Maxwellsches Rad D I. Drehschwingung um eine feste Achse. g R 1. d I T I

Größe: px
Ab Seite anzeigen:

Download "Maxwellsches Rad D I. Drehschwingung um eine feste Achse. g R 1. d I T I"

Transkript

1 Mawellsches a Kesschebe M M ünne chse m M Mg a M Mg M g nmekung: em he abgebleten un n e Volesung geegten Mawellschen a hanelt es sch - anes als n e obgen echnung - ncht um ene homogene Kesschebe ehschwngung um ene feste chse : chtmomen t cos t mt T ehstuhl mt Spalfee als ehpenel me angeogen: klenees Täghetsmoment, höhee Fequen me ausgesteckt: gößees Täghetsmoment, klenee Fequen

2 otatonsenege e Ee gobe Näheung uch homogene Kugel E 4 6 M 6. kg 6.37 m s 4 T 8.6 s 37 5 E 9.7 kg m 7.3 s E E kg m e Velangsamung e Eotaton betägt uchschnttlch ca. ms po Jah. elatve Enegeäneung: Jählche Enegevelust um Veglech: e Weltenegebeaf betug 8 ca., J 9 J E J J e n Geetenkaftweken gewonnene Enege w e otatonsenege entogen. Jählche Schwankungen e otatonspeoe ween auf e Velageung e Jetsteams uückgefüht. e No/Sü-Untesche e Velageung e omasse lätte an en äumen st en klenee Effekt.

3 oteene Köpe als Enegespeche Schwunga.. e Gobus Veglech wschen Tanslaton un otaton Ot Geschwngket eschleungung Masse mpuls knetsche Enege Kaft ückstellkaft Schwngungsaue v a [m] [m/s] [m/s m [kg] p mv ] [kg m/s] p E mv [kg m /s ] kn m F p ma [kg m/s ] F [kg m/s T m [s] ] Wnkel Wnkelgeschwngket Wnkelbeschleungung Täghetsmoment ehmpuls otatonsenege ehmoment ückstell-ehmoment Schwngungsaue [a] [a/s] [a/s ] [kg m ] [kg m /s] E [kg m /s ] ot [kg m /s ] T [kg m /s [s] ] 3

4 4.Stufe" "Tenso oe se - Schebwe Mat u.s.w : " - "-egel sog. m m m m m v m V V V T T ot ot E E : menet veallge : menet veallge 6.3 otaton um belebge chsen

5 5 Waum wa es n en bshegen Fällen Kugel, Zlne etc. sovel enfache: Skala statt Tenso? Wel w Köpe mt hohe Smmete un geschckt gewählte chsen betachtet haben. mplt hatten w ene "Hauptachsentansfomaton" gemacht, also e Täghetstenso-Mat agonalset, so ass: che Kesel asmmets Kesel "polate" Kesel "oblate" Kesel sphäsche Haupttäghetsmomente 3 Skalaes Täghetsmoment e etag es skalaen Täghetsmoments, aufgetagen n chtung e otatonsachse, blet en Ellpso: as Täghetsellpso. e Spte es Vektos e Wnkelgeschwngket blet fü ene feste otatonenege ebenfalls en Ellpso: as Enegeellpso. Mama es Enegeellpso befnen sch n chtungen, n enen as Täghetsellpso mnmal st be konstante otatonsenege beeutet goße Wnkelgeschwngket en klenes Täghetsmoment, vgl. Pouetteneffekt. E T ot Smmetsche Kesel müssen ncht otatonssmmetsch sen,.. quaatsche Quae oe Wüfel.

6 6 analog Wenn e Köpe um ene Haupttäghetsachse otet, sn ehmpuls un Wnkelgeschwngket paallel. as st ncht allgemen e Fall,.. Wnkel wschen - un -Komponente ufgun e ehmpulsehaltung blen Haupttäghetsachsen auch "fee chsen" blen aumfeste ehachsen, auch wenn e chse ncht gelaget st. otaton um e chsen mt em gößten un klensten Täghetsmoment st stabl, e otaton um as mttlee Täghetsmoment st nstabl tokeln. Eulesche Glechungen Enneung an oteene eugsssteme: aus e Scht enes eobachtes m netalsstem aus e Scht enes eobachtes m oteenen Sstem fü e Komponente bgl. e Haupttäghetsachse, analog fü e chsen un. nwenung: Kesel

7 7 6.4 Kesel / mt,, a Käftefee, smmetsche Kesel, belebge otatonsachse const. cos cos t t Gekoppelte ffeenalglechungen. ösung: Nutatonsbewegung m llgemenen fallen ehmpulsachse, ehachse un Fguenachse ncht usammen. ufgun e ehmpulsehaltung st e ehmpulsachse otsfest. lle e chsen keuen sch m Schwepunkt un legen n ene Ebene. ehachse un Fguenachse bescheben ene Kesbewegung um e ehmpulsachse, e Nutatonsbewegung. a polate Kesel b oblate Kesel

8 b Smmetsche Kesel, otaton um Hauptachse un paallel mt ehmoment he: ehmoment aufgun e Schwekaft mg wobe sn fü klenes sn mg sn p sn sn mg p Päessonsbewegung Päesson enes klenen, mt Pessluft angeblasenen Kesels. ekeselachse st ensetg an enem Faen aufgehängt. W as anee Ene losgelassen, fängt e Kesel an u "päeeen".h. e chse bewegt sch hoontal m Kes, statt nach unten u fallen. Saka-Kesel nach Takao Saka 986, aus ene üoklamme gefomt. We goß muss e Öffnungswnkel wschen en aalen Schenkeln sen? 8

9 Keselbahn: en Zlne, e enen Kesel mt hoontale chse enthält, läuft auf ene schmalen gekümmten Schene entlang, ohne heunte u fallen. Wenn e Zlne nach echts/lnks u kppen oht, bewkt as ehmoment mg ene ehung es ehmpulsvektos un amt es ganen Zlnes nach lnks/echts, so ass e Zlne auf e ahn uück gelenkt w. as funktonet natülch nu be e chtgen ehchtung: e ehmpuls muss n Fahtchtung nach echts egen. 9

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments)

Versuche: Trommelstock Drehstuhl mit Kreisel (Erhaltung des Gesamtdrehimpulses) Drehstuhl mit Hanteln (Variation des Trägheitsmoments) 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Tommelstock Dehstuhl mt Kesel (Ehaltung

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

7.Vorlesung. Überblick

7.Vorlesung. Überblick 7.Volesung Übeblck I) Mechank 4. stae Köpe a) Dehmoment b) Schwepunkt c) Dehmpuls 5. Mechansche Egenschaften von Stoffen a) Defomaton von Festköpen b) Hydostatk Vesuche: Ganolle Tommelstock Dehstuhl mt

Mehr

5. Dynamik starrer ausgedehnter Körper

5. Dynamik starrer ausgedehnter Körper nnhmen: 5. Dnmk ste usgedehnte Köpe bstände m Köpe fest: ncht defomeb, d.h. fü lle ssepunkte, j glt: j ( t) ( t) const j olumen: sse: m m echnsche Dchte: 3 d mt: d d dm kg/ m sse: Homogene sse: dm d dm

Mehr

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls

500 Rotation des starren Körpers. 510 Drehungen und Drehmomente 520 Rotationsenergie und Drehimpuls 5 Rotaton des staen Köpes 5 Dehungen und Dehmomente 5 Rotatonsenege und Dehmpuls um was geht es? Beschebung von Bewegungen (pmä Dehungen) des staen Köpes Analoge zu Kap. und 3: Kaft Dehmoment Impuls Dehmpuls

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

r mit der sogenannten Einheitsmatrix:

r mit der sogenannten Einheitsmatrix: D. Hempel Mathematsche Gundlagen Tensoen -7- Maten / Tensoen - Tel als Tenso Bem Vesuch den Dehmpuls unte Zuhlfenahme des Täghetstensos daustellen egab sch fü das Täghetsmoment de folgende Zusammenhang:

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment

7.1 Beschreibung des starren Körpers. 7.2 Kräfte am starren Körper- Drehmoment. 7.3 Rotationsenenergie und Trägheitsmoment 7 Stae Köpe 7. Beschebung des staen Köpes 7. Käfte a staen Köpe- Dehoent 7.3 Rotatonsenenege und Täghetsoent 7.4 Dehoent und Wnkelbeschleungung 7.5 Dehpuls 7.6 Beechnung von Täghetsoenten 7.7 Päzesson

Mehr

Einführung in die Physik I. Mechanik der starren Körper

Einführung in die Physik I. Mechanik der starren Körper Enfühung n de Physk I Mechank de staen Köpe O. von de Lühe und U. Landgaf Bslang wuden nu Massen als Punktmassen dealset behandelt, ene ausgedehnte etelung de Masse spelte ene unwesentlche Rolle Defnton

Mehr

Physik A VL12 ( )

Physik A VL12 ( ) Physk A VL1 (06.11.01) Dynak de otatonsbewegung II Wedeholung/Zusaenfassung: Beschebung von Dehbewegungen ollbewegungen Enege de otatons- und ollbewegung Dehpuls Dehpulsehaltung Wedeholung/Zusaenfassung:

Mehr

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung:

Drehbewegungen. F r. F r x1. F r 1. r r r. Das Drehmoment: Beispiel Wippe: Erfahrung: Dehbewegungen Das Dehoent: Bespe Wppe: D Efahung: De Käfte und bewken ene Dehbewegung u de Dehachse D. De Dehwkung hängt ncht nu von de Kaft, sonden auch vo Kafta, d.h. Abstand Dehachse-Kaft ab. De Kaft

Mehr

Physikaufgabe 61. Aufgabe: Berechnen Sie die Eigenwerte der Klein-Gordon-Gleichungen und diskutieren Sie die Lösungen.

Physikaufgabe 61. Aufgabe: Berechnen Sie die Eigenwerte der Klein-Gordon-Gleichungen und diskutieren Sie die Lösungen. Phkaufgabe 6 Cogh 6 Manfe Hebl lle Rehe vobehalen See Home Saee Imeum Konak Gäebuh ufgabe: Beehnen Se e genwee e Klen-Goon-Glehungen un kueen Se e Löungen Löung: De elavhe nege kann kene halunggöße en

Mehr

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung:

Wärmeübertragung. Grundsätzlich sind drei verschiedene Möglichkeiten der Wärmeübertragung möglich: Wärmeleitung, Konvektion und Strahlung: ämeübetgung Unte ämeübetgung vesteht mn sämtlche Eschenungen, e enen äumlchen nspot von äme umfssen. De ämeübegng efolgt mme ufgun enes empetugefälles, un zw mme von e höheen zu neeen empetu (.Huptstz).

Mehr

1.4 STARRE KÖRPER Bewegung des starren Körpers kr FH HN

1.4 STARRE KÖRPER Bewegung des starren Körpers kr FH HN .4 TAE ÖE Bshe : Mechank des Massepunkts, Ausdehnung de enelnen öpe venachlässgt steme von meheen punktf. öpen: äfte wken auf enelne Massepunkte, dese bewegen sch unabh. vonenande gem. Newton-Geseten!

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

4. Mechanik des starren Körpers 4.1. Model starrer Körper

4. Mechanik des starren Körpers 4.1. Model starrer Körper 4. echank des staen Köpes 4.. odel stae Köpe z k j k j odell: - aufgebaut aus asseneleenten t Voluen V und t festen Abständen unteenande const - asseneleente können we Punktassen behandelt weden j y -

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Bisher: Elektrostatik im Vakuum (keine Felder in Materie), keine Magnetfelder Physk II T Dotmund SS8 Götz hg Shaukat Khan Kaptel Maxwellsche Glechungen Bshe: Elektostatk m Vakuum (kene Felde n Matee), kene Magnetfelde dffeenzelle Fom ntegale Fom ( ) Gauß E E da dv V E Stokes E d

Mehr

ω r 6.2 Trägheitsmoment und Rotationsenergie r E dm = = = ω r r r r = K 6.2 Versuch: Fallmaschine Ursprung in Bewegungsebene!

ω r 6.2 Trägheitsmoment und Rotationsenergie r E dm = = = ω r r r r = K 6.2 Versuch: Fallmaschine Ursprung in Bewegungsebene! 6. Täghetsmoment und Rottonsenege Täghetsmoment enes ssenpunktes Des glt fü sten Köpe nht meh! ellgemeneung fü sten Köpe: m Uspung n Bewegungseene! Dehhse E ot ( E ) v kn snα R R α snα E ot R Rottonsenege

Mehr

4. Krummlinige orthogonale Koordinaten

4. Krummlinige orthogonale Koordinaten 4 Kummlnge othogonale Koodnaten ückblck Zu uanttatven Efassung äumlche (und etlche) Beüge denen Koodnatensysteme Bshe haben w Katessche Koodnaten betachtet: { } { } { } Bass: e,,, Koodnaten:,,,, y, Vektoen:

Mehr

Kapitel 5 Dynamik ausgedehnter, dht starrer Körper

Kapitel 5 Dynamik ausgedehnter, dht starrer Körper Kptel 5 Dnmk usgedehnte, dht ste Köpe Volumen, Msse, Dchte des usgedehnten sten Köpes bshe betchtet : Mssenpunkte, ohne Ausdehnung jett betchtet : usgedehnte Köpe, be (noch) ncht defomeb pnpelles Vogehen

Mehr

Ziel: astrophysikalische Beschreibung der Hauptreihensterne und unserer Sonne

Ziel: astrophysikalische Beschreibung der Hauptreihensterne und unserer Sonne Zel: astophyskalsche Beschebung e Hauptehenstene un unsee Sonne Fünf Kenngößen von Stenen R,M,,L M, p,,l Göße Symbol Beech Enhet Raus 0 R m Masse nnehalb M 0 M kg Dchte an e Stelle c 0 kg/m 3 Duck an e

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 3

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 3 Physik U Dotmun W7/8 Guun Hille haukat Khan Kaitel 3 eleich ischen anslation un otation s ibt eine Ähnlichkeit ischen en usücken fü lineae Beeunen un Dehbeeunen, obei.b. as Dehmoment analo u Kaft, as äheitsmoment

Mehr

Computer-Aided Reactor Design

Computer-Aided Reactor Design Compute-Ae Reacto Desgn Rechneübung zu Volesung Reaktoesgn Beteb un Auslegung chemsche Reaktoen Lehstuhl I fü Technsche Cheme Skpt un Fles: www.ch.tum.e/tc Stuum & Lehe Paktka Reaktoesgn Downloa Inhalt

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

Statisches Gleichgewicht des starren Körpers (Statik)

Statisches Gleichgewicht des starren Körpers (Statik) Us Wyde CH- 4057 Basel Us.Wyde@edubs.ch Statsches Glechgewcht des staen Köpes (Statk) Glechgewchtsbedngungen En Köpe befndet sch n Ruhe (ode bewegt sch mt konstante Geschwndgket), wenn de Summe de Käfte

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen

SCHRIFTLICHE ABITURPRÜFUNG 2000PHYSIK (LEISTUNGSKURS) Grundgesetze der klassischen Physik - Anwendung und Grenzen achbeech Physk - Jahn-Gymnasum alzwedel CHRITLICH ABITURPRÜUNG 000PHYIK (LITUNGKUR) Thema : Gundgesetze de klassschen Physk - Anwendung und Genzen atelltenbewegung De Bewegung von atellten efolgt m Allgemenen

Mehr

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung.

r r = t F r Der Kraftstoß Erfahrung: Geschwindigkeitsänderung der Kugel ist proportional zu der Kraft F r und der Zeitdauer t ihrer Einwirkung. De Kaftstoß Efahng: Geschwndgketsändeng de Kge st popotona z de Kaft nd de Zetdae t he Enwkng. Kaftstoß: t Enhet: s a t t t p t. Zwetes ewtonsches Ao: p t Wenn af enen Köpe t de Masse de Kaft wkt, so bewkt

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretsche Physk 2 (Theoretsche Mechank Prof. Dr. Th. Feldmann 28. Oktober 2013 Kurzzusammenfassung Vorlesung 4 vom 25.10.2013 1.6 Dynamk mehrerer Massenpunkte Dynamk für = 1... N Massenpunkte mt.a. komplzerter

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

r r Kraftrichtung Wegrichtung Arbeit: negativ

r r Kraftrichtung Wegrichtung Arbeit: negativ De Abet Abet wd vechtet, wenn ene Kaft entlang ene ege wkt. De Kaft e kontant: coα Kaftchtung Kaftchtung Kaftchtung α egchtung α egchtung α egchtung Abet: potv Abet: negatv Abet: Null 0 α < 90 bzw.: co

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Statistische Methoden für Bauingenieure WS 13/14

Statistische Methoden für Bauingenieure WS 13/14 Statstsche Methoen fü Baungeneue WS 3/4 Enhet 5: Etemwetanalyse Unv.Pof. D. Günte Blöschl 2 Übegang von e gesamten Vetelung auf Etemwete Anwenung e Etemwetstatst auf Hochwässe Mschvetelungen Abgeletete

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider

TU Dresden, AG Mechanische Verfahrenstechnik, Vorlesender: Dr.-Ing. Benno Wessely 1/7. Zyklonabscheider TU Deen, AG Mechanche Vefahentechnk, Voleene: D.Ing. Benno Weely 1/7 yklonabchee Lteatu: E. Muchelknautz (Stuttgat), CIT 44 (197), N. 1+, S. 671 Duckelut un Abcheega n yklonen, VDI Wämeatla, 6. Aufl.,

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse

Reziprokes Quadratgesetz und Stabilität von planetarischen Bahnen Einige analytische Ergebnisse Rezipokes Quaatgesetz un Stabilität von planetaischen Bahnen Einige analytische Egebnisse ) Die Kepleschen-Gesetze sin Folgen e Tatsache, ass ie Gavitationskaft einem umgekehten Quaatgesetz folgt Wi ween

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

BAUSTATIK I KOLLOQUIUM 5, Lösung

BAUSTATIK I KOLLOQUIUM 5, Lösung BUSTTIK I KOLLOQUIUM 5, Lösung (101-0113) Thema: Ebener Spannungs- und Vererrungsustand, Normalspannungen n Stäben, Kern ufgabe 1, Lösung Gegeben: Gesucht: Ene Stahlplatte st we folgt belastet: x 0 N/mm

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung:

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung: Zu Einneung Stichote aus de 10. Volesung: Volumenintegale in unteschiedlichen Koodinatensstemen Beegung eines staen Köpes: Tanslation und Rotation Tägheitsmoment Steinesche Sat Momentane Dehachse Zusammenhang

Mehr

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E

Komplexe Zahlen. Teil 2. Darstellung der komplexen Zahlen. als Vektoren mit Polarkoordinaten trigonometrisch oder exponentiell. Eulersche Funktion E Höhere nalss Komplexe Zahlen Tel Darstellung der komplexen Zahlen als Vektoren mt Polarkoordnaten trgonometrsch oder exponentell Eulersche Funkton E Date Nr. 500 Stand. November 08 FRIEDRICH W. BUCKEL

Mehr

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben. 1.Schularbet.Okt. 1997 7.A A) Berechne ohne TI-9: Beachte: Für de Bespele 1 und snd alle notwendgen Rechenschrtte anzugeben. 1a) De zu z= a + bkonjugert komplexe Zahl st z= a b. Zege für z 1 = -4 + 3 und

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

4.12 Zentrifugalkraft

4.12 Zentrifugalkraft 4. Zentfugalkaft Beobachtung aus uhendem System: Kesbewegung de Kugel Es wkt ee Zentpetalkaft Im oteenden Bezugsystem st Kugel Ruhe! Im oteenden Bezugsystem wkt ee Schekaft, de Zentpetalkaft genau kompenset

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodelle: Schalenmodell Zusammenfassung letzte Stunde: Femgasmodell Kene m Gundzustand snd entatete Femgassysteme aus Nukleonen, mt hohe Dchte 0,17 Nukleonen/fm 3. De Kendchte st bestmmt duch

Mehr

1 Lineare, affine und konvexe Kombinationen. für einen Punkt (Vektor) von IR d. IR heißt affin unabhängig, wenn für alle r IN, x1,, R S

1 Lineare, affine und konvexe Kombinationen. für einen Punkt (Vektor) von IR d. IR heißt affin unabhängig, wenn für alle r IN, x1,, R S U. BEHM: Konvexgeoete 1-1 1 Lneae, affne un konvexe Kobnatonen W abeten -enonalen euklchen au I un cheben x ( 1,, ) ( I, = 1,, ) fü enen Punkt (Vekto) von I. Da nnee Poukt auf I von Vektoen x un y (,,

Mehr

5 Mechanik starrer Körper

5 Mechanik starrer Körper 5 ehnk ste Köpe Wum gt es Atome? 5. Ste Köpe ele ssenpunkte, deen Reltvkoodnten zetlh konstnt snd. Be hnehend goße Zhl von ssenpunkten ethtet mn ds Oekt ls sten Köpe mt kontnuelhe ssenvetelung. Duh de

Mehr

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002

Einführung in Moderne Portfolio-Theorie. Dr. Thorsten Oest Oktober 2002 Enfühung n Modene Potfolo-Theoe D. Thosten Oest Oktobe Enletung Übeblck Gundlegende Fage be Investtonen: We bestmmt sch ene optmale Statege fü ene Geldanlage?. endte und sko. Dvesfkaton 3. Enfühung n Modene

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Druckverluste durch Rohrverzweigungen

Druckverluste durch Rohrverzweigungen Druckverluste durch Rohrverzegungen llgemen Enzelderstände e entle, Hezkessel, Hezkörper, Rohrbögen und Rohrverzegungen us. erzeugen durch eränderung der Strömung ebenfalls enen Druckverlust, der überunden

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Es wird ein Planet mit einer Umlaufdauer um die Sonne von 7 Jahren entdeckt. Wie groß ist sein mittlerer Abstand von der Sonne?

Es wird ein Planet mit einer Umlaufdauer um die Sonne von 7 Jahren entdeckt. Wie groß ist sein mittlerer Abstand von der Sonne? s wi ein Planet mit eine Umlaufaue um ie Sonne von 7 Jahen enteckt. Wie goß ist sein mittlee Abstan von e Sonne? Lösung Gemäß ittem Kepleschen Gesetz gilt T T 3 T a A A T 7 3, 66 5, 50 0 a / 3 / 3 m in

Mehr

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I

Elektrolytlösungen, Leitfähigkeit, Ionentransport. Teil I Ludwg Pohlmann PC III - Elektoheme SS 5 Elektolytlösungen, Letfähgket, Ionentanspot Tel I. Enfühende Übelegungen. Solvataton, Hydataton 3. Ionenbeweglhketen und Letfähgketen Lteatu: Wedle.6. -.6.7 Tel

Mehr

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ

ermittelt. Für zwei Wertpapiere i und j ermittelt er eine Schätzung der Kovarianz ˆ Pof. D. Mac Gütle SS 05 Klausu zu Vetefung Fnanzwtschaft Telbeech Empsche Fnanzwtschaft Alle folgenden zwe Aufgaben snd zu beabeten. Behauptungen snd zu begünden, Rechnungen snd zu eläuten! Runden Se btte

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Gesucht eine verlässliche physikalische Größe

Gesucht eine verlässliche physikalische Größe 07a Enegie 1 Neues Konzept Enegie Käfte beim Abschuss eines Pfeils mit einem Bogen Lösungsansatz fü Newtonsche Gleichungen Man beechne ie aiieenen Käfte Poblematisch mit Kaftansatz zu behaneln Gesucht

Mehr

Rotations-Spektroskopie

Rotations-Spektroskopie Rotatons-Spektoskope Physk de Dehbewegung: Wnkelgeschwndgket, knetsche Enege, Täghetsmoment, Dehmpuls, Dehmoment. Rotaton lneae Moleküle: Quantsete Dehmpuls, Spektum des lneaen Rotatos, nenabstände und

Mehr

1. März Korrektur

1. März Korrektur nsttut für Technsche und Num. Mechnk Technsche Mechnk V Prof. Dr.-ng. Prof. E.h. P. Eberhrd WS 010/11 K 1. März 011 Klusur n Technscher Mechnk V Nchnme Vornme Aufgbe 1 (6 Punkte) n enem bestmmt gelgerten

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx

Eine lineare Differentialgleichung 2. Ordnung hat die allgemeine Form: d. 2 dx XVIII. as mathematische un as physikalische Penel Eine lineae iffeentialgleichung. Onung hat ie allgemeine Fom: y() y() () P() Q() y() = (). ie allgemeine Lösung iese inhomogenen Gleichung lautet y() =

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Gyroskop. Kreisel mit 3 Achsen

Gyroskop. Kreisel mit 3 Achsen Gosko Kesel mt 3 Achsen Zusammenfassung Mt dem Gosko (Kesel mt 3 Achsen) kann man Keselhänomene we Rchtungsstabltät, Päesson und Nutaton untesuchen. Im volegenden Vesuch sollen veschedene lneae Zusammenhänge

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Moderne Experimente der Kernphysik

Moderne Experimente der Kernphysik Modene Expemente de Kenphysk Wntesemeste 0/ Volesung..0 Modene Expemente de Kenphysk Pof. Thosten Köll Volesung..0 Vetefung des Schalenmodells - Restwechselwkung - Modene Expemente de Kenphysk Pof. Thosten

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg

Anwendung der Raketengleichung: Saturn-V-Rakete v r = 4000 m/s t = 100 s pro Stufe. Erste Stufe: Startmasse kg; Endmasse kg Physk I TU Dotund WS7/8 Gudun Hlle Shaukat Khan Kaptel Anwendung de Raketenglechung: Satun-V-Rakete v = 4 /s t = s po Stufe v( t) v v ln g t ( t) Este Stufe: Statasse 3 6 ; Endasse 6 Zwete Stufe: Statasse

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen

Kapitel 5. Symmetrien und Erhaltungsgrößen. 5.1 Symmetrietransformationen Kaptel 5 Symmetren un Erhaltungsgrößen 5.1 Symmetretransformatonen Betrachte en mechansches System mt en Koornaten q 1,... q f un er Lagrangefunkton L(q 1,... q f, q 1,... q f, t). Nun soll ene Transformaton

Mehr

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung

Foucault-Pendel 1. r und die Zugkraft T r, die vom Pendelfaden ausgeübt wird. Also folgt für die Bewegungsgleichung des Pendels in unserer Näherung Foucau-Pende Newonsche Gundechun oeenden Sse Newons Gechun n de Fo Kaf ech Masse a escheunun nu n ene Ineasse d h, n ene Sse, das sch eadn konsane Geschwndke bewe In ene de Wnkeeschwndke oeenden Sse daeen

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Musterlösung zu Übung 4

Musterlösung zu Übung 4 PCI Thermodynamk G. Jeschke FS 05 Musterlösung zu Übung erson vom 6. Februar 05) Aufgabe a) En Lter flüssges Wasser egt m H O, l ρ H O, l L 998 g L 998 g. ) De Stoffmenge n H O, l) von enem Lter flüssgen

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

r r i r : m i ω r Experimentalphysik I (Kip WS 2009)

r r i r : m i ω r Experimentalphysik I (Kip WS 2009) 8. Dnmk ste Köpe 8.1 otton um feste Ahsen De Besheung des Bewegungsustndes des sten Köpes fndet m uhenden, d.h. umfesten netlsstem S sttt. De Gesmtmsse und de Shwepunkt des sten Köpes wen: M ρ ρ dv, M

Mehr

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung

3.1 Gleichstrom und Gleichspannung. 3 Messung elektrischer Größen. Gleichstrom. 3.1 Gleichstrom und Gleichspannung . Glechstrom und Glechspannung Glechstrom essung elektrscher Größen. Glechstrom und Glechspannung. Wechselstrom und Wechselspannung. essung von mpedanzen. essverstärker.5 Darstellung des etverlaufs elektrscher

Mehr

4 Roboterkinematik. Roboterarm und Gelenke

4 Roboterkinematik. Roboterarm und Gelenke 4 oboterknematk oboterarm und Gelenke 4. Grundlegende egrffe echansmus besteht aus ener Anahl von starren Körpern Gleder dese snd durch Gelenke verbunden En Gelenk verbndet genau we Gleder. De Gelenke

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Mserlösng zr Afgabe, H5. as Pnk Nach Messng könne es ach ene -Schalng sen. Für ene -Schalng würe aber be Messng e gesame Spannng über em Wersan as abfallen. 5 µf,sec Ω as as en as en as as as Pnke. = +

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q&

Unterkühlung des Kondensatfilmes vernachlässigt. Die Definitionsgleichung für den Wärmeübergangskoeffizienten bei Kondensation lautet: q& Pro. r.-in. tths n Insttut ür hermsche erhrenstechnk r.-in. homs etze ärmeübertrun I ösun zur. Übun onenston onensert z.b. ssermp n ener kten Fäche nn bet sch n eser Fäche en onenst n em s onenst nch unten

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSAENASSUNG) Baustatk (aster) Arbetsblatt. ALLGEEINES. Sstem und Belastung Längsanscht: q( x) z, w x, u Begestefgket EI h Bettung c l Querschnttsdarstellung: q( x) q ( x) ( verschmert) z h Bettung c

Mehr

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper Raometrsche Kalbrerung Tratoneller Ansatz Kalbrerung aus mehreren Blern Behanlung von übersteuerten Blern Zweck Das Antwortverhalten es Systems Kamera Framegrabber st ncht mmer lnear Grauwerte sn ncht

Mehr

7. Systeme von Massenpunkten; Stöße

7. Systeme von Massenpunkten; Stöße Mechank Sytee von Maenpunkten; Stöße 7. Sytee von Maenpunkten; Stöße 7.. De Schwepunkt W defneen den Schwepunkt ene Syte: t: M M... Geatae () Veanchaulchung: ( + ) 3 au () folgt: M M d dt p p () De Geatpul

Mehr