Gyroskop. Kreisel mit 3 Achsen

Größe: px
Ab Seite anzeigen:

Download "Gyroskop. Kreisel mit 3 Achsen"

Transkript

1 Gosko Kesel mt 3 Achsen Zusammenfassung Mt dem Gosko (Kesel mt 3 Achsen) kann man Keselhänomene we Rchtungsstabltät, Päesson und Nutaton untesuchen. Im volegenden Vesuch sollen veschedene lneae Zusammenhänge wschen den Keselegenschaften emttelt und m weteen das Täghetsmoment auf we unteschedlche Aten beechnet weden. Dau weden Päessonsfequen, Rotatonsfequen, Kmoment und Nutatonsfequen mt wengen Messmtteln bestmmt und de ehaltenen Resultate auf he Genaugket untesucht. Theoetsche Gundlagen Jede stae Köe, de sch um enen festen Punkt deht, stellt enen Kesel da. Bestt e beüglch ene duch senen Schweunkt gehenden Achse ene Rotatonssmmete, scht man von enem smmetschen Kesel. De Smmeteachse st Hauttäghetsachse und wd häufg Fguenachse genannt. Ist de Schweunkt enes solchen Kesels glechetg de Dehunkt de Rotaton, so legt en käftefee Kesel vo, denn sene egene Schwee beenflusst de Keselbewegung ncht (das Schweemoment st glech Null): Abbldung 1 En Kesel, auf den en Dehmoment,.B. en Schweemoment ode en magnetsches Moment, wkt, hesst schwee Kesel. Das m Vesuch vewendete Gosko st ene besondee Fom des smmetschen Kesels und kann sowohl als käftefee, als auch als schwee Kesel beteben weden. Dehungen um Achsen snd Sondefälle de Keselbewegung. Man fndet se.b. be navgatoschen Keselgeäten (Keselkomass), be oteenden Maschnentelen (Räde, Schwungscheben, Roto von Moto, Geneato, Tubne usw.), be de Ede und andeen Hmmelsköen abe auch be atomaen Dehbewegungen. 3/23/2007 1

2 Päesson des smmetschen Kesels En smmetsche Kesel möge sch unächst käftefe um sene m Raum uhende Fguenachse dehen. Dese st glechetg Rchtung des Dehmulsvektos L und de Wnkelgeschwndgket ω sowe de desen Vektoen ugeodneten Achsen, de Dehmulsachse und de momentanen Dehachse. Wegen dem Dehmulssat behält de Kesel be venachlässgbaen Rebungskäften den Betag und de Rchtung des Dehmulses unveändet be. Wkt abe wähend de Zet dt en äussees Dehmoment M auf den Kesel, so ändet sch de Dehmuls gemäss folgende Glechung: dl = M dt (1) De Vekto dl hat also stets deselbe Rchtung we de Dehmomentvekto M Abbldung 2 Mt nachfolgende Übelegung folget man Glechung (1): Wd de Kesel als Sstem von Massenelementen aufgefasst, so tägt jedes enelne Element mt senem Bahnmuls um Gesamtdehmuls L be. Defntonsgemäss glt folgende Beehung: L = ( ) (2) Dabe st de Radusvekto, de von enem Beugsunkt auf de Achse um -ten Massenelement geht. Duch Dffeentaton von Glechung (2) kann ehält man folgenden Zusammenhang: dl d d = + (3) dt dt dt 3/23/2007 2

3 d Wel glt, wd de este Ausduck de echten Sete veschwnden. Das dt Vektoodukt des weten Tems stellt das duch ene Kaft F veusachte Dehmoment M d da, denn es st = F und F = M, so dass übe dt dl = M = M (4) dt unmttelba Glechung (1) gefolget weden kann. Be de Dehmulsändeung gbt es we nteessante Sealfälle: a) De Dehmomentvekto M veläuft n Rchtung L Dann legt auch dl aallel u L. De Vektoaddton L + dl wkt sch nu auf den Betag des Dehmulses aus, sene Rchtung blebt damt ehalten. Je nach dem Rchtungssnn des Dehmomentes wd de Kesel angeteben ode abgebemst. b) Das Dehmoment M st senkecht u L Dann steht dl senkecht u L (sehe Abbldung 2). In desem Falle wecht de Dehmulsachse n Rchtung des Dehmomentes M, also senkecht u wkenden Kaft, aus. Solange en Dehmoment wkt, läuft de Dehmulsvekto auf de Mantelfläche enes Keskegels glechfömg um, de Kesel äedet. De Öffnungswnkel 2 α des Keskegels wd duch de Anfangsbedngungen gegeben. Fü de Wnkelgeschwndgket ω de Päesson folgt aus Abbldung 2: dϕ 1 dl M ω = = = (5) dt L snα dt L snα Daaus folgt: M = ω L snα (6) Des st de Betag des Vektooduktes M = ω L (7) das de duch en Dehmoment M veusachte Päesson enes Kesels beschebt. De allgemene Fall, dass de Vektoen M und L enen belebgen Wnkel enschlessen, kann übe ene Komonentenelegung auf de uvo dskuteten Sealfälle uückgefüht weden. 3/23/2007 3

4 Nutaton des smmetschen Kesels Abbldung 3 Wenn sch be enem oteenden smmetschen Kesel de Fguen-, de Dehmulsund de momentane Dehachse ncht decken (Abbldung 3), teten komlete Vehältnsse auf: De momentane Dehachse und de Fguenachse bescheben je enen Keskegel um de Dehmulsachse, de bem käftefeen Kesel he Rchtung m Raum bebehält (Dehmulssat). De Kegel ollen aufenande so ab, daß he Achsen stets ene Ebene blden und be enem velängeten Kesel uenande de n Abbldung 3 geegte Lage haben. De Bewegung de Fguenachse um de Dehmulsachse st gut u beobachten und wd Nutaton genannt, de ugehöge Keskegel st de Nutatonskegel. De momentane Dehachse wandet m Keselköe. Füht man en köefestes katessches Koodnatensstem en, dessen Achsen,, mt den Hauttäghetsachsen des Kesels usammenfallen und be dem n Rchtung de Fguenachse west, läßt sch de Wnkelgeschwndgket um de momentane Dehachse duch he Komonenten m köefesten Beugssstem ausdücken: ω = ω + ω j + ω k (8), j, k snd de Enhetsvektoen m köefesten Beugssstem. Entsechend glt fü den Dehmuls: L = ω I + ω I j + ω I k (9) I, I, I snd de Hauttäghetsmomente des Keselköes. Fü den smmetschen Kesel glt: I = I = I Damt kann man also folgen: L = I ( ω + ω j) + ω I k (10) Mt Glechung (8) ehält man schlesslch: 3/23/2007 4

5 1 I ω = L + 1 ω k (11) I I De este Summand auf de echten Sete st de Wnkelgeschwndgket ω N de Fguenachse um de Dehmulsachse, und somt de Wnkelgeschwndgket de Nutaton. Se hat de Rchtung des Dehmulses. Wd de Peodendaue mt TN beechnet, so glt fü den Betag de Wnkelgeschwndgket und damt fü de Kesfequen de Nutatonsbewegung: 2 π 1 ω N = = L (12) T N I Wel sch de Bewegung de Fguenachse lecht beobachten lässt, kann de Nutatonsfequen elatv enfach eementell bestmmt weden. Eement Mateal Zu Duchfühung des Eements wd folgendes Mateal benötgt: Gosko Schnu Gewchtstelle fü Schltgewchte Gabellchtschanke mt Zähle Stouh Schltgewchte (1 50g und 4 je 10g) Zusätlches Mateal: Zusatschebe mt daugehögem Gegengewcht 3/23/2007 5

6 Vesuchsduchfühung Bevo de Vesuch gestatet weden kann, muss en schmale Paestefen (um Besel en selbstklebendes Etkett) am Rand de Schebe des Goskos angebacht weden. Achtung: Es st unbedngt weches Mateal u vewenden, damt en Gff n den oteenden Kesel ncht u Veletungen fühen kann! De Gabellchtschanke muss nun so ostonet weden, dass be jede Umdehung de Paestefen de Lchtschanke untebcht. Je nach Eement muss mt Hlfe des Betebatenschaltes, welche sch echts auf de Fontsete des Moduls befndet, de gewünschte Messat engestellt weden. Dabe snd folgende Zählaten möglch: - Imulsählung - Zetmessung wähend de Abschattung - Zetmessung wschen we Abschattungen - Zetmessung weschen de esten und de dtten Abschattung Wude de benötgte Betebsat gewählt, so muss anschlessend de SET-Taste, welche sch lnks auf de Fontsete des Moduls befndet, betätgt weden. Est dann st ene vohege Betebsat beendet. Das Dücken de SET-Taste beetet mme ene Messung vo und stellt de Ansechsemfndlchket automatsch otmal en. Aufgaben 1) Dekte Messung des Täghetsmoments de Keselschebe aus de Wnkelbeschleungung be bekanntem Dehmoment 2) Untesuchung des Zusammenhangs wschen de Daue enes Päessonsumlaufs und de Rotatonsfequen de Kesschebe 3) Untesuchung des Zusammenhangs wschen de Päessonsfequen und dem auf de Keselachse ausgeübten Kmoment be jewels glechen Rotatonsfequenen 4) Bestmmung des Täghetsmoments aus de Päessonsdaue, de Rotatonsfequen und dem auf de Keselachse ausgeübten Kmoment 5) Untesuchung des Zusammenhangs wschen de Rotatonsfequen de Kesschebe und de Nutatonsfequen Anletung Wll man de Zusammenhänge wschen Päesson und Nutaton quanttatv untesuchen, so weden folgende Hlfsmttel benötgt: - De Päessons- und Nutatonsfequen snd so nedg, dass man se mt ene Stouh emtteln kann. - De Umdehungset de Kesschebe wd mt de Gabellchtschanke gemessen. 3/23/2007 6

7 1) De Wnkelbeschleungung kann gefunden weden, ndem man uest de Keselachse mt de Doelmuffe fet und dann an de an de Seltommel aufgewckelte Schnu en Gewchtsstück hängt. Anschlessend wd de Daue Δt de Beschleungung von de Fegabe de Schebe bs um Aufseten des Gewchtsstücks auf dem Fussboden gestot und sofot de Wnkelgeschwndgket ωe de Schebe emttelt. Paktschewese wd dau de Daue fü enen Schebenumlauf gemessen. Dese Messung gelngt, ndem man de Reset-Taste an de Gabellchtschanke dückt und dese dann sowet an de Keselschebe hean füht, bs de aufgeklebte Blende den Lchtweg untebcht. De Betebsat de Lchtschanke muss so engestellt sen, dass de este Abdunkelung den Zähle statet und de wete Abdunkelung den Zähle stot. Schlesslch ehält man de Wnkelbeschleungung we folgt: d ω E = ω dt Δt Das bedeutet also fü das Täghetsmoment I de Keselschebe: D Δt I = ω E Dabe st D = m g das bekannte Dehmoment ( m : Masse des beschleungten Gewchtsstückes, : Radus de Seltommel (= 22.5mm) 2) Um de Rotatonsfequen f des Goskos als Funkton de Daue t enes Päessonsumlaufes u untesuchen, muss das Gegengewcht auf de Keselachse so ostonet weden, dass es das Dehmoment, das de Keschebe auf de hoontale Achse ausübt, genau komenset (entscht käftefeem Kesel). Mt de bem Vesuch belegenden Schnu kann de Kesel aufgeogen weden, ndem de Schnu um de Seltommel gewckelt wd. Duch asches Wegehen de Schnu wd ene bestmmte Rotatonsfequen de Schebe eecht, welche sofot mt de Lchtschanke gemessen 3/23/2007 7

8 weden muss. Möglchst asch wd danach ene Masse von 50g bw. 100g n de Nut an dem de Schebe gegenübelegenden Ende de Keselachse engehängt weden. Mt de Stouh wd de Zet gemessen, de de Kesel fü enen halben Päessonsumlauf benötgt. Schlesslch muss das Gewcht wede entfent und de Rotatonsfequen eneut bestmmt weden. De Mttelwet de beden gemessenen Rotatonsfequenen wd n ene Gafk übe de gemessenen Päessonsdaue engetagen. 3) Duch wedeholtes Duchfühen von Aufgabe 2) mt jewels veschedenen Massen kann en Zusammenhang wschen dem Kmoment Dk und de Päessonsfequen f gefunden weden. Dabe weden de gemessenen Wete u den veschedenen Gewchten n enem Dagamm veanschaulcht und mtenande veglchen. 4) Das Täghetsmoment I des Goskos kann mt folgende Methode beechnet weden: Dk I = 2 4 π a Mt D k = m g R und a = Stegung de Geade aus Aufgabe 2) bw. 3), wobe R : Abstand des Angffsunktes de Masse m vom Lageunkt de Keselachse ( R 27cm ). 5) Soll en Zusammenhang wschen de Nutatonsfequen f n und de Rotatonsfequen f de Kesschebe analset weden, so muss ene Nutaton duch enen lechten setlchen Schlag auf de Keselachse eeugt weden. Es wd jewels de Daue ene geegneten Anahl von Nutatonsumläufen gestot und, we beets n den vohegegangenen Aufgaben, uvo und danach de Umdehungset de Kesschebe mt de Lchtschanke bestmmt. Assstent: D. Enco Gnecco, Raum 3.01a, enco.gnecco@unbas.ch 3/23/2007 8

r mit der sogenannten Einheitsmatrix:

r mit der sogenannten Einheitsmatrix: D. Hempel Mathematsche Gundlagen Tensoen -7- Maten / Tensoen - Tel als Tenso Bem Vesuch den Dehmpuls unte Zuhlfenahme des Täghetstensos daustellen egab sch fü das Täghetsmoment de folgende Zusammenhang:

Mehr

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

Einführung in die Physik I. Mechanik der starren Körper

Einführung in die Physik I. Mechanik der starren Körper Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment 7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Statisches Gleichgewicht des starren Körpers (Statik)

Statisches Gleichgewicht des starren Körpers (Statik) Us Wyde CH- 4057 Basel Us.Wyde@edubs.ch Statsches Glechgewcht des staen Köpes (Statk) Glechgewchtsbedngungen En Köpe befndet sch n Ruhe (ode bewegt sch mt konstante Geschwndgket), wenn de Summe de Käfte

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls 5 Rotaton des staen Köpes 5 Dehungen und Dehmomente 5 Rotatonsenege und Dehmpuls um was geht es? Beschebung von Bewegungen (pmä Dehungen) des staen Köpes Analoge zu Kap. und 3: Kaft Dehmoment Impuls Dehmpuls

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Maxwellsches Rad D I. Drehschwingung um eine feste Achse. g R 1. d I T I

Maxwellsches Rad D I. Drehschwingung um eine feste Achse. g R 1. d I T I Mawellsches a Kesschebe M M ünne chse m M Mg a M Mg M g nmekung: em he abgebleten un n e Volesung geegten Mawellschen a hanelt es sch - anes als n e obgen echnung - ncht um ene homogene Kesschebe ehschwngung

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder Physk II T Dotmund SS8 Götz hg Shaukat Khan Kaptel Maxwellsche Glechungen Bshe: Elektostatk m Vakuum (kene Felde n Matee), kene Magnetfelde dffeenzelle Fom ntegale Fom ( ) Gauß E E da dv V E Stokes E d

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

5. Dynamik starrer ausgedehnter Körper

5. Dynamik starrer ausgedehnter Körper nnhmen: 5. Dnmk ste usgedehnte Köpe bstände m Köpe fest: ncht defomeb, d.h. fü lle ssepunkte, j glt: j ( t) ( t) const j olumen: sse: m m echnsche Dchte: 3 d mt: d d dm kg/ m sse: Homogene sse: dm d dm

Mehr

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen

Bivariable/bivariate Verteilungen. Tabellen Grafiken Maßzahlen Bvaable/bvaate Vetelungen Tabellen Gafken Maßzahlen 153 Ulste: Wetepaae x/y ode x 1 /x x = Flügellänge [mm], y = Gewcht [g] 3,8; 0,8 3,6; 0,7 4,3; 1,3 3,5; 0,7 4,1; 1,1 4,4; 1,3 4,5; 1,6 3,6; 0,75 3,8;

Mehr

Capital Asset Pricing Model (CAPM)

Capital Asset Pricing Model (CAPM) Captal Asset Pcng odel (CAP) Aus de Denton des aktpotolos, als Tangentalpunkt von (0, ) au den zulässgen Beech, lässt sch olgendes Vehältns heleten (sehe Luenbege S 178) = + σ 2 Des st de gundlegende CAP-Bedngung,

Mehr

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ Pof. D. Mac Gütle SS 05 Klausu zu Vetefung Fnanzwtschaft Telbeech Empsche Fnanzwtschaft Alle folgenden zwe Aufgaben snd zu beabeten. Behauptungen snd zu begünden, Rechnungen snd zu eläuten! Runden Se btte

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Physik A VL12 ( )

Physik A VL12 ( ) Physk A VL1 (06.11.01) Dynak de otatonsbewegung II Wedeholung/Zusaenfassung: Beschebung von Dehbewegungen ollbewegungen Enege de otatons- und ollbewegung Dehpuls Dehpulsehaltung Wedeholung/Zusaenfassung:

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

4. Mechanik des starren Körpers 4.1. Model starrer Körper

4. Mechanik des starren Körpers 4.1. Model starrer Körper 4. echank des staen Köpes 4.. odel stae Köpe z k j k j odell: - aufgebaut aus asseneleenten t Voluen V und t festen Abständen unteenande const - asseneleente können we Punktassen behandelt weden j y -

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ

Magnetfeldmessung an Zylinderspulen (MZ) 1. Einleitung. 2. Aufgabenstellung. Physikalisches Praktikum Versuch: MZ Technsche Unvestät Desden Fchchtung Physk A. Schwb C. Schöte 09/006 Physklsches Pktkum Vesuch: MZ Mgnetfeldmessung n Zylndespulen MZ 1. Enletung Nch dem Duchflutungsgeset st jede stomduchflossene ete von

Mehr

4. Energie, Arbeit, Leistung

4. Energie, Arbeit, Leistung 4 43 4. Enege, Abet, Letung Zentale Gößen de Phyk: Bepel: Bechleungung F Annahe: kontante Kaft F Bechleungung: a Enege E, Enhet Joule ( [J] [] [kg / ] zuückgelegte eg: at E gbt zwe gundätzlche Foen on

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

Lückentext (Mathematik I) zum Sommersemester 2013

Lückentext (Mathematik I) zum Sommersemester 2013 osten Schee.. Lückentet Mthemtk I um Sommesemeste Nme: Mtkel-N.: Mt desem Lückentet können Se s u mml möglche Zustpunkte elngen. Fü jedes chtg engetgene Wot egt sch somt en Bonuspunkt. Um mehee Mengen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

4.12 Zentrifugalkraft

4.12 Zentrifugalkraft 4. Zentfugalkaft Beobachtung aus uhendem System: Kesbewegung de Kugel Es wkt ee Zentpetalkaft Im oteenden Bezugsystem st Kugel Ruhe! Im oteenden Bezugsystem wkt ee Schekaft, de Zentpetalkaft genau kompenset

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt:

Physik und Umwelt I Lösungen der Übungen Nr. 4. Die Masse des gesamten Zuges ist: m = kg. Seine Geschwindigkeit v beträgt: folgt: Aufgabe 4. Phyk und Uwelt I Löungen de Übungen. 4 t de etche nege de Zuge zu beechnen, de be Anfahen wede aufgebacht weden u. De Mae de geaten Zuge t: 5 kg. ene echwndgket betägt: 44 k/h 4 /. ü de etche

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik

Das Noether-Theorem. Ausarbeitung zum Vortrag von. Michael Hagemann. am im Rahmen des Proseminars. Gruppentheorie in der Quantenmechanik Das Nethe-Theem Ausabetung zum Vtag vn Mchael agemann am 202202 m Rahmen des Psemnas Guppenthee n de Quantenmechan vn Pf D Jan Lus und D Rbet Rchte an de nvestät ambug m Wntesemeste 202/203 Inhaltsvezechns

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission

Trade Barrier Reef. Hindernisse auf Weltmärkten. LISTENREGELN ZUM NPU? Die Pläne der EU-Kommission Kompaktwssen fü den Außenhandel Ausgabe 4/2013 LISTENREGELN ZUM NPU? De Pläne de EU-Kommsson 6 DOS & DON TS Ogansaton ene Zoll- und Außenwtschaftsabtelung ES KÖNNTE BESSER SEIN! Felx Neugat (DIHK) zu Lage

Mehr

Protokoll zu Versuch C1-Mischungsvolumina

Protokoll zu Versuch C1-Mischungsvolumina Protokoll zu Prnz: De sezfschen Mschungsvolumna ener Lösung werden durch auswegen fester Flüssgketsvolumna bekannter Lösungszusammensetzungen mt Hlfe von Pyknometern bestmmt. Theoretsche Grundlagen: Um

Mehr

Kapitel 5 Dynamik ausgedehnter, dht starrer Körper

Kapitel 5 Dynamik ausgedehnter, dht starrer Körper Kptel 5 Dnmk usgedehnte, dht ste Köpe Volumen, Msse, Dchte des usgedehnten sten Köpes bshe betchtet : Mssenpunkte, ohne Ausdehnung jett betchtet : usgedehnte Köpe, be (noch) ncht defomeb pnpelles Vogehen

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

Physikalische Grundlagen der Biomechanik

Physikalische Grundlagen der Biomechanik Physkalsche Gundlagen de Bomechank Dplomabet zu Elangung des Magstegades an de Natuwssenschaftlchen Fakultät de Leopold-Fanzens-Unvestät Innsbuck engeecht be Hen A. Unv.-Pof. D. Chstoph LEUBNER Insttut

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg Physk I TU Dotund WS7/8 Gudun Hlle Shaukat Khan Kaptel Anwendung de Raketenglechung: Satun-V-Rakete v = 4 /s t = s po Stufe v( t) v v ln g t ( t) Este Stufe: Statasse 3 6 ; Endasse 6 Zwete Stufe: Statasse

Mehr

02, kg (Vollzylinder) 55, m liegen bleibt. Der Neigungswinkel der

02, kg (Vollzylinder) 55, m liegen bleibt. Der Neigungswinkel der Hochschule Hnnove vogezogene Wedeholungsklusu m SS.0.0 kultät II - Abtelung Mschnenbu et: 90 mn Dozenten: Güneme, Hussmnn, Pndus, Schewe Hlfsmttel: Elubte omelsmmlungen und Tschenechne Hnwes: Ds Beteben

Mehr

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen Technsche Unverstät Chemntz 0. Oktober 009 Fakultät für Mathematk Höhere Mathematk I.1 Aufgabenkomplex : Umrechung von Enheten, Unglechungen, Komplexe Zahlen Letzter Abgabetermn: 19. November 009 n Übung

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2012

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2012 üfung Gundnzen de Vescheungs- und Fnanzmathematk ufgae : ( Mnuten Gegeen se en eneodge vollständge State Sace-Makt mt s Zuständen und n+ Fnanztteln De Fnanzttel entseche dae de skolosen nlage zum scheen

Mehr

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.)

Robotik. Robotik Wintersemester Kapitel 4 : Vorwärtsrechnung. Angew. Mathematik (B.Sc. + M.Sc.) Wesbaden Unverst of Appled Scences LV Robotk 5 Credts Angew. Mathematk (B.Sc. + M.Sc.) Wntersemester 25 Prof. Dr. D. Rchter Department [Desgn>Computer Scence>Meda] Wesbaden Unverst of Appled Scences Hochschule

Mehr

3. Vorlesung Sommersemester

3. Vorlesung Sommersemester 3. Vorlesung Sommersemester 1 Bespele (Fortsetzung) 1. Der starre Körper: Formulerung der Zwangsbedngungen später. Anschaulch snd schon de Frehetsgrade: dre der Translaton (z. B. Schwerpuntsoordnaten)

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

Drehimpuls und Drehmoment

Drehimpuls und Drehmoment Dehpuls und Dehoent W bespechen nun enge Expeente zu Thea Dehpuls und Dehoent. W betachten en Syste von N Massenpunkten, de tenande vebunden snd. De Ausgangsglechung st: () L & = D Hebe st L = p Massenpunkte.

Mehr

2.6.5 Drehimpuls. (2.285) i. m h

2.6.5 Drehimpuls. (2.285) i. m h .6 Dynamk des staen Köpes, Dehbewegungen 5 kann somt be flachen Köpen lecht den Schwepunkt emtteln: Man untestützt den Köpe so lange an unteschedlchen Stellen, bs man den Punkt gefunden hat, an dem de

Mehr

Trägheitsmoment und Drehschwingung. Die kinetische Energie des Massepunktes ist (4)

Trägheitsmoment und Drehschwingung. Die kinetische Energie des Massepunktes ist (4) M5 Phskalsches Praktkum Träghetsmoment und Drehschwngung Das Träghetsmoment unterschedlcher starrer Körper soll nach der Schwngungsmethode gemessen werden. De Ergebnsse snd mt den aus Geometre und Masse

Mehr

Polarkoordinaten in der komplexen Ebene

Polarkoordinaten in der komplexen Ebene Polakoodnaten n de kompleen Ebene Vebndet man ene komplee Zahl mt den catesschen Koodnaten und, also = +, mt dem Nullpunkt de kompleen Ebene duch ene geade Lne, dann st de Länge dese Lne de Betag de kompleen

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Physikalisches Praktikum Drehschwinger

Physikalisches Praktikum Drehschwinger Physk-Labor Fachberech Elektrotechnk und Informatk Fachberech Mechatronk und Maschnenbau Physkalsches Praktkum M3 Drehschwnger Versuchszel Für verschedene Körper, de als Drehschwnger ausgelegt snd, sollen

Mehr

gelten soll. Welchen k-wert besitzt das Massenträgheitsmoment des Rollkörpers, wenn die Gleitreibungszahl für den gleitenden Körper G

gelten soll. Welchen k-wert besitzt das Massenträgheitsmoment des Rollkörpers, wenn die Gleitreibungszahl für den gleitenden Körper G Fachhochschule Hannover vorgezogen Wederholungsklausur WS9 5.9.9 Fachberech Maschnenbau Zet: 9 mn Fach: Physk SS9 (Prof. Schrewe) Hlfsmttel: Formelsammlung zur Vorlesung. Zwe PKW (Nr. und Nr. ) fahren

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung.

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung. De Kaftstoß Efahng: Geschwndgketsändeng de Kge st popotona z de Kaft nd de Zetdae t he Enwkng. Kaftstoß: t Enhet: s a t t t p t. Zwetes ewtonsches Ao: p t Wenn af enen Köpe t de Masse de Kaft wkt, so bewkt

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen achbeech Physk - Jahn-Gymnasum alzwedel CHRITLICH ABITURPRÜUNG 000PHYIK (LITUNGKUR) Thema : Gundgesetze de klassschen Physk - Anwendung und Genzen atelltenbewegung De Bewegung von atellten efolgt m Allgemenen

Mehr

Funds Transfer Pricing. Daniel Schlotmann

Funds Transfer Pricing. Daniel Schlotmann Danel Schlotmann Fankfut, 8. Apl 2013 Defnton Lqudtät / Lqudtätssko Lqudtät Pesonen ode Untenehmen: snd lqude, wenn se he laufenden Zahlungsvepflchtungen jedezet efüllen können. Vemögensgegenstände: snd

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

Erläuterungen zur Analyse des Zinssatzswaps Referenz N//83734/5 zwischen der A/B Duegården und der Nykredit Bank A/S

Erläuterungen zur Analyse des Zinssatzswaps Referenz N//83734/5 zwischen der A/B Duegården und der Nykredit Bank A/S Erläuterungen zur Analyse des Znssatzswaps Referenz 3584455N//83734/5 zwschen der A/B Duegården und der Nykredt Bank A/S 1. Zusammenfassung der Analyse De A/B Duegården und de Nykredt Bank A/S haben am

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Lösungen: 1. Übung zur Vorlesung Optoelektronik I

Lösungen: 1. Übung zur Vorlesung Optoelektronik I Geke/Lemme SS 4 Lösuge:. Übug u Volesug Optoelektok Augabe : Releo ud Bechug a Geläche (a De Ausbetug o elektomagetsche Welle wd duch de Mawell Glechuge ( bs (4 beschebe. t B& ( t J D& H ( t ρ D ( 3 B

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich

Das nächste Problem sind Gleichungen wie x 2 = 2. Wurzeln, führt dazu, dass auch die Gleichung x 2 = 2 Lösungen besitzt, nämlich Kompllexe Zahllen We kommtt man u den komplexen Zahlen? Zaahl lbeerree cchss-- eerrwee tteerrung:: gaanee Zaahl leen rraatt onaal lee Zaahl leen In der Grundschule rechnet man nur mt natürlchen Zahlen.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeentalphyk I (Kp WS 009) Inhalt de Voleung Expeentalphyk I Tel : Mechank 5. Enege und Abet 6. Bewegte Bezugytee 7. Maepunktytee und Stöße 7. Stae Köpe; Schwepunkt 7. Schwepunktyte, Relatkoodnaten &

Mehr

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen

1 3«^ ÖÖ. Vorbereitung für 1. Klassenarbeit Dezimalzahlen und Zuordnungen Vobeetung fü. Klassenabet Dezmalzahlen und Zuodnungen Name:. Setze de chtgen Zechen en:

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Signaltransport in Koaxialkabeln

Signaltransport in Koaxialkabeln Sgnaltanspot n Koaxalkabeln Inhaltsvezechns SIGNALTRANSPORT IN KOAXIALKABELN... 1 SKRIPT... 1 1. VERWENDUNGSZWECK UND AUFBAU DES KOAXIALKABELS...1. ERSATZSCHALTBILD DES KOAXIALKABELS....1 Beechnung des

Mehr