Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit:

Größe: px
Ab Seite anzeigen:

Download "Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit:"

Transkript

1 Anwendung DFT zur Feature-Aufbereitung Ziel: Minimalität der Feature-Werte Ausnutzung Kompaktheit im Frequenzbereich Kompaktheit: Funktion häufig durch wenige, niedrige Frequenzkoeffizienten approximierbar, da hohe Frequenzen oft gegen Null streben hohe Kompaktheit bei glattem Funktionsverlauf 1

2 Anwendung DFT zur Feature-Aufbereitung (2) Fehler erzeugt durch Frequenzfilter im Ortsbereich nicht lokalisierbar Orthogonalität: Fourier-Koeffizienten sind orthogonal ermöglicht isolierte Manipulation einzelner Frequenzen 2

3 Beispiel Minimierung durch Ausnutzung Kompaktheit Ausgangsfunktion: 3

4 Beispiel Minimierung durch Ausnutzung Kompaktheit (2) Frequenzspektrum und Abschneiden hoher Frequenzen: Tiefpassfilter 4

5 Beispiel Minimierung durch Ausnutzung Kompaktheit (3) approximierte, d.h. minimierte Funktion: 5

6 Berechnung der DFT Erinnerung lineare Algebra und komplexe Zahlen diskrete Funktion als Vektor des komplexen Vektorraums: (Vektorraum hat kanonische Basisvektoren) Konjugation einer komplexen Zahl: 6

7 Berechnung der DFT (2) inneres Produkt für Entwicklungsformel für Orthonormalbasis 7

8 Beispiel Funktion im Vektorraum * * * * (1,0) (2,0) (-2,0) (1,0) staab@uni-koblenz.de 8

9 Vergleiche Vektorräume C 4 und (1,0) (2,0) (-2,0) (1,0) * * * * staab@uni-koblenz.de 9

10 Orthogonale Vektoren in C 4 (0,0) (0,0) Inneres Produkt (1,0) (0,0) (0,0) (2,0) (0,0) (0,0) (0,0) <, (-2,0) (0,0) (0,0) (0,0) (0,0) >=(0,0) (0,0) (1,0) * (0,0)+ (0,0) * (0,0) + (-2,0) * (0,0)+ (0,0) * (1,0) = (0,0) (0,0) (0,0) (-2,0) (0,0) Erinnerung (0,0) (0,0) (0,0) (1,0) (a,b) = (a,-b) staab@uni-koblenz.de 10

11 Vektorräume über Diskreten Funktionen Mit Ortsvariablen Mit Frequenzvariablen 11

12 Vektorräume über Funktionen Mit Ortsvariablen Mit Frequenzvariablen 12

13 Vektorräume über Funktionen Mit Ortsvariablen Mit Frequenzvariablen 13

14 Problemstellung für DFT Gesucht: Gegeben: X 1 j 1 X 2 j 2 X 3 j 3 X 4 j 4 staab@uni-koblenz.de 14

15 Problemstellung für Fouriersynthese Gesucht: Gegeben: j 1 X 1 j 2 X 2 j 3 X 3 j 4 X 4 staab@uni-koblenz.de 15

16 Fourier-Basis Basisvektoren: 16

17 Fourier-Basis (2) Orthonormalität: 17

18 Fourier-Transformation aufgrund Orthonormalität der Fourier-Basis Berechnung der Fourier-Koeffizienten mittels innerem Produkt: Cosinus / Sinus-Anteil für die j-te Schwingungsfrequenz Ort j-ter Einheitsvektor der Fourierbasis Transformation als einfache Multiplikation mit DFT- Matrix staab@uni-koblenz.de 18

19 Fourier-Transformation (2) Transformation entspricht Rotation im komplexen, hochdimensionalen Raum Ergebnis: komplexe Fourier-Koeffizienten Realteil für Kosinusamplituden Imaginärteil für Sinusamplituden 19

20 Transformationsformel DFT Allgemein: F = A x f, Mit a j+1,k+1 = e j (k) staab@uni-koblenz.de 20

21 Rücktransformation DFT -1 Allgemein: A * F = A * A x f = I x f = f, Mit: A* ist adjungierte Matrix staab@uni-koblenz.de 21

22 Polarkoordinaten komplexe Zahl als Polarkoordinate mit Länge und Winkel Winkel (Phase): Länge: Winkel drückt Verschiebung aus (Sinus versus Kosinus) Frequenzspektrum berücksichtigt nur Länge 22

23 Eigenschaften der DFT Parseval-Theorem: euklidsche Distanzen sind im Orts- und Frequenzbereich gleich Translation im Ortsbereich ändert ausschließlich Phasenwinkel 23

24 Eigenschaften der DFT (2) Symmetrie der Fourier-Koeffizienten: Werte sind spiegelsymmetrisch n reelle Zahlen reichen zur Darstellung von Nyquist-Theorem (Abtasttheorem): zur Abbildung bestimmter Frequenzen sind min. doppelt so viele Abtastwerte erforderlich Symmetrie staab@uni-koblenz.de 24

25 Eigenschaften der DFT (3) Kompaktheit abhängig von Glattheit der Funktion im Ortsbereich Klassifikation von Funktionen anhand Verlauf der quadrierten Fourier-Beträge in O-Notation: 25

26 Eigenschaften der DFT (4) Kompaktheit weißes Rauschen: geringste Kompaktheit schwarzes Rauschen: sehr glatt, etwa Flusspegelstände braunes Rauschen: etwa Verlauf von Aktienkursen 26

27 Eigenschaften der DFT (5) abrupte Funktionswertsprünge verursachen geringe Kompaktheit extreme Sprünge häufig aufgrund fehlender Periodizität an den Rändern Vermeidung Randeffekt: Spiegelung der Funktion Kosinustransformation DCT (keine Imaginärteile) 27

28 Diskrete Kosinustransformation Hintransformation: Rücktransformation: 28

29 FFT und mehrdimensionale Transformation FFT: schneller Transformationsalgorithmus mit statt zweidimensionale DFT durch einfache Multiplikation der Basisvektoren erreichbar 29

30 5.2 Diskrete Wavelet-Transformation hier Fokus auf Haar-Wavelets (nach Alfred Haar) als einfachstes Wavelet Wavelet steht für Wellchen, also lokal begrenzte Welle vielfältiger Einsatz etwa in Signal- und Bildverarbeitung (etwa JPEG2000) 30

31 Probleme mit der Fourier-Transformation lokal versus globale Änderung: lokale Änderung im Ortsbereich globale Änderung im Frequenzbereich und umgekehrt Problem: etwa temporäre Störgeräusche aus Audio-Signal entfernen 31

32 Probleme mit der Fourier-Transformation (2) Ort und Frequenz als Feature-Wert: beides nicht gemeinsam in einer Darstellung verfügbar Problem etwa bei Erkennung lokal begrenzter Texturen 32

33 Idee der Wavelet-Transformation gemeinsame Darstellung von Frequenz und Ort Ansatz für Fourier-Transformation: Window-Fourier-Transformation Zerlegung des Ausgangssignals in disjunkte Intervalle (Fenster) konstanter Breite Fourier-Transformation isoliert auf einzelnen Intervallen Problem: statische Intervallbreite 33

34 Idee der Wavelet-Transformation (2) Wavelet-Transformation: Frequenzen bei unterschiedlicher Ortsauflösung Multi-Resolution-Analyse Einschränkung der Frequenzen durch Nyquist-Abtasttheorem je größer Ortsauflösung, desto geringer Frequenzauflösung und umgekehrt 34

35 Graphische Darstellung DFT, WDFT, DWT Ausgangssignal: 35

36 Wavelet-Basisfunktionen Support (Funktionswert ungleich Null) lokal begrenzen Wellchen Generierung von Basisfunktionen aus Mutter-Wavelet durch Verschiebung und Skalierung Existenz diverser Mutter-Wavelets (hier nur Haar-Mutter- Wavelet) 36

37 Haar-Wavelet-Transformation Funktionsprinzip (stark vereinfacht): Ausgangspunkt: diskrete Funktion mit Funktionswerten schrittweises und iteriertes Berechnen der Summen (Skalierungswerte) und Differenzen (Detailkoeffizienten) 37

38 Haar-Wavelet-Transformation Abbildung der Ausgangsfunktion auf Detailkoeffizienten und einen Skalierungswert (Gesamtsumme) Ausgangsfunktion kann verlustfrei rekonstruiert werden 38

39 Beispiel Ausgangsfunktion: [ ] Ergebnis: [ ] staab@uni-koblenz.de 39

40 Support der einzelnen Wavelet-Basisfunktionen 40

41 Anwendung der DWT für Feature-Normalisierung Störfrequenzen lassen sich lokal begrenzt entfernen Mutter-Wavelet kann an Störsignal angepasst werden aufwändige Analyse erforderlich Beispiel: Entfernen von Knackgeräuschen aus Audio-Signale 41

42 Anwendung DWT für Feature-Erkennung/Aufbereitung Anwendung für lokale Frequenzanalyse, etwa für Textur-Feature 42

43 Anwendung DWT für Feature-Erkennung/Aufbereitung (2) Invarianzen können an Orts- und Frequenzinformationen geknüpft sein Verschiebungsinvarianz durch unsortierte Koeffizienten Invarianz bzgl. Skalierung (Verdopplung/-Halbierung der Ortsauflösung) durch Nichtbeachtung der Auflösungsstufen 43

44 Anwendung DWT für Feature-Erkennung/Aufbereitung (3) Haar-Wavelet: geringe Berechnungs-komplexität: Kompaktheit und Orthogonalität der Koeffizienten lokale Beschränkung bei Modifikation der Wavelet-Koeffizienten 44

45 Anwendung zur verlustbehafteten Komprimierung 45

46 Berechnung der DWT Ausgangspunkt: diskrete Funktion Berechnung der Detailkoeffizienten und Skalierungswerte in verschiedenen Auflösungsstufen j = 1, 2, 4, 8, 16, 32,.. orthonormale Basisvektoren: und staab@uni-koblenz.de 46

47 Skalierungsbasisvektoren i-ter Skalierungsbasisvektor der Auflösungsstufe j des Vektorraums : staab@uni-koblenz.de 47

48 Skalierungsbasisvektoren (2) es gelten: 48

49 Skalierungsbasisvektoren graphisch Skalierungsvektoren der Stufe j=2 49

50 Detailbasisvektoren i-ter Detailbasisvektor der Auflösungsstufe j des Vektorraums : staab@uni-koblenz.de 50

51 Detailbasisvektoren (2) es gelten: 51

52 Detailbasisvektoren graphisch Detailvektoren der Stufe j=2 52

53 Skalierungs- und Detailbasisvektoren Detail- und Skalierungsbasisvektoren der selben Auflösung sind orthogonal bilden gemeinsam othonormale Basis für Vektorraum 53

54 Berechnung der Skalierungs- und Detailkoeffizienten Grundidee: Anwendung inneres Produkt der Vektoren der Orthonormalbasis der Stufe j auf staab@uni-koblenz.de 54

55 Skalierungs- und Detailkoeffizienten Berechnung auf erzeugt Skalierungskoeffizienten drücken Frequenzen innerhalb entsprechender Supportintervalle aus erzeugt Detailkoeffizienten drückt die Funktion ohne Frequenzen innerhalb entspechender Supportintervalle aus 55

56 Skalierungs- und Detailkoeffizienten erneute Berechnung auf Funktion der Detailkoeffizienten nächste Auflösungsstufe Stopp, wenn Auflösungsstufe und Werte gleich sind 56

57 Zerlegung in Wavelet-Koeffizienten Wavelet-Koeffizienten einer Funktion sind mit 57

58 Zerlegung in Wavelet-Koeffizienten graphisch 58

59 Wavelet-Transformation als Matrizenmultiplikation Funktionen und als Vektoren aus ist eine -Matrix, deren Zeilen den Wavelet-Basisvektoren entsprechen auf Grund (Orthonormalmatrix) gilt quadratischer Berechnungsaufwand 59

60 Transformationsalgorithmus mit linearem Aufwand 60

61 Rücktransformation mit linearem Aufwand 61

62 Zweidimensionale DWT wichtig etwa für Rasterbilder 2 Varianten Standardzerlegung: Transformation in Dimension 1 komplett, bevor Transformation in Dimension 2 Non-Standardzerlegung: Transformation alternierend pro Auflösungsstufe analoges Verfahren für beliebig viele Dimensionen anwendbar staab@uni-koblenz.de 62

63 Algorithmus zur Standardzerlegung 63

64 Algorithmus zur Non-Standardzerlegung 64

5 Feature- Transformationsverfahren. Einführung. 5.1 Diskrete Fourier- Transformation. 5.1 Diskrete Fourier- Transformation (2)

5 Feature- Transformationsverfahren. Einführung. 5.1 Diskrete Fourier- Transformation. 5.1 Diskrete Fourier- Transformation (2) 5 Feature- Transformationsverfahren 1 Einführung 2 1.Diskrete Fourier-Transformation (DFT) 2.Diskrete Wavelet-Transformation (DWT) 3.Karhunen-Loeve-Transformation (KLT) 4.Latent Semantic Indexing (LSI)

Mehr

<is web> Information Systems & Semantic Web

<is web> Information Systems & Semantic Web Information Systems University of Koblenz Landau, Germany Feature Extraktion staab@uni-koblenz.de 2 staab@uni-koblenz.de 3 staab@uni-koblenz.de 4 staab@uni-koblenz.de 5 staab@uni-koblenz.de 6 staab@uni-koblenz.de

Mehr

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 Kap. 7: Wavelets. Die kontinuierliche Wavelet-Transformation (WT). Diskrete Wavelet-Transformation (DWT) 3. Sh Schnelle Wavelet-Transformation ltt ti (FWT) 4. JPEG000 H. Burkhardt, Institut für Informatik,

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1

Computergraphik I. Das Abtasttheorem. Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Das Abtasttheorem Problem bei räumlicher Abtastung: Oliver Deussen Abtasttheorem 1 Problem bei zeitlicher Abtastung: Oliver Deussen Abtasttheorem 2 Darstellung auf Monitor Was geschieht eigentlich, wenn

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung

6 Distanzfunktionen (2) 6 Distanzfunktionen. 6.1 Eigenschaften und Klassifikationen. Einführung 6 en 6 en (2) 1. Eigenschaften und Klassifikation 2. en auf Punkten Minkowski L m Gewichtete Minkowski L m w Quadratische d q Quadratische Pseudo Dynamical Partial Semi Pseudo Chi Quadrat Semi Pseudo Kullback

Mehr

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation

6 Distanzfunktionen. Quadratische Pseudo. 1. Eigenschaften und Klassifikation 6 Distanzfunktionen 1. Eigenschaften und Klassifikation 2. Distanzfunktionen auf Punkten Minkowski Distanzfunktion L m Gewichtete Minkowski Distanzfunktion L m w Quadratische Distanzfunktion d q Quadratische

Mehr

Ergebnis einer globalen Op. im Punkt (x, y): abhängig vom gesamten Eingabebild hoher Rechenaufwand (bis zu O(n 4 )!)

Ergebnis einer globalen Op. im Punkt (x, y): abhängig vom gesamten Eingabebild hoher Rechenaufwand (bis zu O(n 4 )!) 4.3. Globale Operationen Ergebnis einer globalen Op. im Punkt (x, y): abhängig vom gesamten Eingabebild hoher Rechenaufwand (bis zu O(n 4 )!) globale Op. spielen wichtige Rolle in techn. Signalverarbeitung

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Fourier-Reihe mit komplexer Exponentialfunktion

Fourier-Reihe mit komplexer Exponentialfunktion Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 9. Juni 2010, 15:54 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Überlagung sinusförmiger

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

43 Fourierreihen Motivation Fourierbasis

43 Fourierreihen Motivation Fourierbasis 43 Fourierreihen 43. Motivation Ähnlich wie eine Taylorreihe (vgl. MfI, Kap. 2) eine Funktion durch ein Polynom approximiert, wollen wir eine Funktion durch ein trigonometrisches Polynom annähern. Hierzu

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

3.6 Globale Operationen

3.6 Globale Operationen 3.6 Globale Operationen Ergebnis einer globalen Op. im Punkt (x, y): abhängig vom gesamten Eingabebild hoher Rechenaufwand (bis zu O(n 4 )!) globale Op. spielen wichtige Rolle in technischer Signalverarbeitung

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

achsenparallele Stauchung und Streckung durch Gewichte :

achsenparallele Stauchung und Streckung durch Gewichte : Gewichtete Minkowski-Distanzfunktion achsenparallele Stauchung und Streckung durch Gewichte : Forderung: staab@uni-koblenz.de 1 Einheitskreis Translationsinvarianz keine Skalierungsinvarianz keine Rotationsinvarianz

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Mathematik, Signale und moderne Kommunikation

Mathematik, Signale und moderne Kommunikation Natur ab 4 - PH Baden Mathematik, Signale und moderne Kommunikation 1 monika.doerfler@univie.ac.at 29.4.2009 1 NuHAG, Universität Wien monika.doerfler@univie.ac.at Mathematik, Signale und moderne Kommunikation

Mehr

16 Fourier-Reihe mit komplexer Exponentialfunktion

16 Fourier-Reihe mit komplexer Exponentialfunktion 16 Fourier-Reihe mit komplexer Exponentialfunktion Jörn Loviscach Versionsstand: 21. März 2014, 21:45 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden) Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h.

L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. L5.2 Inverse einer Matrix Betrachte im Folgenden lineare Abbildungen der Form: gleich viel Zeilen wie Spalten dann ist die Matrix, durch die A dargestellt wird, 'quadratisch', d.h. 'Identitätsabbildung':

Mehr

Relevante Frequenztransformationen

Relevante Frequenztransformationen Relevante Frequenztransformationen Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 206 Andreas Unterweger (FH Salzburg) Relevante Frequenztransformationen

Mehr

Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II

Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II Multimedia-Datenbanken im SS 2010 Ähnlichkeitsmaße II Dr.-Ing. Marcin Grzegorzek 22.06.2010 Inhalte und Termine 1. Einführung in MMDB 1.1 Grundlegende Begriffe 1.2 Suche in einem MMDBS 1.3 MMDBMS-Anwendungen

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 9. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 9. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching November, 07 Erinnerung Ein Skalarprodukt ist eine Abbildung, : E n E n E, (v, w) v, w n k v kw k so dass:

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen C6.3 Fourier-Transformation Entspricht Fourier-Reihe für 'Fourier-Integral' Für endliches L: (C6.1b.3) Für stellt eine kontinuierliche Funktion dar: und Fourier-Summe wird ein Integral: 'Fourier-Transformation'

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Kapitel 2 Kurvenanpassung

Kapitel 2 Kurvenanpassung Kapitel 2 Kurvenanpassung 2 2 2 Kurvenanpassung 2.1 Approximation... 26 2.1.1 Approximation mit orthonormalen Funktionensystemen.. 26 2.1.1.1 Approximation mit der Fourier-Reihe... 29 2.1.1.2 Approximation

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin

Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin Diskrete Fourier-Transformation Stefanie Dourvos Institut für Informatik FU Berlin 28.04.09 Übersicht Einleitung Problem: polynomiale Multiplikation Crashkurs Diskrete Fourier-Transformation DFT mit FFT

Mehr

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U:

2. Isotropie. Beweis: (i) (ii): β U ist nicht ausgeartet. U U = {0} (ii) (iii): β U ist nicht ausgeartet. Da β nicht ausgeartet ist, gilt U = U: 2. Isotropie Im folgenden sei V ein K-Vektorraum der Dimension n. Es sei q eine quadratische Form darüber und β die zugehörige symmetrische Bilinearform. Zudem gelte in K: 1 + 1 0. Notation 2.0: Wir nennen

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Skalarprodukt und Orthogonalität

Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1

Mehr

Herbstsemester ist es.

Herbstsemester ist es. Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Gegeben seien: Dann gilt: (i)

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Grundlagen der Bildverarbeitung: Übung 3

Grundlagen der Bildverarbeitung: Übung 3 Grundlagen der Bildverarbeitung: Übung 3 Michael Korn Raum: BC414, Tel.: 0203-379 - 3583, E-Mail: michael.korn@uni-due.de Michael Korn (michael.korn@uni-due.de) Grundlagen der Bildverarbeitung: Übung 3

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen.

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Anwendung v. Faltungstheorem: Tiefpassfilter Wähle so, dass Dann: Somit: Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Zusammenfassung habe Periode, mit stückweise stetig und

Mehr

<is web> Grundidee hierarchischer Indexierungsverfahren: Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte

<is web> Grundidee hierarchischer Indexierungsverfahren: Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte Baumverfahren Baumverfahren (2) Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte B-Baum eindimensional Abbildung eines mehrdimensionalen Raums auf eine Dimension im Allgemeinen nicht distanzerhaltend

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte

Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte Baumverfahren Ausgangspunkt: punktförmige hochdimensionale Feature-Objekte B-Baum eindimensional Abbildung eines mehrdimensionalen Raums auf eine Dimension im Allgemeinen nicht distanzerhaltend möglich

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main

Einleitung Grundlagen Einordnung. Normen. Thomas Gerstner. Institut für Mathematik Goethe-Universität Frankfurt am Main Institut für Mathematik Goethe-Universität Frankfurt am Main Einführungsvortrag Proseminar 25. Januar 2013 Outline 1 Einleitung Motivation Anwendungsbereiche 2 3 Wichtige Outline Einleitung Motivation

Mehr

Barbara Burke Hubbard. wavelets. Die Mathematik der kleinen Wellen. Aus dem Amerikanischen von Michael Basler. Birkhäuser Verlag Basel Boston Berlin

Barbara Burke Hubbard. wavelets. Die Mathematik der kleinen Wellen. Aus dem Amerikanischen von Michael Basler. Birkhäuser Verlag Basel Boston Berlin Barbara Burke Hubbard wavelets Die Mathematik der kleinen Wellen Aus dem Amerikanischen von Michael Basler Birkhäuser Verlag Basel Boston Berlin Inhaltsverzeichnis An den Leser 11 Danksagungen 17 1 Die

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Low Level Descriptoren. Anne Scheidler

Low Level Descriptoren. Anne Scheidler Low Level Descriptoren Anne Scheidler Aufbau des Vortrags LLD Kategorien Signaldarstellung Zeitbasierte Signaldarstellung und Merkmalsextraktion Transformation zwischen Signaldarstellungen Frequenzbasierte

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya

Vektorprodukt. 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt 1-E1 Ma 1 Lubov Vassilevskaya Vektorprodukt Unter dem Vektorprodukt zweier Vektoren a und b versteht man den im Raum durch die folgenden Bedingungen charakterisierten Vektor: c = a b 1. c

Mehr

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge.

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. Darstellung als Filterbank Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. - Trifft in bestimmten Maße auch auf das Original zu, da

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr