Modul SiSy: Einleitung

Größe: px
Ab Seite anzeigen:

Download "Modul SiSy: Einleitung"

Transkript

1 Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen visuelle «Signale» Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal, Audio-/Videosignal, Signale können Störungen / Rauschen darstellen Rauschsignale sind eine der grossen Herausforderungen im! Hilfssignale sind weder Info- noch Rauschsignale z.b. Sinus- oder Rechteck-Signal kann mit Funktionsgenerator generiert werden

2 Signale Beispiel Sprachsignal demo1.m SiSy, Einleitung, 2 Signale sind mathematisch als Funktionen beschreibbar in diesem Kurs interessieren hauptsächlich Zeitsignale z.b. der zeitliche Verlauf einer Spannungsamplitude u(t) Beispiel: Sprachsignal Sprecher/Quelle: Dr. S. Wyrsch, ZHAW Anwendungen mit Sprachsignalen: Speech2Text, Sprachdatenkompression für 2G/4G,

3 Signale Beispiel EKG-Signalverlauf SiSy, Einleitung, 3 Elektro-KardioGramm zeigt Verlauf der Herzerregung t/s Signalanteile / Merkmale (im gesunden EKG) [1] Beispiel: Aus dem (mittleren) Abstand der R-Zacken kann die Herzfrequenz bestimmt werden.

4 Signale Beispiel Gyrosignal demo2.m, video.mp4 SiSy, Einleitung, 4 Beispiel: Gyro-Signal Inertial Motion Units sind weit verbreitet (in Smartphones, Drohnen, ) und bestehen aus Accelerometer und Gyroskop ω z (t) φ(t) berechneter Drehwinkel φ(t) in t (t) ω (τ) dτ 0 z Drehwinkel φ(t) in Funktion der Zeit t? Gyro-Signal ω z (t) in /s

5 Signale Beispiel DTMF-Signal SiSy, Einleitung, 5 Tastenfeld DTMF steht für dual-tone multi-frequency bzw. touch tone Wenn eine 9 gedrückt wird, wird ca. 50 ms lang die Summe von 2 Sinus-Signalen mit den Frequenzen 852 Hz und 1477 Hz gesendet, gefolgt von einer ca. 50 ms langen Pause.

6 Signale Beispiel DTMF-Signal demo3.m SiSy, Einleitung, Addition zweier sin-signale mit 852 Hz und 1477 Hz

7 Signale Beispiel DTMF-Signal SiSy, Einleitung, 7 DTMF-Signale werden typisch im Frequenzbereich dekodiert Fourier Spektralwert Filter f / Hz Zeit- Bereich Frequenz- Bereich Oft interessiert frequenzmässige Zusammensetzung eines Signals da gibt es mit der Fourieranalyse ein mächtiges Werkzeug Analogie: Lichtbrechung in Spektralfarben

8 Systeme SiSy, Einleitung, 8 Systeme verarbeiten Signale Ein System transformiert ein Eingangs- in ein Ausgangssignal. Die Systemfunktion f(.) beschreibt das System-Verhalten. x(t) System y(t) y(t) = f(x(t)) R verschiedene Realisierungen x(t) C y(t) analoges System (RC-Netzwerk) digitale Systeme (implementiert auf uc / DSP / FPGA)

9 Digitale Systeme / Filter SiSy, Einleitung, 9 analoges Sprachsignal ADC DSP Algorithmus DAC analoges Sprachsignal T s x[n] x(t) t nt s T s : Abtast- bzw. Sampling-Intervall Algorithmus y[n] = (x[n]+x[n-1]) / 2 (gleitende Mittelung bzw. Tiefpass-Verhalten, schnelle Änderungen werden unterdrückt) Zeit n / T s

10 Systeme SiSy, Einleitung, 10 Viele verschiedenartige Systeme haben gleiche math. Formulierung Feder-Masse-System (ohne Reibung) Elektrischer Schwingkreis (ungedämpft) K M y(t) x(t) = F(t) x(t) = u 1 (t) L C y(t) = u 2 (t) M y t K y t x(t) LC y t y t x t systemtheoretisch äquivalent (gleichartige Differentialgleichung) Die Systemtheorie beschreibt das System-Verhalten abstrakt bzw. losgelöst von der konkreten Realisierung. sehr nützlich für Analyse und Synthese für Umsetzung braucht es aber Spezialwissen (z.b. in Elektronik oder Mechanik)

11 Systeme Beispiel Feder-Masse-System SiSy, Einleitung, 11 K [N/m = kg/s 2 ] M [kg] y(t) x(t) = F(t) keine Reibung! Frage: Auslenkung y(t), wenn Differentialgleichung (DGL) F(t) - K y(t) = M y(t) M y t K y t x(t) kein Input bzw. keine externe Kraft F(t) anliegt, d.h. x(t) = F(t) = 0 aber die Auslenkung am Anfang y(0) = A 0 beträgt Ansatz: y(t) = A 0 cos(ω 0 t) wobei Kreisfrequenz ω 0 = 2π f 0 Einsetzen von y(t) in DGL: - M A 0 ω 02 cos(ω 0 t) + K A 0 cos(ω 0 t) = 0 Lösung: y(t) = A 0 cos(ω 0 t), für t 0, wobei ω 0 = 2π f 0 = (K/M) 1 T0 2π f 0 M/K Je grösser die Masse M, desto länger dauert die Periode T 0.

12 Ziel des Moduls SiSy, Einleitung, 12 math. Werkzeuge für Signal- Analyse/Design System- Analyse/Design Nachrichtentechnik Wireless Comm. (ICT) Regelungstechnik (Control, Drives) Messtechnik (Sensors) Audiotechnik Medizintechnik

13 Referenzen SiSy, Einleitung, 13 Literatur Es gibt unzählige Bücher, mit verschiedenen Ausprägungen, z.b. [1] I. Rennert, B. Bundschuh, Signale und Systeme Einführung in die Systemtheorie, Carl Hanser Verlag, Bemerkung: behandelt zuerst Signale, dann Systeme [2] J. Hoffmann, F. Quint, "Einführung in Signale und Systeme", de Gruyter, Bemerkung: behandelt zuerst Systeme, dann Signale, mit Matlab/Simulink-Beispielen Weiterführende Module Grundlagen der Regelungstechnik (GRT) Digitale Signalverarbeitung (DSV1+2) und Bildverarbeitung (BV)

Modul SiSy: Einleitung

Modul SiSy: Einleitung Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,

Mehr

Kursübersicht "Signale und Systeme"

Kursübersicht Signale und Systeme Kursübersicht "Signale und Systeme" SiSy, Einleitung, 1 SiSy HS2014: Zeitplan ET13a Signale analog Systeme analog Signale digital Kursübersicht "Signale und Systeme" SiSy, Einleitung, 2 Unterlagen siehe

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 1: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Vergleich zeitkontinuierlicher und zeitdiskreter Systeme Systemtheorie hat zeitkontinuierliche Systeme

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) [email protected]

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Digitale Signalverarbeitung für Einsteiger

Digitale Signalverarbeitung für Einsteiger Digitale Signalverarbeitung für Einsteiger Dipl.-Ing. Erich H. Franke, DK6II [email protected] 54. Weinheimer UKW-Tagung 2009 Errata: Nobody is perfect Im Skriptum haben sich kleine aber ärgerliche

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Übungsblatt 2: Modellierung und Linearisierung (Abgabe am von 8:00-8:15 im Vorlesungs-Hörsaal) Prof. Dr. Moritz Diehl

Übungsblatt 2: Modellierung und Linearisierung (Abgabe am von 8:00-8:15 im Vorlesungs-Hörsaal) Prof. Dr. Moritz Diehl Vorlesung Systemtheorie und Regelungstechnik (SR Albert-Ludwigs-Universität Freiburg Sommersemester 2014 Übungsblatt 2: Modellierung und Linearisierung (Abgabe am 21.5.2014 von 8:00-8:15 im Vorlesungs-Hörsaal

Mehr

Elektrischer Schwingkreis

Elektrischer Schwingkreis Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

Kapitel 1: Einleitung

Kapitel 1: Einleitung ZHAW, DSV1, Seite 1-1 Inhaltsverzeichnis Kapitel 1: Einleitung 1.1. GESCHICHTLICHER ÜBERBLICK...1 1.2. PRINZIPIELLER VORGANG DER DIGITALEN SIGNALVERARBEITUNG...2 1.3. EINSATZGEBIETE...4 1.4. ENTWICKLUNGSPHASEN

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 2

Digitale Signalverarbeitungssysteme II: Praktikum 2 Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

Systemtheorie für Informatiker

Systemtheorie für Informatiker Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Übung 4: Spektrogramm

Übung 4: Spektrogramm ZHAW, DSV, FS2,. Einleitung Übung 4: Spektrogramm Mit einem Spektrogramm kann der zeitliche Verlauf des Spektrums von einem Signal dargestellt werden. Ein Spektrogramm besteht also aus vielen, sich allenfalls

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen

Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen Telekommunikation und Informatik, Mathematik 2, T. Borer Übung 6-2003/04 Übung 6 Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen Lernziele - die Faltungseigenschaft der

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Digitale Signalverarbeitung Mario Hlawitschka Wissenschaftliche Visualisierung, Universität Leipzig [email protected], http://www.informatik.uni-leipzig.de/ hlawit/ Mario Hlawitschka Digitale

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Medien- Technik. Digital Audio

Medien- Technik. Digital Audio Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung

Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung Grundlagen der Nachrichtentechnik I. Kontinuierliche Signale u. Systeme. Fouriertransformation. Tiefpass-Darstellung v. Bandpass-Signalen 3. Eigenschaften v. Übertragungskanälen III. Diskretisierung v.

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital

Mehr

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST

HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

2. Übung zur Vorlesung Steuer- und Regelungstechnik

2. Übung zur Vorlesung Steuer- und Regelungstechnik 2. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Fourierreihen und Spektrenanalyse Protokoll 11

Fourierreihen und Spektrenanalyse Protokoll 11 Fourierreihen und Spektrenanalyse Protokoll 11 Messtechnik II für KEB, TFH Berlin, Gruppe D 17. Januar 27 Torben Zech 738845 Martin Henning 73615 Abdurrahman Namdar 73968 Inhaltsverzeichnis 1 Grundgedanke

Mehr

3. Beschreibung dynamischer Systeme im Frequenzbereich

3. Beschreibung dynamischer Systeme im Frequenzbereich 3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten 6. Rechenbeispiele Die nachfolgenden einfachen Demonstrationsbeispiele aus dem Gebiet der Analog-Rechentechnik zeigen die Funktion dieses kleinen Analogrechners, der nur mit einer minimalen Anzahl von

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Adaptive LMS-Filter DSV, 2005/10, Rur, adaptive LMS-Filter, 1

Adaptive LMS-Filter DSV, 2005/10, Rur, adaptive LMS-Filter, 1 Adaptive LMSFilter DSV, 2005/10, Rur, adaptive LMSFilter, 1 Ein Filter ist ein zeitvariantes System. kann Filterparameter an unbekannte Anforderungen anpassen mit rekursivem AdaptationsAlgorithmus (selfdesigning)

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Digitale Signalverarbeitung I

Digitale Signalverarbeitung I University of Applied Science Digitale Signalverarbeitung I Marcus Purat Technische Fachhochschule Berlin Sommersemester 2008 Signalbegriff Ein Signal ist eine physikalische Größe, die von einem oder von

Mehr

D.2 Versuchsreihe 2: Spice

D.2 Versuchsreihe 2: Spice .2: Versuchsreihe 2: Spice.2 Versuchsreihe 2: Spice Name: Gruppe: Theorie: Versuch: (vom Tutor abzuzeichnen) (vom Tutor abzuzeichnen) In dieser Versuchsreihe soll das Frequenzverhalten von RC-Gliedern

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr