Damit hat man die Potenzfunktion mit rationalem Exponenten definiert:

Größe: px
Ab Seite anzeigen:

Download "Damit hat man die Potenzfunktion mit rationalem Exponenten definiert:"

Transkript

1 Mathematik 1, Übungen Nr. 9 Joachim Schneider 11. Dezember 2006 Funktionen Teil 2 Die Potenzfunktion mit rationalem Exponenten Sei x R. Dann definieren wir für natürliches n x n := x} x {{ x} n Faktoren x 0 := 1. Für x 0 und m N definieren wir noch x m := 1 x m. Für natürliches m und relles, positives x definiert man x 1 m als die nicht negative Lösung u der Gleichung u m = x; x 1 m nennt man auch die m-te Wurzel von x. Schließlich definieren wir für x R mit x > 0 und q Q: 1 : q = 0 x q := (x n ) 1 m : q = n n, m N m 1 : q = n n, m N m (x n ) 1 m Damit hat man die Potenzfunktion mit rationalem Exponenten definiert: y(x) = x q, q Q. (1) Die Exponentialfunktion Ungebremstes Wachstum Wir betrachten eine Population aus N Individuen. Im (kleinen) Zeitraum t ändert sich N um N, wobei diese Änderung proportional zu N und zu t ist. Den Proportionalitätsfaktor nennen wir α. Dann hat man also für einen kleinen Zeitraum t das Gesetz N = αn t. (2) Durch dieses Gesetz wird zum einen etwa das Wachstum von Bakterienkulturen bei ausreichender Nahrungszufuhr beschrieben dann ist α > 0, zum anderen beschreibt es für α < 0 auch den radioaktiven Zerfall von N Atomen, aber auch die Abkühlung eines heißen Körpers der Temperatur ϑ auf die Umgebungstemperatur ϑ 0, denn auch hier ist

2 Mathematik 1, Übungen Nr. 9 Seite 2 von Dezember 2006 die Abnahme der Temperatur ϑ im Zeitraum t, die wir mit ϑ bezeichnen, proportional zu t und zu ϑ ϑ 0, es gilt also ϑ = α(ϑ ϑ 0 ) t. Nennt man nun N := ϑ ϑ 0 und beachtet, daß da ϑ 0 eine Konstante ist die Änderung von ϑ, die wir ϑ genannt hatten, gleich der Änderung von ϑ ϑ 0, also gleich der Änderung von N ist, die wir N genannt hatten, so erhält man wieder die Gleichung (2). Schreibt man (2) etwas ausführlicher auf, so ergibt sich N(t + t) = N(t) + αn(t) t = N(t)(1 + α t). Um Aussagen für beliebig große Zeiträume τ zu treffen, unterteilt man τ in sehr viele (n) kleine Teile, auf die dann das Gesetz (2) anwendbar ist: τ = n t dt < T > T = 6*dt Auf jeden Zeitschritt wenden wir (2) an und erhalten: N(t + 1 t) = (1 + α t)n(t) N(t + 2 t) = (1 + α t)n(t + 1 t). = (1 + α t) 2 N(t). N(t + n t) = (1 + α t) n N(t). und mit n t = τ folgt: ( N(t + τ) = 1 + ατ ) n N(t). (3) n Wir lassen die Unterteilung immer feiner werden (n ) und definieren ( exp(ατ) := 1 + ατ ) n, n. n exp(x) := lim (1 + x ) n (4) n n

3 Mathematik 1, Übungen Nr. 9 Seite 3 von Dezember 2006 heißt Exponentialfunktion. Wir haben also gezeigt, daß aus der Differentialgleichung N(t) = αn(t) t die Gleichung N(t + τ) = exp(ατ)n(t) (5) folgt, die es gestattet, N zu jedem anderen Zeitpunkt t + τ zu berechnen, wenn es nur zu einem Zeitpunkt t bekannt ist. Setzt man in (5) t = 0, definiert N 0 := N(0), so erhält man N(τ) = exp(ατ)n 0, also nach τ t die fundamentale Gleichung für Wachstums-, Zerfalls- und Dämpfungsprozesse N(t) = exp(αt)n 0 (6) Eigenschaften der Exponentialfunktion Das Additionstheorem der Exponentialfunktion nennt x := αt und y := ατ, so folgt Setzt man (6) in (5) ein und exp(x + y) = exp(x) exp(y) (7) Vorzeichen, Wert an der Stelle 0, exp(0) = 1 folgt aus der Definition 2. exp(x) > 0 für alle x R. Zunächst folgt aus der Definition, daß exp(x) 0; wäre exp(x 0 ) = 0, so wäre wegen des Additionstheorems 1 = exp(0) = exp(x 0 ) exp( x 0 ) = 0 exp( x 0 ) 3. exp(x) 1 + x; das folgt aus der Bernoullischen Ungleichung 4. Die Exponentialfunktion ist streng monoton wachsend, und es gilt lim x exp(x) = und lim x exp(x) = 0. Das folgt aus dem Additionstheorem und den vorigen Resultaten. Die Reihendarstellung der Exponentialfunktion Ausmultiplizieren des in der Definition der Exponentialfunktion (4) auftretenden Produktes liefert zusammen mit der Betrachtung des Grenzwertes n die Darstellung (0! := 1 und n! := n (n 1) 2 1) exp(x) = n=0 x n n!. (8)

4 Mathematik 1, Übungen Nr. 9 Seite 4 von Dezember 2006 exp(x) = e x und es folgt Sei zunächst x Q; mit n N 0 und z Z \ {0} kann man x = n z schreiben exp(x) = exp( n z ) = exp(1 z ) = }{{ z} n-mal [ exp( 1 z ) ] n, (9) wobei sich die letzte Gleichung durch wiederholte Anwendung des Additionstheorems (7) ergibt. Definiert man nun e := exp(1), (10) so liefert (9) mit 1 = z z die Gleichung e = [exp(1/z)]z, also ist exp(1/z) = e 1 z und aus (9) folgt schließlich exp( n z ) = e n z. Satz: Für rationales x Q gilt exp(x) = e x. (11) Der natürliche Logarithmus Aufgrund der oben genannten Eigenschaften der Exponentialfunktion, existiert ihre Umkehrfunktion, der natürliche Logarithmus y(x) = ln(x). Satz: Eigenschaften des natürlichen Logarithmus: 1. Der Logarithmus bildet die positiven rellen Zahlen auf die reellen Zahlen ab. 2. ln(exp(x)) = x für alle x R. 3. exp(ln(x)) = x für alle x R mit x > ln(1) = 0. Das folgt aus exp(0) = ln(e) = 1. Das folgt aus exp(1) = e. 6. ln(x) für x. 7. ln(x) für x y = ln(x) ist streng monoton wachsend. 9. Der Logarithmus erfüllt die Funktionalgleichung ln(u v) = ln(u) + ln(v) Um das nachzuweisen, setzt man in dem Additionstheorem der Exponentialfunktion x = ln(u) und y = ln(v) ein, womit sich exp(ln(u) + ln(v)) = u v ergibt, worauf noch einmal ln() angewendet wird.

5 Mathematik 1, Übungen Nr. 9 Seite 5 von Dezember ln(x 1 /x 2 ) = ln(x 1 ) ln(x 2 ). Um das einzusehen, setze man in der Funktionalgleichung u = x 2 und v = x 1 /x Aus der Funktionalgleichung folgt für x R mit x > 0 und q Q ln(x q ) = q ln(x). Die Potenz mit rellem Exponenten Wir hatten oben gesehen, wie man die für reelles a > 0 und rationales q die Potenz a q definiert. Wir haben nun die Gleichungsskette a q = exp(ln(a q )) = exp(q ln(a)) In die letzte Gleichung kann aber ohne Schaden auch ein relles q eingesetzt werden. Für relles β definieren wir deshalb a β := exp(β ln(a)) (12) Nimmt man auf beiden Seiten den Logarithmus dieser Gleichung, so sieht man dass auch für relles β gilt. ln(a β ) = β ln(a) (13) Der Logarithmus zu beliebiger positiver reller Basis a Wir definieren die Umkehrfunktion der Funktion y(x) = a x, a R, a > 0 x R als den Logarithmus log a zur Basis a: y = a x x = log a (y) (14) Anwendung des natürlichen Logarithus auf y = a x ergibt ln y = x ln a andererseits ist nach Definition x = log a y woraus sich log a y = ln y ln a ergibt. Es fogt der Satz: Alle Logarithmen unterscheiden sich nur durch konstante Faktoren und lassen sich ineinander umrechnen, es gilt nämlich log a y log b y = ln b ln a. Insbesondere nennen wir log(x) := log 10 (x) ln(x) := log e (x) ld(x) := log 2 (x)

6 Mathematik 1, Übungen Nr. 9 Seite 6 von Dezember 2006 Aufgaben 1. Berechnen Sie e = exp(x) auf zwei Arten: (a) Indem Sie (1 + 1 n )n für n = 1, 2, 3, 4, 5 berechnen. (b) Indem Sie S n := n 1 j=0 für n = 1, 2, 3, 4, 5 berechnen. j! Tragen Sie die Werte in eine Tabelle ein. Welche Folge konvergiert schneller? 2. Vereinfachen Sie folgende Ausdrücke (a) (a 2 ) 3 + a 2 a 3 + (a 3 ) 2 (b) a 7x /a 3x (c) (e 3 ) 2 (d) exp(3 2 ) (e) e x 3. Berechnen Sie folgende Logarithmen ohne einen (Taschen)rechner zu verwenden: (a) log 2 8 (b) log (c) log (d) log 3 81 (e) log 9 3 (f) log Drücken Sie die folgenden Terme als Terme in ln x und ln y aus: (a) ln(x 2 y) (b) ln xy (c) ln(x 5 y 2 ) 5. Drücken Sie die folgenden Terme durch einen einzigen Logarithmus aus: (a) ln 14 ln 21 + ln 6 (b) 4 ln 2 1 ln 25 2 (c) 1.5 ln 9 2 ln 6 (d) 2 ln(2/3) ln(8/9) 6. Vereinfachen Sie die Ausdrücke (a) exp { 1 ln [ ]} 1 x 2 1+x (b) e 2 ln x 7. Zeichen Sie die folgenden Funktionen jeweils in einen Graphen (a) y = 2 x und y = log 2 x (b) y = e x und y = ln x (c) y = 10 x und y = log x

7 Mathematik 1, Übungen Nr. 9 Seite 7 von Dezember Bei der Radiokarbonmethode nutzt man die Tatsache aus, daß das radioaktive Kohlenstoff- Isotop 14 C mit einer Halbwertszeit T 1 von 5730a (1a = 1 Jahr) unter β-zerfall zu 2 Stickstoff ( 14 N) zerfällt. Für das Verhältniss γ von 14 C zu 12 C gilt ein Gesetz γ = γ Luft e λt, wobei t die Zeit beschreibt. Bestimmen Sie λ aus der angegebenen Halbwertszeit T 1, die ja angibt, nach welcher 2 Zeit die Hälfte des Stoffes zerfallen ist. Bei einer Probe wurde γ = 0.19γ Luft gemessen. Wie alt ist die Probe? 9. Die Beschleunigung einer Rakete soll beschrieben werden. Der Brennstoff der Rakete entweiche mit der Ausströmgeschwindigkeit a. Dabei verliert die Rakete in der Zeit t die Masse m und gewinnt dabei die Geschwindigkeit v: Vorher: t Nachher: t + dt m -dm m + dm, dm < v v + dv - a v + dv Wir betrachten den Fall, daß keine äußere Kraft wirkt. Dann sagt uns der Impulssatz der Mechanik, daß der Impuls des Gesamtsystems, das aus der Rakete und dem ausströmendem Treibstoff besteht, sich nicht ändert, also, daß Impuls zur Zeit t = Impuls zur Zeit t + t Das schreiben wir auf und erhalten: (m + m)(v + v) (v + v a) m }{{}}{{} mv = 0. Nachher Vorher Für kleine m, v werden hierin Produkte wie v m weggestrichen und man erhält: m v + a m = 0. Das schreiben wir jetzt um zu m = 1 a m v Vergleicht man das mit der obigen Gleichung für das ungebremste Wachstum, N = αn t, und deren Lösung N(t) = N 0 exp(αt), so folgt die analoge Gleichung für die Rakete m(v) = m 0 exp( v a ),

8 Mathematik 1, Übungen Nr. 9 Seite 8 von Dezember 2006 wobei m 0 = m(v = 0) die Startmasse der Rakete ist. Durch Logarithmieren dieser Gleichung fogt schließlich die Raketengleichung für die Bewegung einer Rakete ohne äußere Kräfte: v = a ln( m 0 m ) (15) Sie wurde 1903 von Konstantin Ziolkowski aufgestellt. Fragen: (a) Die Ausströmgeschwindigkeit des Treibstoffs betrage 2km/s. Wieviel Prozent der Anfangsmasse m 0 der Rakete müssen verbrannt werden um die erste kosmische Geschwindigkeit oder auch Kreisbahngeschwindigkeit von 7.9km/s zu erreichen? Das ist die Mindestgeschwindigkeit für Satelliten. Wieviel Prozent von m 0 müssen verbrannt werden um die zweite kosmische Geschwindigkeit oder auch Fluchtgeschwindigkeit von 11.2km/s zu erreichen? Mit dieser Geschwindigkeit kann man dem Schwerefeld der Erde entweichen. Warum verwendet man also mehrstufige Raketen? (b) Welcher Prozentsatz von m 0 muß verbrannt werden, damit die Geschwindigkeit v der Rakete gerade gleich der Ausströmgeschwindigkeit a des Treibstoffs ist? 10. Ein Kondensator der Kapazität C wird über einen in Reihe geschalteten Widerstand der Größe R aufgeladen: i R ---> o-----[////]--- U C \ / o Für die Zeitabhängigkeit des Ladestroms gilt dann i(t) = U R exp( t/(rc)) Für y := ln( i ) (Logarithmus des in Ampere gemessenen Stroms) und x := t (die in A s Sekunden gemessene Zeit) gilt also y = ln( U R 1 A ) 1 RC/s x. Das ist eine Geradengleichung. Aus einigen Messungen von t und i kann man also in einem Diagramm y gegen x abtragen und aus der Geradensteigung 1 und damit RC bei bekanntem R die Kapazität C des Kondensators bestimmen.

9 Mathematik 1, Übungen Nr. 9 Seite 9 von Dezember 2006 Seien U = 100V und R = 50kΩ. Nach t = 6s wird i = 0.4mA gemessen. Wie groß ist RC und C? Antwort: RC = 3.73s und C = 74.6µF 11. Wie lauten die Koeffizienten (A; k) der Funktion y = A exp(kx), deren Graph durch die Punkte (2; 1) und ( 2; 0.6) geht? 12. Was ist der Proportionalitätsfaktor zwischen den Logarithmen der Basen 2 und e. 13. Die Helligkeit L der Farbe die zur Wellenlänge λ gehört, kann über die Energie des elektromagnetischen Feldes pro Zeit, Fläche und Wellenlängenintervall definiert werden. Unter Wasser nimmt die Helligkeit L von ihrem Wert an der Oberfläche L 0 in Abhängigkeit von der Tiefe h nach einem Gesetz der Form L = L 0 exp( kh) ab. In einem Meter Wassertiefe beträgt die Helligkeit 93% des Wertes an der Oberfläche. Bei welcher Wassertiefe ist die Helligkeit auf 10% abgesunken? 14. Die Abkühlung eines Körpers von der Anfangstempertatur θ 0 auf die Umgebungstemperatur θ 1 wird durch ein Gesetz der Form θ θ 1 = (θ 0 θ 1 ) exp(kt) beschrieben, wobe θ die Temperatur des Körpers zur Zeit t ist. In einem Haus das auf θ 0 = 20 o C aufgeheizt ist, fällt bei einer Außentemperatur von 5 o C die Heizung aus. Nach 6 Stunden mißt man im Haus 18.5 o C. Welche Temperatur wird man nach 24 Stunden messen?

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion 1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion

Mehr

Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion

Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion 1/23 Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1718/ 27.10.2017 Potenzrechenregeln Es ist a n = a } a {{ a} für n

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Die Exponentialfunktion und ihre Anwendung in der Biologie

Die Exponentialfunktion und ihre Anwendung in der Biologie Die Exponentialfunktion und ihre Anwendung in der Biologie Escheria coli (kurz E. coli) sind Bakterien, die im Darm von Säugetieren und Menschen leben. Ein junges E. coli Bakterium wächst mit einer konstanten

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Funktionenfolgen, Potenzreihen, Exponentialfunktion

Funktionenfolgen, Potenzreihen, Exponentialfunktion Kapitel 8 Funktionenfolgen, Potenzreihen, Exponentialfunktion Der in Definition 7. eingeführte Begriff einer Folge ist nicht auf die Betrachtung reeller Zahlen eingeschränkt und das Beispiel {a n } = {x

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

3. DER NATÜRLICHE LOGARITHMUS

3. DER NATÜRLICHE LOGARITHMUS 3. DER NATÜRLICHE LOGARITHMUS ln Der natürliche Logarithmus ln(x) betrachtet als Funktion in x, ist die Umkehrfunktion der Exponentialfunktion exp(x). Das bedeutet, für reelle Zahlen a und b gilt b = ln(a)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

17 Exponentialfunktion und Logarithmus

17 Exponentialfunktion und Logarithmus 17 Exponentialfunktion und Logarithmus Die Exponentialfunktion gilt als die wichtigste Funktion der Analysis. Sie hat sowohl theoretische als auch praktische Bedeutung. Sie tritt in vielen Anwendungen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Exponentialfunktion & Logarithmus

Exponentialfunktion & Logarithmus Mathematik I für Biologen, Geowissenschaftler und Geoökologen & 31. Oktober 2011 & Potenzen Definitionsbereiche Potenzrechenregeln Beispiel exp Beispiel: Lichtabsorption Definition Injektivität Beispiel:

Mehr

Systemwissenschaften, Mathematik und Statistik

Systemwissenschaften, Mathematik und Statistik Systemwissenschaften, Mathematik und Statistik Systemwissenschaften: 1 WS: Systemwissenschaften 1, VO 2std 2 SS: Systemwissenschaften 2, VO 2std Übung zu Systemwissenschaften, UE 2std 3 WS: Systemwissenschaften

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 13. Oktober 2010 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net Dort können Sie Materialien

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Folgen, Reihen, Potenzreihen, Exponentialfunktion Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Folgen, Reihen, Potenzreihen, Exponentialfunktion 20.03.2012 Inhaltsverzeichnis 1 Folgen 2

Mehr

Funktionalgleichungen

Funktionalgleichungen Funktionalgleichungen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 10. Mai 2010 Funktionalgleichungen sind Gleichungen, mit denen Funktionen charakterisiert oder bestimmt werden können. In diesem

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

Alexander Riegel.

Alexander Riegel. Alexander Riegel riegel@uni-bonn.de 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen Exponentialfunktionen, Eulersche Zahl, Logarithmen Jörn Loviscach Versionsstand: 22. Oktober 2010, 23:29 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Brenner Osnabrück SS 2017 Grundkurs Mathematik II Vorlesung 53 Die rationalen Exponentialfunktionen Zu einer positiven Zahl b K aus einem angeordenten Körper K haben wir in der 27. Vorlesung

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Reihen, Exponentialfunktion Vorlesung

Reihen, Exponentialfunktion Vorlesung Reihen, Exponentialfunktion Vorlesung Marcus Jung 5.03.20 Inhaltsverzeichnis Inhaltsverzeichnis Reihen 3. Denition.................................... 3.2 Konvergenzkriterien für Reihen........................

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen:

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen: Formalisierungspropädeutikum Aufgabensammlung Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer Oktober 2016 Aufgabe 1 (de Morgan sche Regeln) Veranschaulichen Sie die de Morgan

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

Die Umkehrung des Potenzierens ist das Logarithmieren.

Die Umkehrung des Potenzierens ist das Logarithmieren. Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch

Mehr

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich! Exponential- u. Logarithmusfunktionen Los geht s Klick auf mich! Melanie Gräbner Inhalt Exponentialfunktion Euler sche Zahl Formel für Wachstum/Zerfallsfunktionen Logarithmen Logarithmusfunktionen Exponentialgleichung

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Der lange Weg zu den Potenz- und Logarithmengesetzen

Der lange Weg zu den Potenz- und Logarithmengesetzen Der lange Weg zu den Potenz- und Logarithmengesetzen. Schritt: x n, n N, also eine natürliche Zahl ungleich Null). Wie jeder weiß gilt: 0 6 0 3 = } 0 0 0 {{ 0 0 0} 0 } 0 {{ 0} = } 0 0 0 0 0 {{ 0 0 0 0}

Mehr

3 Logarithmen und Exponentialfunktion

3 Logarithmen und Exponentialfunktion Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 8. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

V. Claus, Juli 2005 Einführung in die Informatik II 45

V. Claus, Juli 2005 Einführung in die Informatik II 45 Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung.

Eigenschaften der Exponentialfunktion. d dx. 8.3 Elementare Funktionen. Anfangswertproblem für gewöhnliche Differentialgleichung. Kapitel 8: Potenzreihen un elementare Funktionen 8.3 Elementare Funktionen Die Exponentialfunktion ist für z C efiniert urch expz) := k! zk, hat Konvergenzraius r =, un aher ist expz) für alle z C stetig.

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

2 Wachstumsverhalten von Funktionen

2 Wachstumsverhalten von Funktionen Algorithmen und Datenstrukturen 40 2 Wachstumsverhalten von Funktionen Beim Vergleich der Worst-Case-Laufzeiten von Algorithmen in Abhängigkeit von der Größe n der Eingabedaten ist oft nur deren Verhalten

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Funktionen. D. Horstmann: Oktober

Funktionen. D. Horstmann: Oktober Funktionen D. Horstmann: Oktober 2016 128 Funktionen Definition 9. Eine Funktion f ist eine Rechenvorschrift, die jedem Element einer Menge D genau ein Element einer Zielmenge Z zuweist. Die Menge D heißt

Mehr

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen:

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen: Formalisierungspropädeutikum Aufgabensammlung Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer, C. Didden, A. Omar, P. Schwaferts Oktober 2017 Aufgabe 1 (de Morgan sche Regeln)

Mehr

Exponentialfunktionen

Exponentialfunktionen Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Wintersemester 2017/18 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt 0 zum Thema Elementaraufgaben. Aufgabe 1 Vereinfachen Sie folgende Ausdrücke so weit wie möglich: a) 100 [(b + 20)

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr