Modul SiSy: Einleitung
|
|
|
- Victor Solberg
- vor 6 Jahren
- Abrufe
Transkript
1 Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen visuelle «Signale» Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal, Audio-/Videosignal, Signale können Störungen / Rauschen darstellen Rauschsignale sind eine der grossen Herausforderungen im! Hilfssignale sind weder Info- noch Rauschsignale z.b. Sinus- oder Rechteck-Signal kann mit Funktionsgenerator generiert werden
2 Signale Beispiel Sprachsignal demo1.m SiSy, Einleitung, 2 Signale sind mathematisch als Funktionen beschreibbar in diesem Kurs interessieren hauptsächlich Zeitsignale z.b. der zeitliche Verlauf einer Spannungsamplitude u(t) Beispiel: Sprachsignal Sprecher/Quelle: Dr. S. Wyrsch, ZHAW Anwendungen mit Sprachsignalen: Speech2Text, Sprachdatenkompression für 2G/4G,
3 Signale Beispiel EKG-Signalverlauf SiSy, Einleitung, 3 Elektro-KardioGramm zeigt Verlauf der Herzerregung t/s Signalanteile / Merkmale (im gesunden EKG) [1] Beispiel: Aus dem (mittleren) Abstand der R-Zacken kann die Herzfrequenz bestimmt werden.
4 Signale Beispiel Gyrosignal demo2.m, video.mp4 SiSy, Einleitung, 4 Beispiel: Gyro-Signal Inertial Motion Units sind weit verbreitet (in Smartphones, Drohnen, ) und bestehen aus Accelerometer und Gyroskop ω z (t) φ(t) berechneter Drehwinkel φ(t) in t (t) ω (τ) dτ 0 z Drehwinkel φ(t) in Funktion der Zeit t? Gyro-Signal ω z (t) in /s
5 Signale Beispiel DTMF-Signal SiSy, Einleitung, 5 Tastenfeld DTMF steht für dual-tone multi-frequency bzw. touch tone Wenn eine 9 gedrückt wird, wird ca. 50 ms lang die Summe von 2 Sinus-Signalen mit den Frequenzen 852 Hz und 1477 Hz gesendet, gefolgt von einer ca. 50 ms langen Pause.
6 Signale Beispiel DTMF-Signal demo3.m SiSy, Einleitung, Addition zweier sin-signale mit 852 Hz und 1477 Hz
7 Signale Beispiel DTMF-Signal SiSy, Einleitung, 7 DTMF-Signale werden typisch im Frequenzbereich dekodiert Fourier Spektralwert Filter f / Hz Zeit- Bereich Frequenz- Bereich Oft interessiert frequenzmässige Zusammensetzung eines Signals da gibt es mit der Fourieranalyse ein mächtiges Werkzeug Analogie: Lichtbrechung in Spektralfarben
8 Systeme SiSy, Einleitung, 8 Systeme verarbeiten Signale Ein System transformiert ein Eingangs- in ein Ausgangssignal. Die Systemfunktion f(.) beschreibt das System-Verhalten. x(t) System y(t) y(t) = f(x(t)) R verschiedene Realisierungen x(t) C y(t) analoges System (RC-Netzwerk) digitale Systeme (implementiert auf uc / DSP / FPGA)
9 Digitale Systeme / Filter SiSy, Einleitung, 9 analoges Sprachsignal ADC DSP Algorithmus DAC analoges Sprachsignal T s x[n] x(t) t nt s T s : Abtast- bzw. Sampling-Intervall Algorithmus y[n] = (x[n]+x[n-1]) / 2 (gleitende Mittelung bzw. Tiefpass-Verhalten, schnelle Änderungen werden unterdrückt) Zeit n / T s
10 Systeme SiSy, Einleitung, 10 Viele verschiedenartige Systeme haben gleiche math. Formulierung Feder-Masse-System (ohne Reibung) Elektrischer Schwingkreis (ungedämpft) K M y(t) x(t) = F(t) x(t) = u 1 (t) L C y(t) = u 2 (t) M y t K y t x(t) LC y t y t x t systemtheoretisch äquivalent (gleichartige Differentialgleichung) Die Systemtheorie beschreibt das System-Verhalten abstrakt bzw. losgelöst von der konkreten Realisierung. sehr nützlich für Analyse und Synthese für Umsetzung braucht es aber Spezialwissen (z.b. in Elektronik oder Mechanik)
11 Systeme Beispiel Feder-Masse-System SiSy, Einleitung, 11 K [N/m = kg/s 2 ] M [kg] y(t) x(t) = F(t) keine Reibung! Frage: Auslenkung y(t), wenn Differentialgleichung (DGL) F(t) - K y(t) = M y(t) M y t K y t x(t) kein Input bzw. keine externe Kraft F(t) anliegt, d.h. x(t) = F(t) = 0 aber die Auslenkung am Anfang y(0) = A 0 beträgt Ansatz: y(t) = A 0 cos(ω 0 t) wobei Kreisfrequenz ω 0 = 2π f 0 Einsetzen von y(t) in DGL: - M A 0 ω 02 cos(ω 0 t) + K A 0 cos(ω 0 t) = 0 Lösung: y(t) = A 0 cos(ω 0 t), für t 0, wobei ω 0 = 2π f 0 = (K/M) 1 T0 2π f 0 M/K Je grösser die Masse M, desto länger dauert die Periode T 0.
12 Ziel des Moduls SiSy, Einleitung, 12 math. Werkzeuge für Signal- Analyse/Design System- Analyse/Design Nachrichtentechnik Wireless Comm. (ICT) Regelungstechnik (Control, Drives) Messtechnik (Sensors) Audiotechnik Medizintechnik
13 Referenzen SiSy, Einleitung, 13 Literatur Es gibt unzählige Bücher, mit verschiedenen Ausprägungen, z.b. [1] I. Rennert, B. Bundschuh, Signale und Systeme Einführung in die Systemtheorie, Carl Hanser Verlag, Bemerkung: behandelt zuerst Signale, dann Systeme [2] J. Hoffmann, F. Quint, "Einführung in Signale und Systeme", de Gruyter, Bemerkung: behandelt zuerst Systeme, dann Signale, mit Matlab/Simulink-Beispielen Weiterführende Module Grundlagen der Regelungstechnik (GRT) Digitale Signalverarbeitung (DSV1+2) und Bildverarbeitung (BV)
Modul SiSy: Einleitung
Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,
Kursübersicht "Signale und Systeme"
Kursübersicht "Signale und Systeme" SiSy, Einleitung, 1 SiSy HS2014: Zeitplan ET13a Signale analog Systeme analog Signale digital Kursübersicht "Signale und Systeme" SiSy, Einleitung, 2 Unterlagen siehe
Theorie digitaler Systeme
Theorie digitaler Systeme Vorlesung 1: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Vergleich zeitkontinuierlicher und zeitdiskreter Systeme Systemtheorie hat zeitkontinuierliche Systeme
Übung 3: Fouriertransformation
ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich
Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]
Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) [email protected]
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik
Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche
Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2
Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt
Digitale Signalverarbeitung für Einsteiger
Digitale Signalverarbeitung für Einsteiger Dipl.-Ing. Erich H. Franke, DK6II [email protected] 54. Weinheimer UKW-Tagung 2009 Errata: Nobody is perfect Im Skriptum haben sich kleine aber ärgerliche
Übungen zu Signal- und Systemtheorie
Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00
1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten
Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:
Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten
Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Übungsblatt 2: Modellierung und Linearisierung (Abgabe am von 8:00-8:15 im Vorlesungs-Hörsaal) Prof. Dr. Moritz Diehl
Vorlesung Systemtheorie und Regelungstechnik (SR Albert-Ludwigs-Universität Freiburg Sommersemester 2014 Übungsblatt 2: Modellierung und Linearisierung (Abgabe am 21.5.2014 von 8:00-8:15 im Vorlesungs-Hörsaal
Elektrischer Schwingkreis
Fakultät für Technik Bereich Informationstechnik Elektrischer Schwingkreis Name 1: Name 2: Name 3: Gruppe: Datum: 2 1 Allgemeines Im Versuch Mechanischer Schwingkreis haben Sie einen mechanischen Schwingkreis
Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.
Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.
Technische Beschreibung der akustischen Signalkette
Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information
Fouriertransformation, z-transformation, Differenzenglei- chung
Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:
Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22
Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?
Kapitel 1: Einleitung
ZHAW, DSV1, Seite 1-1 Inhaltsverzeichnis Kapitel 1: Einleitung 1.1. GESCHICHTLICHER ÜBERBLICK...1 1.2. PRINZIPIELLER VORGANG DER DIGITALEN SIGNALVERARBEITUNG...2 1.3. EINSATZGEBIETE...4 1.4. ENTWICKLUNGSPHASEN
Digitale Signalverarbeitungssysteme II: Praktikum 2
Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:
Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET
4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter
4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
Zusammenfassung der 1. Vorlesung
Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox
Runde 9, Beispiel 57
Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, [email protected], TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische
Systemtheorie für Informatiker
Systemtheorie für Informatiker Dr. Ch. Grimm Professur Technische Informatik, Univ. Frankfurt/Main Vorlesung Systemtheorie Vorlesung: Übung: Veranstalter: Dr. Christoph Grimm Professur Technische Informatik
MusterModulprüfung. Anteil Transformationen
MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
Übung 4: Spektrogramm
ZHAW, DSV, FS2,. Einleitung Übung 4: Spektrogramm Mit einem Spektrogramm kann der zeitliche Verlauf des Spektrums von einem Signal dargestellt werden. Ein Spektrogramm besteht also aus vielen, sich allenfalls
Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner
Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals
Klausur zur Vorlesung Digitale Signalverarbeitung
INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00
Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen
Telekommunikation und Informatik, Mathematik 2, T. Borer Übung 6-2003/04 Übung 6 Fourier-Transformation Faltungseigenschaft, Sinusförmiger Input an LTI-Systemen Lernziele - die Faltungseigenschaft der
Kontinuierliche Fourier-Transformation. Laplace-Transformation
Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
Digitale Signalverarbeitung
Digitale Signalverarbeitung Mario Hlawitschka Wissenschaftliche Visualisierung, Universität Leipzig [email protected], http://www.informatik.uni-leipzig.de/ hlawit/ Mario Hlawitschka Digitale
Systemtheorie Teil B
d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...
MR Mechanische Resonanz
MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................
Medien- Technik. Digital Audio
Digital Audio Medientyp digital audio representation Abtastfrequenz /sampling frequency Quantisierung (Bittiefe) Anzahl der Kanäle/Spuren Interleaving bei Mehrkanal Positiv/negativ Codierung operations
Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004
4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge
Grundlagen der Nachrichtentechnik. 5. Digitale Modulationsverfahren komplett auf Folien teilweise mit Folienunterstützung
Grundlagen der Nachrichtentechnik I. Kontinuierliche Signale u. Systeme. Fouriertransformation. Tiefpass-Darstellung v. Bandpass-Signalen 3. Eigenschaften v. Übertragungskanälen III. Diskretisierung v.
Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie
Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie
ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision
ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital
HTW. Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST
HTW Probe-Klausur (und klausurvorbereitende Übungsaufgaben) Angewandte Mathematik MST Dauer : 100 Minuten Prof. Dr. B. Grabowski Name: Matr.Nr.: Erreichte Punktzahl: Hinweise zur Bearbeitung der Aufgaben:
Elektromagnetische Schwingkreise
Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht
Signale und Systeme I
FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard
2. Übung zur Vorlesung Steuer- und Regelungstechnik
2. Übung zur Vorlesung Steuer- und Regelungstechnik Aufstellen von DGL s, lineare und nichtlineare Systeme Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik
3. Leistungsdichtespektren
Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt
Experimentalphysik E1
Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung
Einführung in die Signalverarbeitung
Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung
Digital Signal Processing
- for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese
Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III
Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung
8. Periodische Bewegungen
8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt
5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main
5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind
Zusammenfassung der 1. Vorlesung
Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem
4.5 Gekoppelte LC-Schwingkreise
4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird
Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB
Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz
Fourierreihen und Spektrenanalyse Protokoll 11
Fourierreihen und Spektrenanalyse Protokoll 11 Messtechnik II für KEB, TFH Berlin, Gruppe D 17. Januar 27 Torben Zech 738845 Martin Henning 73615 Abdurrahman Namdar 73968 Inhaltsverzeichnis 1 Grundgedanke
3. Beschreibung dynamischer Systeme im Frequenzbereich
3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik
Mathematik und Musik: Fourieranalyse
Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2
Gekoppelte Schwingung
Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009
6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten
6. Rechenbeispiele Die nachfolgenden einfachen Demonstrationsbeispiele aus dem Gebiet der Analog-Rechentechnik zeigen die Funktion dieses kleinen Analogrechners, der nur mit einer minimalen Anzahl von
Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!
Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:
Schnelle Fouriertransformation (FFT)
Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:
/5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=
Adaptive LMS-Filter DSV, 2005/10, Rur, adaptive LMS-Filter, 1
Adaptive LMSFilter DSV, 2005/10, Rur, adaptive LMSFilter, 1 Ein Filter ist ein zeitvariantes System. kann Filterparameter an unbekannte Anforderungen anpassen mit rekursivem AdaptationsAlgorithmus (selfdesigning)
DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012
DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge
Bildverarbeitung Herbstsemester 2012. Fourier-Transformation
Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
18 Kontinuierliche Fourier-Transformation. Laplace-Transformation
18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:
Digitale Signalverarbeitung Bernd Edler
Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer
Digitale Signalverarbeitung I
University of Applied Science Digitale Signalverarbeitung I Marcus Purat Technische Fachhochschule Berlin Sommersemester 2008 Signalbegriff Ein Signal ist eine physikalische Größe, die von einem oder von
D.2 Versuchsreihe 2: Spice
.2: Versuchsreihe 2: Spice.2 Versuchsreihe 2: Spice Name: Gruppe: Theorie: Versuch: (vom Tutor abzuzeichnen) (vom Tutor abzuzeichnen) In dieser Versuchsreihe soll das Frequenzverhalten von RC-Gliedern
Mathematische Grundlagen für die Vorlesung. Differentialgeometrie
Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie
