle Relativität
Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung
Klassische Theoretische Physik: Mechanik
Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der
Dynamik der Atmosphäre. Einige Phänomene
Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec
Rotierende Bezugssysteme
Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
9. Spezielle Relativitätstheorie
7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten
Spezielle Relativitätstheorie
Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen
Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?
Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
I.3 Inertialsysteme. Galilei-Transformationen
I.3 Inertialsysteme. Galilei-Transformationen 17 I.3 Inertialsysteme. Galilei-Transformationen Das erste und das zweite Newton sche Gesetz beruhen auf der Existenz von besonderen Bezugssystemen, nämlich
2.6 Mechanik in bewegten Bezugsystemen
- 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Blatt 03.1: Scheinkräfte
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.
10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent
Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse
Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.
beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit
Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe
12. Spezielle Relativitätstheorie
Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische
beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit
Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie die wunderbare Welt des vierdimensionalen Raum-Zeit-Kontinuums Seminar des Physikalischen Vereins Frankfurt am Main 2012 Rainer Göhring W. Wien: Über der Eingangspforte zur
2. Kinematik. Inhalt. 2. Kinematik
2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung
Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme
Kapitel 1 Bezugssysteme Wenn wir die Bewegung eines Teilchens messen oder vorausberechnen, liefern wir eine Reihe von Ereignissen (r i, t i ), die jeweils aus einem Ortsvektor r i und der dazugehörenden
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Vorlesung Theoretische Mechanik
Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.
Bewegung in Systemen mit mehreren Massenpunkten
Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein
Trägheitstensor einer kontinuierlichen Massenverteilung
Trägheitstensor einer kontinuierlichen Massenverteilung Satz: Es gilt wieder: (vergleiche 10.2) Geschw. eines Volumenelements bei bezüglich Ursprung v. IS. Analog zu (3.1), (3.3): (3) in (2): Wähle Ursprung
2. Translation und Rotation
2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche
IX. Relativistische Formulierung der Elektrodynamik
Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches
Das gravitomagnetische Feld der Erde
Das gravitomagnetische Feld der Erde von T. Fließbach 1. Einführung magnetisch gravitomagnetisch 2. Bezugssysteme Bevorzugte Inertialsysteme 3. Newton und Mach Absoluter Raum? 4. Drehung eines Foucault-Pendels
13. Relativitätstheorie
Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie
IX Relativistische Mechanik
IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die
Einsteins Relativitätstheorie
Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die
Blatt 3 Hausaufgaben
Blatt 3 Hausaufgaben (Abgabe: 14. May, 13:15) 1. Drehungen Ein 3-Tupel (a 1, a 2, a 3 ) enthält die Komponenten eines Vektors a in kartesischen Koordinaten. Beim Übergang von einem Koordinatensystem K
Beispiel: Rollender Reifen mit
Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:
Relativistische Punktmechanik
KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen
GmM = r². mv² r. GM r M
1. Das Problem Galaxien zeigen ein unerwartetes Rotationsverhalten: Selbst in großen Abständen vom Zentrum bleibt die Bahngeschwindigkeit der Objekte (Sterne, Gase usw.) etwa konstant, obwohl eine Keplerrotation
Einführung in die Astronomie und Astrophysik II
Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte [email protected] Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das
Klassische Mechanik. Friedhelm Kuypers. Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage
Friedhelm Kuypers Klassische Mechanik Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA XVII sverzeichnis
E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5
Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik WS 017 / 018 Lösungen zu Übungsblatt 5 Prof. Dr. Hermann Gaub, Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen ( i.) Sie drehen
Das Foucaultsche Pendel
Das Foucaultsche Pendel Inhaltsverzeichnis 1. Vorwort 2. Einleitung 3. Material und Methoden 4. Resultate 5. Diskussion 6. Schlusswort 7. Literaturliste Vorwort Wir beschäftigen uns mit dem Foucaultschen
Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler
Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment
3. Geschwindigkeit und Beschleunigung
Geschwindigkeit und Beschleunigung 1 3. Geschwindigkeit und Beschleunigung 3.1. ddition und Subtraktion von Geschwindigkeiten Einige physikalische Größen wie Geschwindigkeit, Kraft u.a. haben nicht nur
Studienbücherei. Mechanik. W.Kuhn. w He y roth. unter Mitarbeit von H. Glaßl. Mit 187 Abbildungen. VEB Deutscher Verlag der Wissenschaften Berlin 1989
Studienbücherei Mechanik w He y roth W.Kuhn unter Mitarbeit von H. Glaßl Mit 187 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhaltsverzeichnis Experimentelle Grundlagen der Mechanik
Doku Spezielle Relativität
Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer
Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.
Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben
Konsequenzen der Konstanz der Lichtgeschwindigkeit
Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
5. Raum-Zeit-Symmetrien: Erhaltungssätze
5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen
Klein-Gordon-Gleichung
Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2
5.3.3 Die Lorentz-Transformationen
5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte
Die Lichtgeschwindigkeit im Vakuum
Die Lichtgeschwindigkeit im Vakuum Versuch: Experimentelle Bestimmung der Lichtgeschwindigkeit c s = 2 t t s 4 s = 15 km t 10 s 1 Erste Bestimmung der Lichtgeschwindigkeit nach Olaf Römer 1676 Die schon
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
4.4 Versuche zu Scheinkräften
4.4. VERSUCHE ZU SCHEINKRÄFTEN 169 4.4 Versuche zu Scheinkräften Im diesem Abschnitt stellen wir einige Experimente vor, die die verschiedenen Scheinkräfte im rotierenden Bezugssystemen vorstellen. Am
Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie
Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation
Holger Göbel. Gravitation und. Relativität. Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER
Holger Göbel Gravitation und Relativität Eine Einführung in die Allgemeine Relativitätstheorie DE GRUYTER Vorwort V Liste der verwendeten Symbole XV 1 Newton'sche Mechanik 1 1.1 Die Grundgleichungen der
Beschleunigung bei gleichförmiger Kreisbewegung. Ähnliche Dreiecke
Beschleunigung bei gleichförmiger Kreisbewegung Ähnliche Dreiecke Beschleunigung bei gleichförmiger Kreisbewegung v = ω R a = ω 2 R Die drei Newtonschen Axiome Isaac Newton, * 25.12.1661 Woolsthorpe, +
Wiederholung: Gravitation in der klassischen Physik
Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen
Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.
II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften
Inertialsystem und Wechselwirkungsgesetz
Inertialsystem und Wechselwirkungsgesetz Friedrich Herrmann Karlsruher Institut für Technologie Eigentlich geht es im folgenden Vortrag noch einmal um dasselbe Thema wie im vorangehenden. Nämlich um die
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken
Was ist Physik? Modell der Natur universell es war schon immer so
Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft
RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN
RAUM UND ZEIT RAUMZEIT RAUMKRÜMMUNG DURCH GRAVITATION GRAVITATIONSWELLEN Andreas Neyer AK Naturwissenscha2 und Theologie Villigst, 09.04.2016 RAUM UND ZEIT Newton postulierte den absoluten Raum und die
2. Kinematik. Inhalt. 2. Kinematik
2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung
Masse, Kraft und Beschleunigung Masse:
Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.
2. Vorlesung Wintersemester
2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung
Allgemeine Relativitätstheorie
Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 216 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 9. PD
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
I.2.3 Minkowski-Raum. ~r x 3 benutzt.
I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer
Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009
Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009 Inhaltsverzeichnis 3.5 Die Newton schen Prinzipien............................. 3.1 3.5.1
Kinematik eines Massenpunktes
12 Kinematik eines Massenpunktes Technische Mechanik Kinematik eines Massenpunktes http://wikipedia.org Relevanz von Dynamik in der Freizeit Beschleunigung: 0-172km/h in 1.8s Technische Mechanik Kinematik
2 Mechanik des Massenpunktes
2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik
Solution V Published:
1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale
Eigenschaften der Schwerkraft
Gravitation Teil 1 Eigenschaften der Schwerkraft Bewirkt die gegenseitige Anziehung von Massen Ist prinzipiell nicht abschirmbar Ist im Vergleich zu den anderen Naturkräften extrem schwach: F E F G 10
Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung
Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,
MECHANIK I. Kinematik Dynamik
MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem
