2. Stabilitätsprobleme und Theorie II. Ordnung

Größe: px
Ab Seite anzeigen:

Download "2. Stabilitätsprobleme und Theorie II. Ordnung"

Transkript

1 Baustatik WS 212/ Stabiitätsprobeme und Theorie II. Ordnung 2.6 Berücksichtigung der geometrischen Imperfektionen

2 Imperfektionen Bisher: Annahme der perfekten Tragwerke und des perfekten Bauprozesses! In der Praxis treten aber Abweichungen von den gepanten perfekten Tragwerken im Bauprozess auf. Diese Abweichungen werden häufig as Imperfektionen bezeichnet und sie müssen bei dem Entwurf und der Panung von Tragwerken berücksichtigt werden. Unter Imperfektioen versteht man ae negativen Einfüsse, die zur Vergrößerung der Beanspruchung von perfekten Tragwerken in ungünstiger Weise führen.

3 Aufteiung: Aufteiung der Imperfektionen Imperfektionen Geometrische Imperfektionen Materiee Imperfektionen Geometrische Imperfektionen werden auch as Vorverformungen bezeichnet. Sie steen die Abweichungen von der Sogeometrie des Tragwerks dar. Beispiee dazu sind: Ungewote Schiefsteungen. Lotabweichungen bei Stützen. Lastausmittigkeit. Vorverkrümmungen und Vorverdrehungen.

4 Aufteiung der Imperfektionen Materiee Imperfektionen sind die Abweichungen von den definierten Materiaeigenschaften. Beispie dazu sind: Streuungen der Materiaparameter. Eigenspannungen durch Bauprozess. Eine Berücksichtigung der beiden Arten von Imperfektionen ist sehr aufwendig. In den meisten Normen wird nur die Berücksichtigung von geometrischen Imperfektionen verangt. Geometrische Imperfektionen sind immer in ungünstigster Form zu berücksichtigen. Häufig werden sie affin zur Knickfigur angesetzt. Fas die Knickfigur unbekannt ist, soen mehrere Kombinationen mit den anderen Lastfäen untersucht werden, um die ungünstigste Wirkung der Imperfektionen heraus zu finden.

5 Vorverkrümmung und Vorverdrehung In dieser Voresung werden nur 2 Arten der geometrischen Imperfektionen betrachtet: Vorverkrümmung. Vorverdrehung. perfekt perfekt vorverformt (Vorverdrehung) verformt verformt vorverformt (Vorverkrümmung)

6 Baustatik WS 212/ Differentiageichung für vorverformte Stäbe

7 Berücksichtigung der Vorverformungen Vorverformter Baken: z,w x,u w tot w w Gesamte Durchbiegung: w w w tot

8 Geichgewicht am verformten System Geichgewicht: am verformten System x,u dx perfekt z,w w vorverformt w +dw w q x S M T dw+dw q z verformt T+dT w +dw M+dM S+dS

9 Geichgewicht am verformten System dt q ( x) dx z S( dwdw ) dm T dx 1 qz ( x) dx dx 2, da höherer Ordnung! 1 q ( x) dx ( dw dw ) 2 x, da höherer Ordnung! T q z M S( ww) T (1) (2)

10 Geichgewicht am verformten System Abeitung von (2) nach x und dann Einsetzen von (1): MS( ww ) q z (3) Werkstoffgesetz: Hookesches Gesetz M EI EI w ( EIw) S w qz S w Für EI = const. erhät man: IV EIw S w qz S w (4) (5) (6)

11 Differentiageichung inearisierter Th. II. Ordnung Mit der Stabkennzah erhät man aus (6) oder mit S EI 2 2 IV qz w w w / EI IV 2 z 2 w w w (7) q (8) EI

12 Lösung der Differentiageichung: mit wx w x w x w x Homogene Lösung: h w h q ( ) ( ) z w ( ) ( ) h p p ( x) : homogene Lösung qz w w ( x), w ( x) : partikuäre Lösungen p w ( x) C C ( x) C cos( x) C sin( x) C1, C2, C3, C4 : Lösung der DGL p Unbekannte Konstanten, aus Randbedingungen zu bestimmen!

13 Lösung der DGL Partikuäre Lösungen: Die partikuären Lösungen können mit dem Ansatz vom Typ der rechten Seite gewonnen werden. Beispie: Konstante Streckenast qz const. w q p z ( x) qz 1 EI 2 2 x 2

14 Beispiee Beispie: Vorverdrehung z,w w x w w ( x) x p w x Beispie: Vorverkrümmung x w 4w x1 x w z,w w w ( x) 4w p 2 x 2 x 2

15 Baustatik WS 212/ Ersatzast für die Vorverformungen

16 Da die Vorverformung auf der rechten Seite der DGL und somit in der partikuären Lösung der DGL vorkommt, kann ihren Einfuss auf die Gesamtösung durch eine Ersatzast p* berücksichtigt werden. Vorverdrehung: Ersatzast S perfekt S S S S Vorverdrehung S Vorverdrehung wird durch ein Kräftepaar (Ersatzast) ersetzt!

17 Ersatzast Vorverkrümmung: x S perfekt S p * 2 p * p * 2 Vorverkrümmung w 4w x w ( x) 1 x S p* 8w 2 S S Vorverkrümmung wird durch p* und 2 Einzekräfte p*/2 ersetzt!

18 Bemerkungen Eine Vorverformung entspricht einer zusätzichen Beastung. Dadurch werden die Schnittgrößen vergrößert. Die Vorverformung ist immer in ungünstigster Richtung anzusetzen, damit sie zu einer Vergrößerung der Schnittgrößen führt. Sonst führt sie zu einer Reduzierung der Schnittgrößen (unsicher!). Sowoh die Ampitude as auch die Form der Vorverformung sind daher wichtig. Fas man nicht weißt, in wecher Form die Vorverformung ungünstig wirkt, dann sind mehrere Kombinationen mit den anderen Lastfäen zu untersuchen, um die ungünstigste Wirkung der Vorverformung zu finden.

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem

Stabilitätsprobleme. Arten der Gleichgewichtslagen. Stabilitätskriterium. Verzweigungsproblem & Durchschlagsproblem Stabiitätsprobeme Arten der Geichgewichtsagen Stabiitätskriterium Verzweigungsprobem & Durchschagsprobem Theorie II. II. Ordnung und Knickgeichung Arten der Geichgewichtsagen Ein Tragwerk muss in stabier

Mehr

Statik und Tragwerkslehre B

Statik und Tragwerkslehre B UMWELTINGENIEURWISSENSCHATEN, STATIK UND DYNAMIK Bacheor - Studiengang Bauingenieurwesen Prüfungsfach Statik und Tragwerksehre B Kausur am 21.02.2011 Name: Vorname: Matr.-Nr.: (bitte deutich schreiben)

Mehr

Statik und Tragwerkslehre B

Statik und Tragwerkslehre B Bacheor - Studiengang Bauingenieurwesen Prüfungsfach Statik und Tragwerksehre B Kausur am 29.08.2011 Name: Vorname: Matr.-Nr.: (bitte deutich schreiben) (9-steig) Aufgabe 1 2 3 4 Summe mögiche Punkte 15

Mehr

Modulprüfung Baustatik II am 16. Februar 2012

Modulprüfung Baustatik II am 16. Februar 2012 HOCHSCHULE WISMAR Fakultät für Ingenieurwissenschaften Bereich Bauingenieurwesen Prof. Dr.-Ing. R. Dallmann Modulprüfung Baustatik II am. Februar Name:.................................................................

Mehr

bzw. m 2 sowie zwei Federn und einem viskosen Dämpfer. die Eigenfrequenz des Systems für die Drehschwingung um den Punkt A und starr 3, 0 m

bzw. m 2 sowie zwei Federn und einem viskosen Dämpfer. die Eigenfrequenz des Systems für die Drehschwingung um den Punkt A und starr 3, 0 m MODULPRÜFUNG BAUDYNAMIK 09.0.015 Aufgabe 1 Der nachfogend dargestete Einmassenschwinger so untersucht werden. Das System besteht aus einem starren Baken mit den bereichsweise konstanten Massen m 1 bzw.

Mehr

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Der Grenzzustand der Stabilität nach Theorie II. Ordnung Prof. Dr.-Ing. Uwe E. Dorka Leitbauwerk Halle Geometrisch perfektes System: keine Kräfte in den Diagonalen, Gleichgewicht im

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Diplomprüfung Herbst 2009 Prüfungsfach Statik Klausur am 05.10.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30

Mehr

3.7 Sonderprobleme Ausnutzung der Symmetrie und Antimetrie. Größe. Belastung

3.7 Sonderprobleme Ausnutzung der Symmetrie und Antimetrie. Größe. Belastung VORLESUGSAUSKRIPT BAUSTATIK I II (UVERTIEFT).7 Sonderrobeme.7. Ausnutzung der Symmetrie und Antimetrie Durch die Ausnutzung der Symmetrie und Antimetrie kann der Grad der statischen Unbestimmtheit (u.

Mehr

Statik und Tragwerkslehre B

Statik und Tragwerkslehre B Bacheor - Studiengang Bauingenieurwesen Prüfungsfach Statik und Tragwerksehre B Kausur am 27.02.2012 Name: Vorname: Matr.-Nr.: (bitte deutich schreiben) (9-steig) Aufgabe 1 2 3 4 Summe mögiche Punkte 15

Mehr

Kapitel 10 Stabilitätsprobleme

Kapitel 10 Stabilitätsprobleme Institute of Structural Engineering Page 1 Kapitel 10 Stabilitätsprobleme Institute of Structural Engineering Page 2 Lernziele: Was ist Stabilität und wann ist ein Sstem stabil Stabilitätsprobleme klassifizieren

Mehr

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage

Baustatik 2. Berechnung statisch unbestimmter Tragwerke. von Raimond Dallmann. 1. Auflage Baustatik Berechnung statisch unbestimmter Tragwerke von Raimond Damann 1. Aufage Baustatik Damann schne und portofrei erhätich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 006 Verag C.H. Beck

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Institut für Agemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 9.Übung Mechanik II SS 27 18.6.6 Abgabetermin 9.Übung: 25.7.6 14: Uhr 1. Aufgabe Der skizzierte, statisch unbestimmte aken wird

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN Baustatik I (WS 2017/2018) 1. Einführung 1.2 Modellbildung 1 Statische Berechnungen Für die statischen Berechnungen sind geeignete Tragwerksmodelle mit den maßgebenden Einflussgrößen zu wählen, welche

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Diplomprüfung Frühjahr 2009 Prüfungsfach Statik Klausur am 23.02.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30

Mehr

Beispiel 4: Theorie II. Ordnung

Beispiel 4: Theorie II. Ordnung Beispiel: Theorie II. Ordnung Blatt: Seite 1 von 10 Beispiel 4: Theorie II. Ordnung Nachweis: Stabilität des Systems nach Theorie II. Ordnung. Schnittgrößen nach Theorie I. Ordnung, ohne Imperfektion F

Mehr

1. Aufgabe: (ca. 11% der Gesamtpunktzahl) Bitte beantworten Sie folgende Fragen: 1. Wie ist der Schubmittelpunkt definiert?

1. Aufgabe: (ca. 11% der Gesamtpunktzahl) Bitte beantworten Sie folgende Fragen: 1. Wie ist der Schubmittelpunkt definiert? . Aufgabe: (ca. % der Gesamtunktzah) Bitte beantworten Sie fogende Fragen:. Wie ist der Schubmitteunkt definiert?. Durch weche Einschränkungen des agemeinen dreidimensionaen Sannungszustandes ergibt sich

Mehr

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe

Einleitung Ebener Druckstab Ebene Stabsysteme Räumliche Systeme. Stabilitätsfragen. Theorie II. Ordnung. Dr.-Ing. Jürgen Priebe Stabilitätsfragen Theorie II. Ordnung Wintersemester 2012/2013 Stabilitätsfragen 1 / 36 Einleitung Begriffe (aus Wikipedia) Theorie I. Ordnung Die Berechnung der Kräfte an unverformten Tragwerken nennt

Mehr

Prüfung in Methode der finiten Elemente. Matrikelnummer: Studiengang: Wiederholer

Prüfung in Methode der finiten Elemente. Matrikelnummer: Studiengang: Wiederholer Universität Stuttgart INSTITUT MECH NIK FUR Prüfung in Methode der finiten Eemente Name, Vorname: Matrikenummer: Studiengang: Wiederhoer Emai: Unterschrift: Hauptfach: Bitte beachten Sie Fogendes: 1. Es

Mehr

Variation der Theorie II. Ordnung (sog. Theorie III. Ordnung) nach Newton-Raphson

Variation der Theorie II. Ordnung (sog. Theorie III. Ordnung) nach Newton-Raphson Nichtlineare Berechnungen: Theorie II. Ordnung nach Timoshenko Variation der Theorie II. Ordnung (sog. Theorie III. Ordnung) nach Newton-Raphson Wendepunkt Knickbiegelinie: Sinusfunktion Sk=L Eulerfall

Mehr

Baustatik II (SS 2011) 8. Flächentragwerke. 8.1 Einführung UNIVERSITÄT SIEGEN LEHRSTUHL FÜR BAUSTATIK

Baustatik II (SS 2011) 8. Flächentragwerke. 8.1 Einführung UNIVERSITÄT SIEGEN LEHRSTUHL FÜR BAUSTATIK Baustatik II (SS 011) 8. Flächentragwerke 8.1 Einführung 8.1 Einführung 8.1 Einführung 8.1 Einführung 8.1 Einführung 8.1 Einführung 8.1 Einführung 8.1 Einführung Baustatik II (SS 011) 8. Scheiben 8..1

Mehr

Baudynamik (Master) SS Beispiele: Ungedämpfte freie Schwingungen

Baudynamik (Master) SS Beispiele: Ungedämpfte freie Schwingungen Baudynamik (Master) SS 7 Beispiee: Ungedämpfte freie Schwingungen Ungedämpfte freie Schwingungen Beispie : Eigenfrequenzen und Eigenformen m m m m, m m m Steifigkeitsmatrix: K= k 7 5 5 6 k 48EI Massenmatrix:

Mehr

NUMERISCHE METHODEN DER MECHANIK

NUMERISCHE METHODEN DER MECHANIK ÜBUNG 1 n(), n() = n (2 sin(π )) 2 ÊA() = EA Gesucht: a) Randbedingungen für = und = b) Näherungsösung für die Verschiebung u() mit Hife der Methode der finiten Differenzen (MFD) und N = 4 (4 Abschnitte,

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

FESTSTELLUNGSPRÜFUNG in HM2

FESTSTELLUNGSPRÜFUNG in HM2 FESTSTELLUNGSPRÜFUNG in HM2 FDIBA - TU, WS 27/8 INFORMATIK Name: Immatrikulationsnummer: Aufgabe : Zu lösen sei, durch Anwendung der Transformation von Laplace, das Anfangswertproblem 9P. u () (t) u(t)

Mehr

10 Erzwungene Schwingungen durch inhomogene Randbedingungen

10 Erzwungene Schwingungen durch inhomogene Randbedingungen 63 10 Erzwungene Schwingungen durch inhomogene Randbedingungen Schwingungen eines kontinuierlichen Systems lassen sich nicht nur durch verteilte Kräfte, sondern auch durch zeitveränderliche Bindungen an

Mehr

Potentielle Energie, P.d.v.K. und P.d.v.V.

Potentielle Energie, P.d.v.K. und P.d.v.V. IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Potentielle Energie, P.d.v.K. und P.d.v.V. Fachgebiet Baustatik 2. Februar 26 Inhaltsverzeichnis 1 Die potentielle Energie 1 1.1

Mehr

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik

Beispiele zur Identifikation von Fehlvorstellungen in der Technischen Mechanik Beispiee zur Identifikation von Fehvorsteungen in der Technischen Mechanik Urike Zwiers, Andrea Dederichs-Koch 9. Ingenieurpädagogische Regionatagung 6. 8. November 2014, Universität Siegen Giederung 1.

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Ruhr-Universität-Bochum Fakutät für Bauingenieurwesen Statik und Dynamik Lösung zur Dipomprüfung Herbst 2005 Prüfungsfach Statik Kausur am 05.09.2005 ame: Vorname: Matrikenummer: (bitte deutich schreiben)

Mehr

Imperfektionen und Stabilität. M. Neumeister Institut für Leichtbau, Universität der Bundeswehr München

Imperfektionen und Stabilität. M. Neumeister Institut für Leichtbau, Universität der Bundeswehr München Imperfektionen und Stabilität M. Neumeister Institut für Leichtbau, Universität der Bundeswehr München Gliederung Problemstellung Sandwichbauweise mit geschlossenen Deckhäuten Sandwichbauweise mit offenen

Mehr

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z

ELASTISCHE BETTUNG (ZUSAMMENFASSUNG) y z (ZUSENFSSUNG) rbeitsblätter. LLGEEINES. Sstem und Belastung Längsansicht: p( x) z, w x, u Biegesteifigkeit EI h Bettung c l Querschnittsdarstellung: p( x) p ( x) ( verschmiert) z h Bettung c b Bemerkung:

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

KLAUSUR STAHLBAU GRUNDLAGEN

KLAUSUR STAHLBAU GRUNDLAGEN Fachgebiet Stahl- und Verbundbau Prof. Dr.-Ing. Uwe E. Dorka KLAUSUR STAHLBAU GRUNDLAGEN 20. September 2010 - Theorieteil - Bearbeitungsdauer: 90 Minuten Name: Vorname: Matr.-Nr.: Versuch Nummer: Aufgabe

Mehr

Aufgabe 1 (Seite 1 von 2) Das dargestellte Fachwerk ist in den Punkten A und B gelagert und wird durch die Einzelkräfte F 1,F 2 und F 3 belastet.

Aufgabe 1 (Seite 1 von 2) Das dargestellte Fachwerk ist in den Punkten A und B gelagert und wird durch die Einzelkräfte F 1,F 2 und F 3 belastet. Fakutät Maschinenbau Prof. Dr.-Ing. A. Menze Prof. Dr.-Ing. J. Moser Aufgabe 1 (Seite 1 von 2) Das dargestete Fachwerk ist in den Punkten A und B geagert und wird durch die Einzekräfte F 1,F 2 und F 3

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

Vereinfachte Imperfektionen nach Eurocode im Vergleich zu den Formeln

Vereinfachte Imperfektionen nach Eurocode im Vergleich zu den Formeln Gerad LUZA Vereinfachte Imperfektionen nach Eurocode 3-1-1 im Vergeich zu den Formen 5.9+5.10 Gerad LUZA Büro Dr. LUZA, Stahbau-Panungsbüro, Österreich KURZFASSUG: Im Eurocode 3-1-1 werden ähnich der DI

Mehr

Festigkeitslehre. Aufgaben

Festigkeitslehre. Aufgaben Modurüfung in Technischer Mechanik am 8. März 06 Festigkeitsehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutich esbar. Zeichnungen müssen sauber und übersichtich

Mehr

Spezielle Funktionen. Kapitel Legendre-Polynome

Spezielle Funktionen. Kapitel Legendre-Polynome Kapite 3 Speziee Funtionen Funtionen wie die Legendre-Poynome 3.), die Bessefuntion 3.), die Hermite-Poynome 3.3) oder die Laguerre-Poynome 3.4) hängen mit den Lösungen diverser Randwertprobeme zusammen,

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Baustatik II (SS 2011) 8.3 Platten LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN

Baustatik II (SS 2011) 8.3 Platten LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN Baustatik II (SS 011) 8.3 Platten 8.3.1 Schnittgrößen in Platten Voraussetzungen: # Dicke viel kleiner als die Seitenlängen. # Lasten wirken quer zur Plattenebene. 8.3.1 Schnittgrößen in Platten Spannungen

Mehr

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005

PP - Physikalisches Pendel Blockpraktikum Frühjahr 2005 PP - Physikaisches Pende Bockpraktikum Frühjahr 2005 Regina Schweizer, Aexander Seizinger, Tobias Müer Assistent Heiko Eite Tübingen, den 14. Apri 2005 1 Theoretische Grundagen 1.1 Mathematisches Pende

Mehr

80 Schwingende Saiten

80 Schwingende Saiten 80 Schwingende Saiten 331 80 Schwingende Saiten 80.1 Probem. Es werden die Schwingungen einer (Geigen-) Saite der Länge > 0 und Massendichte ρ(x) > 0, 0 x, untersucht. Ist diese in den Punkten x = 0 und

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode 11. Übung Prof. Dr.-Ing. W. Fischer Fachhochschue Dortmund Knicken und Beuen 1. Bestimmen Sie sowoh anaytisch wie auch mit Hife des FEM-Systems HyperWorks 14 für einen Stah-Kragträger der Länge = 1 m (quadratischer

Mehr

System A von x bis x h Versatz y/z Q [m] [m] [m] [cm] [cm] Randbedingungen y-richtung Kragstütze z-richtung Kragstütze

System A von x bis x h Versatz y/z Q [m] [m] [m] [cm] [cm] Randbedingungen y-richtung Kragstütze z-richtung Kragstütze mb-viewer Version 2009 - Copyright 2008 - mb AEC Software GmbH project title Pos. Beisp-a Kragstütze mit allgem. Rechenverfahren System A von x bis x h Versatz y/z Q [m] [m] [m] 4.00 4.00 Randbedingungen

Mehr

2. Elastische Bettung

2. Elastische Bettung Baustatik (Master) - WS17/18 2. Elastische Bettung 2.1 Bauwerk-Baugrund-Interaktion 2.2 Steifemodul und Bettungsmodul 2.3 Differentialgleichung elastisch gebetteter Balken 2.4 Lösung der Differentialgleichung

Mehr

Die Verformungstheorie I., II. und III. Ordnung.

Die Verformungstheorie I., II. und III. Ordnung. Die Verformungstheorie I., II. und III. Ordnung. Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 25. November 2012 Letzte Revision: 15. Juni 2015 Inhaltsverzeichnis 1 Einleitung 2

Mehr

6 Eigenlösungen der eindimensionalen Wellengleichung

6 Eigenlösungen der eindimensionalen Wellengleichung 39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die

Mehr

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 1 Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 2 Lernziele: Sie können Stabilitätsprobleme

Mehr

2 Grundzüge der Theorie 2. Ordnung und Einführung in die Stabilitätstheorie

2 Grundzüge der Theorie 2. Ordnung und Einführung in die Stabilitätstheorie Grundzüge der Theorie. Ordnung und Einführung in die Stabilitätstheorie. Grundzüge der Theorie. Ordnung Wenn wir unsere bisherigen Untersuchungen daraufhin prüfen, ob alle in der Baupraxis vorkommenden

Mehr

11 Balkenbiegung Technische Mechanik Balkenbiegung

11 Balkenbiegung Technische Mechanik Balkenbiegung 11 Balkenbiegung Balkenbiegung 2 Motivation / Einführung Ziele: Berechnung der Balkendurchbiegung (Deformation) Berechnung der Schnittgrößen für statisch unbestimmte Systeme Balken Definition Stabförmig;

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Grundsatz Geschossbauten müssen gegen Horizontallasten ausgesteift sein. Aussteifende Bauteile können sein: Wandscheiben, Kerne, Rahmen, Verbände Bauformen Schotten- oder Wandbau, meist im Wohnungsbau.

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Anleitung zu Blatt 3 Differentialgleichungen II. Wellengleichung

Anleitung zu Blatt 3 Differentialgleichungen II. Wellengleichung Department Mathematik der Universität Hamburg SoSe 9 Dr. Hanna Peywand Kiani Aneitung zu Batt 3 Differentiageichungen II Weengeichung Die ins Netz gesteten Kopien der Aneitungsfoien soen nur die Mitarbeit

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.:

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Fakutät Maschinenbau Prof. Dr.-Ing. A. Menze Prof. Dr.-Ing. J. Moser Aufgabe 1 (Seite 1 von 3) a) Die nebenstehend skizzierte, inks eingespannte Konsoe wird wie dargestet durch Traktionen (eingeprägte

Mehr

Tipp 15/02. Schiefstellung Θi nach DIN EN : [1] in Verbindung mit DIN EN /NA: [2]

Tipp 15/02. Schiefstellung Θi nach DIN EN : [1] in Verbindung mit DIN EN /NA: [2] Tipp 15/02 Schiefstellung Θi nach DIN EN 1992-1-1:2011-01 [1] in Verbindung mit DIN EN 1992-1-1/NA:2013-04 [2] Hinweis: Durch die bauaufsichtliche Einführung von [2] und die in [2] enthaltene inhaltliche

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Lösung zur Diplomprüfung Frühjahr 2007 Prüfungsfach Statik Klausur am 26.02.2007 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 5 6 7 8 9 Summe mögliche Punkte 20 5

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

q = 3 kn/m Abb. 1: Eingespannter, abgeknickter Träger unter Gleichstrecken-und Punktlast.

q = 3 kn/m Abb. 1: Eingespannter, abgeknickter Träger unter Gleichstrecken-und Punktlast. ateriatheorie - LK, Sekr. S Einsteinufer 5, 1587 Berin 6. Übungsbatt Schnittgrößen am biegesteifen Träger WS 11/1 1. ür den in bb. 1 dargesteten, mit einer Einzekraft und einer Geichstreckenast beasteten

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionee Materiaien WS 07/8 Übunen zu Experimentaphysik für MSE Prof. Dr. Peter Müer-Buschbaum, Dr. Voker Körstens, Dr. Neeima Pau, Sebastian Grott, Lucas Kreuzer, Simon Schaper,

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Sessionsprüfung Baustatik I+II. Winter 2008/09. Montag, 26. Januar 2009, Uhr, HIL E7

Sessionsprüfung Baustatik I+II. Winter 2008/09. Montag, 26. Januar 2009, Uhr, HIL E7 Sessionsprüfung austatik I+II Winter 2008/09 Montag, 26. Januar 2009, 09.00 12.00 Uhr, HIL E7 Name, Vorname : Studenten-Nr. : emerkungen 1. e ufgaben haben das geiche Gewicht. 2. Die ufgaben dürfen in

Mehr

Modulprüfung Baustatik I am 3. Februar 2016

Modulprüfung Baustatik I am 3. Februar 2016 HOCHSCHULE WISAR Fakultät für Ingenieurwissenschaften Bereich Bauingenieurwesen Prof. Dr.-Ing. R. Dallmann odulprüfung Baustatik I am. Februar 0 Name:.................................................................

Mehr

Elastizitätslehre Biegebalken

Elastizitätslehre Biegebalken 3. Semester Seite 1/9 Elastizitätslehre Biegebalken 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Biegebalken 2 4.1 Allgemeines 2 4.2 Werkstoff und Randfaserdehnung 3 4.3 Geometrische

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Der Grenzzustand der Stabilität nach Theorie II. Ordnung. Prof. Dr.-Ing. Uwe E. Dorka Sthlbu Grundlgen Der Grenzzustnd der Stbilität nch Theorie II. Ordnung rof. Dr.-Ing. Ue E. Dork eitbuerk lle Geometrisch perfektes System: keine Kräfte in den Digonlen, Gleichgeicht im chbrzustnd führt

Mehr

Lösungen zu den. Übungsaufgaben. Höhere Festigkeitslehre

Lösungen zu den. Übungsaufgaben. Höhere Festigkeitslehre akutät 3 zu den Übungsaufgaben Wintersemester 4/5 Dr. C. Katzenschwanz festigkeit.userweb.mwn.de Die mit( ) gekennzeichneten Aufgaben sind ehemaige Prüfungsaufgaben. Version.5 Wintersemester 4/5 8. Oktober

Mehr

Übungsaufgaben Mathematik III MST

Übungsaufgaben Mathematik III MST Übungsaufgaben Mathematik III MST Lösungen zu Blatt Differentialgleichungen Prof. Dr. B.Grabowski Zu Aufgabe ) Zu a) lassifizieren Sie folgende Differentialgleichungen nach folgenden riterien: -Ordnung

Mehr

1. EINFLUSSLINIEN FÜR KRAFTGRÖßEN

1. EINFLUSSLINIEN FÜR KRAFTGRÖßEN Arbeitsblätter 1 Hinweise zur Konstruktion und Berechnung von Einflusslinien Definition: Eine Einflusslinie (EL) liefert den Einfluss einer Wanderlast P = 1 von festgelegter Wirkungsrichtung. längs des

Mehr

Großübung Stabilität, elastische Knickung, Eulerfälle

Großübung Stabilität, elastische Knickung, Eulerfälle Großübung Stabiität, eastische nickung, Euerfäe Ein druckbeanspruchter gerader Stab kann seine unktion (Geichgewicht mit gerader Stabachse) verieren, auch wenn die im Stab vorhandene Druckspannung σ d

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

2. Stabilitätsprobleme und Theorie II. Ordnung

2. Stabilitätsprobleme und Theorie II. Ordnung Baustatik (Master) - WS 2013/2014 2. Stabilitätsprobleme und Theorie II. Ordnung 2.5 Weggrößenverfahren (WGV) 2.5.1 Weggrößenverfahren nach Th. I. Ordnung 2.5.2 Weggrößenverfahren nach Th. II. Ordnung

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

1. Klausur Kontinuumsmechanik WS 2010/11. 1 (15 Punkte)

1. Klausur Kontinuumsmechanik WS 2010/11. 1 (15 Punkte) Univ. Prof. Dr. rer. nat. Wofgang H. Müer Technische Universität Berin Fakutät V Lehrstuh für Kontinuumsmechanik und Materiatheorie - LKM, Sekr. MS 2 Einsteinufer 5, 10587 Berin 1. Kausur Kontinuumsmechanik

Mehr

Baustatik II und III (PO 2013)

Baustatik II und III (PO 2013) Bachelorprüfung Frühjahr 2016 Modul 18 (BI) Baustatik II und III (PO 2013) Klausur am 20.02.2016 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche

Mehr

Differentialgleichungen erster Ordnung

Differentialgleichungen erster Ordnung Differentialgleichungen 1996 Peter Senn, Ph.D. Differentialgleichungen erster Ordnung Aufgabe M-DG-1: Bestimme die Lösung von x dy + (1 - x)y = x ex für welche y(1) = 0. Aufgabe M-DG-2: Bestimme die Lösung

Mehr

Lösungen zum Crashkurs: Statik Teil 1 Thema: Gleichgewichtsbedingungen, Schnittgrö ßen und Fla chenschwerpunkte

Lösungen zum Crashkurs: Statik Teil 1 Thema: Gleichgewichtsbedingungen, Schnittgrö ßen und Fla chenschwerpunkte 1 Lösungen zum Crashkurs: Statik Tei 1 Thema: Geichgewichtsbedingungen, Schnittgrö ßen und Fa chenschwerpunkte Aufgabe zum Fächenschwerpunkt y 6 2 8 Gebe die Schwerpunktkoordinaten für das oben dargestete

Mehr

1 PdvV für ein System aus starren Körpern

1 PdvV für ein System aus starren Körpern Materiatheorie - LKM, Sekr. MS PdvV und PdvK Energiemethoden 06. Übungsbatt, WS 01/13, S. 1 1 PdvV für ein System aus starren Körpern Zur Bestimmung der fünf gesuchten Lagerreaktionen muss das System auf

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Finite-Elemente-Methoden im Stahlbau

Finite-Elemente-Methoden im Stahlbau Rolf Kindmann Matthias Kraus Finite-Elemente-Methoden im Stahlbau ICENTENN Ernst & Sohn Inhaltsverzeichnis 1 Einleitung und Übersicht 1 1.1 Erforderliche Nachweise und Nachweisverfahren 1 1.2 Verfahren

Mehr

Biegelinie: PSfrag replacements. I : w I (x) = q 1l 4 [( x. II : w II (x) = (q 2 q 1 )l 4 [ ( x. ges (x) = w I (x) + w II (x) (19) l 24 + q x 3 )

Biegelinie: PSfrag replacements. I : w I (x) = q 1l 4 [( x. II : w II (x) = (q 2 q 1 )l 4 [ ( x. ges (x) = w I (x) + w II (x) (19) l 24 + q x 3 ) Mechanik I Prof. Popov SS 05, 9. Woche Lösungshinweise Seite Biegeinienberechnung statisch bestimmter und unbestimmter Systeme Version. Juni 005 aus schanken Baken Aufgabe 9 a PSfrag repacements qx = q

Mehr

Geometrisch nichtlineares Verhalten

Geometrisch nichtlineares Verhalten Geometrisch nichtineares Verhaten.1 Grundbegriffe der geometrischen Nichtinearitäten Bei einer geometrisch inearen Berechnung geht man von fogenden Voraussetzungen aus: 1. Geichgewicht am unverformten

Mehr

Baustatik II und III (PO 2013)

Baustatik II und III (PO 2013) Bachelorprüfung Herbst 2015 Modul 18 (BI) Baustatik II und III (PO 2013) Klausur am 28.08.2015 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche

Mehr

1. Klausur Mechanik I SS 05, Prof. Dr. V. Popov

1. Klausur Mechanik I SS 05, Prof. Dr. V. Popov . Kausur Mechanik I SS 05, Prof. Dr. V. Popov itte deutich schreiben! Name, Vorname: Matr.-Nr.: Studiengang: itte inks und rechts ankreuen! Studienbegeitende Prüfung Ergebnis ins WWW Übungsscheinkausur

Mehr

2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung

2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung LEHRSTUHL FÜR BAUSTATIK, UNIVERSITÄT SIEGEN 2. Stabilitätsprobleme und Theorie II. Ordnung 2.1 Einführung Arten der Gleichgewichtslagen Ein Tragwerk muss in stabiler Gleichge- wichtslage sein. Viele Tragwerke

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB

2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X:

Aus diesem Ausdruck erhalten wir zwei unabhängige gewöhnliche lineare Differentialgleichungen für T und X: Eindimensionale Kontinuumsschwingungen II Kontinuumsmechanik 05. Übungsblatt, WS 2012/13, S. 1 1 Balkenschwingung Wir beginnen mit der Herleitung der Bewegungsdifferentialgleichung / Feldgleichung für

Mehr

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)

Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) Diplomprüfung Frühjahr 2006 Prüfungsfach Statik Klausur am 20.02.2006 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 4 6 25 20 30

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr