Musterlösung Aufgabe 1:

Größe: px
Ab Seite anzeigen:

Download "Musterlösung Aufgabe 1:"

Transkript

1 Klauur Impultehnik I & II Muterlöung Aufgabe : Punkte ) U, () mit Hilfe de Superpoitionprinzip betimmen: U, () = U e() Z g () {z } Strom wgu e + U a() Z g () {z } Strom wgu a C + C + C R R {z } Stromteilerregel! C + C C + R C + R {z } Stromteiler + Anteil über R Der Operationvertärker it Rükgekoppelt, daß Prinzip der verhwindenden Eingangpannung liefert: U, () = U+()! = 0, 0 = U e () + R+U a() + C + R, U a() U e (), H()= U a() U e () =, + R + =, C + R =, + + R C +(+) ) Offenihtlih gilt: H 0 =, ; 0 = 0 ; =,, R C =, PolNulltellendiagramm: H 0 =, (), jω m σ

2 Klauur Impultehnik I & II ) Bandpaß 4) Die Grenzwerte exitieren und liegt in jedem Fall im Konvergenzgebiet ) 5) h ε (t! ) = lim H()=0!0+ h ε (t! 0) = lim H()=0! h δ (t! 0) = lim! H()=, U e () = V ) U a () = V, + + R C =, V t, + d u a (t) =, V t t e, ε(t) ) d dt u a(t)=, V e, t +t e, t, = 0, t = u a (t)=v t=τ e,,

3 Klauur Impultehnik I & II Muterlöung Aufgabe : 9 Punkte ) E gilt: H N (S) = B N ( R S); mit S = = ; ω g π f g R: normierter Polkreiradiu owie B N (x) = Butterworthpolynom nter Ordnung, B (x) = x + p x+ ) H N () =, H N () = π f g R + p π f g R + (π f g R) + p πf g R +(π f g R) ) A D :Dämpfung bei Grenzfrequenz Ω = R jh N (Ω)j = n R n + Ω n 0 ) A D =,0dB log@ R n A R n =+0dB log + + R n, R = 0 + A D 0dB,, n = 0 + 0,, 4 = 0;7 3) PolNulltellendiagramm: H 0 R,, 45 Sm Σ

4 Klauur Impultehnik I & II ) f m = p f u f o = p 90kHz 0kHz = 99;5kHz Ω B = f o, f u f m = 0;0 5) Poltellenplitting: Der Bandpaß beitzt Nulltellen und 4 Poltellen ) Da Nutzignal liegt innerhalb de Bandpae: Dämpfung von u a (t) db Normieren de Störignal und Einetzen in die BandpaßTiefpaßTranformation: ^ 50kHz = 50kHz 99;5kHz 0;5 ) Ω TP = Ω BP, = Ω B Ω BP 0;5, =,7;5 0;0 0;5 Die Dämpfung de ButterworthTiefpae it auh die Dämpfung de Bandpae: v ),0dB logjh(ω = 7;5)j =,0dB logu t 4 =+39;7dB + 7;5 0;7 ) S N = 39;7dB, db = 33;7dB 7) H() = R R+L = + R L ),0dB logjh( jω)j = +0dB log + π f L!! =+db R, L = q kω 0 0, = 7mH π 0kHz 8) TiefpaßBandpaßtranformation S! S+ S ) (iehe Sript, Seite ) C L U () R = kω U ()

5 Klauur Impultehnik I & II Muterlöung Aufgabe 3: 0 Punkte 3) Für t! fallen alle Augleihvorgänge weg, e ergibt ih ein einfahe Ohmhe Netzwerk: 3) V ε(t) u 00Ω 00Ω 75Ω 50Ω 00Ω 00Ω u =, V 50Ω 00Ω 00Ω+75Ω+(50Ωjj00Ωjj00Ω) 5Ω =,0;5V r = 0 r 44 =, Für den Reflexionfaktor in der Leitungmitte muß nah Abbildung 33 der Innenwidertand der Diode beahtet werden Da Eratzhaltbild in der Leitungmitte hat folgende auehen: u h Z L A V 0mA = 50Ω! = Z L i:d: C Da Eratzhaltbild it für Wellen von link und von reht identih, da die Wellenwidertände der beiden Leitungen identih ind Darau folgt r = r 33 r = r 33 = 8 < : Z L 0 die Diode perrt 0 fall t! und die Diode leitet, 3 t! 0 und die Diode leitet

6 Klauur Impultehnik I & II Alternativ kann man r und r 33 auh komplex angeben: 8 >< 0 die Diode perrt r = r 33 = fall >: die Diode leitet, 3 + 3Z L C 33) Reflexiondiagramm, alle Spannungen auf U 0 normiert P PPPPPPPPPPPPPPPPPPPPPqPPPPPPPPPPPPPPPPPPPPPPq, 3 ), 3, ), 3, ) T L 7T L 8T L 9T L 0T L T L T L

7 Klauur Impultehnik I & II u (t)=u y t t u (t)=u y t t

8 Klauur Impultehnik I & II Muterlöung Aufgabe 4: Punkte 4) Emitterhaltung mit Gegenkopplung 4) Großignaleratzhaltbild: u (t) C DN A R DN i e = i e U DN H U DI A N i e = A N i e R u (t) U B R Abbildung 4: 43) u ;min = U DN = 0;7V Sättigunggrenze: u Bai = u ;max = u Kollektor +U DI, u ;max = U B, A N i e R +U DI Eingangmahe: i e = u ;max,u DN R + R DN, u ;max = U B+U DI +U DN + A NR R + R DN ) u ;max = U B,(u ;max,u DN ) A N R R + R DN A N R R + R +U DN DI = (UB+UDI)(R RDN + )+U DNA N R R + R DN + A NR = ; V

9 Klauur Impultehnik I & II ) Dynamihe Eratzhaltbild im linearen Betrieb: A N i e u (t) C DN R DN i e R u (t) R 45) U () =,A N I e ()R U () = I e (), I e () =, I e () = ) H()= U () U () R DN 4 R DN +(+R DN C DN) {z } Stromteiler U () + R (+R DN C DN ) U () R + R DN =, A NR R + R DN + R R DN R + R DN C DN + R R DN C R + R DN DN R t < n ) u in < U DN ) Tranitor perrt u a (t)=0v n t < n ) U DN < u in < u max ) Anfang Endwertmethode τ = R R DN R + R C DN DN = 49;75p u an f ang = 0V; u ende = 0V, A NR R + R DN 0;8V= ;V

10 Klauur Impultehnik I & II t n ) u in > u max ) Die KollektorBaiDiode leitet ofort ) u a = u ein,u DI = 3V, 0;7V= ;3V u (t)=v 0 8 uae 4 0 5e0 e09 5e09 e09 5e09 3e09 t t

11 Klauur Impultehnik I & II Muterlöung Aufgabe 5: 3 Punkte 5) Tiefpaßfilter Antialiaingfilter Bandbegrenzung zur Erfüllung de Abtattheorem 5) Abtattheorem: f T f max ) f T ;min = 300Hz 53) Da Filter muß ein mögliht hmaler Bandperre ein (Eine olhe Bandperre wird in der tehnihen Literatur auh al Nothfilter bezeihnet) 54) Die Übertragungfunktion muß für f = 50 Hz verhwinden, alo bei dieer Frequenz eine Nulltelle aufweien H z(e jπ f f T ) H z (z) = H 0 (z, z 0;)(z, z 0;) (z, z ;)(z, z ;) = 0 f=50hz ) e jπ f f T, z 0; = 0 f=50hz 55) p, z 0; = z jπ 50Hz 0; = e 400Hz = e j π 4 = (+ j) z ; = z ; = 9 ) H z (z) = p 0 p z, z, 9p (+ j) = z, p z+ z, 9p 0 (+ j) z, (+ 0 j) z, 9p 0 z (+ j) (+ j) p (, j) (, j) = z, p z+ z, 9 0p z+ 8 00

12 Klauur Impultehnik I & II ) PolNulltellendiagramm: H 0 = jy 45, x 57) Minimale Shaltung: + u + z, 9 p + 0 u z,, 0 9 p u, p +

13 Klauur Impultehnik I & II Muterlöung Aufgabe : Punkte Hinwei: Kreuzen Sie alle rihtigen Antworten an Mindeten eine der angebotenen Löungen it rihtig, maximal jedoh alle Falhe Antworten führen zu Punktabzügen Die beidenteilaufgaben können unabhängig voneinander gelöt werden! ) E oll ein CMOSInverter nah Abbildung unteruht werden Der getrihtelt umrandete Shaltungteil tellt eine Shutzhaltung am Eingang de CMOSBauelemente dar EingangShutz CMOSInverter Netzteil R i In A D R R Out U 0 A D A D 3 Abbildung : CMOSInverter mit EingangShutz (a) ( P) Welhe Funktion hat die Shutzhaltung am Eingang der CMOSShaltung Sie hützt vor: einer Zertörung de Bauteil bei Verpolung der Verorgungpannung Überpannungen und verhindert eine Zertörung de Gateoxide der MOSFET durh eine zu hohe GateSoureSpannung einer thermihen Überlatung de Bauelemente, wenn die Eingangpannung innerhalb der Betriebpannunggrenzen liegt einer thermihen Überlatung durh einen zu hohen Gatetrom im tationären Betrieb (b) ( P) Die Widertände R und R dienen zur Eintellung de Arbeitpunkte der Tranitoren müen hinreihend groß ein, damit der Strom durh die Dioden begrenzt wird dürfen niht zu groß ein, weil diee zuammen mit den (niht eingezeihneten) GateSoureKapazitäten der MOSFET einen Tiefpaß bilden, der die Shaltgehwindigkeit verringert () (P) Behreiben Sie kurz, wa paiert, wenn die Verorgungpannung verpolt wird und der Innenwidertand R i der Spannungquelle ehr klein it Die Dioden D und D halten durh und erzeugen einen Kurzhluß: Die Shaltung wird durh thermihe Überlatung zertört

14 Klauur Impultehnik I & II ) Bei der Hertellung von CMOSShaltungen werden nkanal und pkanal MOSFET in einem Subtrat realiiert Die unterhiedlih dotierten Bereihe ergeben eine npnpanordnung, die zwei paraitäre (unerwünhte) Bipolartranitorendartellt Die paraitären Tranitoren können unter betimmten Bedingungen zu einem ehr großen Stromfluß in der CMOSShaltung führen Dieer al Lathup bezeihnete Effekt führt in der Regel zu einer Zertörung der CMOSShaltung durh thermihe Überlatung Für da Vertändni de LathupEffekte kann da vereinfahte Eratzhaltbild nah Abbildung verwendet werden Der getrihelt umrandete Shaltungteil behreibt da Verhalten der paraitären Tranitoren und der Subtratwidertände U 0 Netzteil CMOSInverter paraitäre Elemente R i In Out C Q Q R n Q Q V CC R p Abbildung : CMOSInverter mit paraitären Elementen (a) ( P) In welher Grundhaltung arbeiten die Tranitoren Q und Q Kollektorhaltung Baihaltung Emitterhaltung Kakodehaltung (b) ( P) Wa gehieht, wenn bei einem hnellen Spannungantieg am Augang de Inverter die Bai de Tranitor Q über die Kapazität C angeteuert wird Q wird leitend, Q bleibt geperrt Q und Q werden leitend, wenn R n und R p ehr klein ind Q und Q werden leitend, wenn R n und R p ehr groß ind Q und Q bleiben geperrt, wenn R n und R p ehr klein ind

15 Klauur Impultehnik I & II () (3 P) Der CMOSInverter ei gemäß Abbildung an eine Spannungquelle mit U o = 0V und einem Innenwidertand R i = Ω angehloen Für die Tranitorparameter gelte: U DN = 0;7V;U DI = 0;5V;R DN = 0 i Wie groß it die Verorgungpannung V CC de CMOSInverter, wenn Q und Q volltändig durhgehaltet ind V CC = 0;7V+(0;7V, 0;5V)=0;9V ii Welhe Verlutleitung P fällt an dem CMOSInverter ab, wenn Q und Q durhgehaltet ind P = 0V,0;9V Ω 0;9V= 8;9W (d) ( P) Die Subtratwidertände R n und R p ollten mögliht groß mögliht klein ein, um den Strom und die Verlutleitung beim Lathup zu begrenzen da Auftreten eine Lathup weitgehend auzuhließen (e) ( P) Der LathupEffekt muß niht zwingend zu einer Zertörung der CMOSShaltung führen Welhe der nahfolgenden Netzteile kann bei rihtiger Dimenionierung eine einwandfreie Funktion der CMOSShaltung gewährleiten und dennoh eine Zertörung der Shaltung beim Lathup verhindern Ideale Spannungquelle Ideale Stromquelle Spannungquelle mit Strombegrenzung Ideale Stromquelle parallel zu einer Zenerdiode (f) ( P) Der LathupEffekt kann auh auftreten, wenn die Spannung am Augang de Inverter die Betriebpannung überhreitet Diee it möglihbei: dem Shalten großer ohmher Laten dem Shalten großer induktiver Laten dem Shalten großer kapazitiver Laten einer großen kapazitiven Lat und einem Kurzhluß der Betriebpannung

Abbildung 1.1: 1.2) Skizzieren Sie das Pol- Nullstellendiagramm zu H(s) unter Angabe von allen charakteristischen

Abbildung 1.1: 1.2) Skizzieren Sie das Pol- Nullstellendiagramm zu H(s) unter Angabe von allen charakteristischen Klauur Impultehnik I & II 27.08.98 Aufgabe 1: 16 Punkte Ein idealer Operationvertärker (v 0!, R i!, R a! 0) oll zur Signalfilterung mit einer Shaltung nah Abbildung 1.1 eingeetzt werden. C u e R C R H

Mehr

Klausur Impulstechnik I&II Beschaltung als invertierender Verstarker mit der Spannungsverstarkung jvj = 11 betrieben.

Klausur Impulstechnik I&II Beschaltung als invertierender Verstarker mit der Spannungsverstarkung jvj = 11 betrieben. Klauur Impultehnik I&II 07.04.98 Aufgabe 1: 13 Punkte Ein idealer Operationvertarker (v 0!1, R i!1, R a! 0) wird durh die auere Behaltung al invertierender Vertarker mit der Spannungvertarkung jvj = 11

Mehr

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung

Gegeben sei die Operationsverstärker-Schaltung nach Abb. 1.1 mit kffl[0; 1]. Alle OP s sind als. Abbildung 1.1: Operationsverstärkerschaltung Klauur Impultehnik I & II 08.04.2003 Aufgabe 1: 16 Punkte Gegeben ei die OperationvertärkerShaltung nah Abb. 1.1 mit kffl[0; 1]. Alle OP ind al ideal anzunehmen, d.h. e gilt: Z e!1, Z a! 0, v 0!1. R k

Mehr

Gegeben sei die Operationsverstärker-Schaltung nach Abb Der Operationsverstärker besitze allgemein die Verstärkung V (s) =

Gegeben sei die Operationsverstärker-Schaltung nach Abb Der Operationsverstärker besitze allgemein die Verstärkung V (s) = Klauur Impultehnik I & II 24.09.2003 Aufgabe 1: 20 Punkte Gegeben ei die Operationvertärker-Shaltung nah Abb. 1.1. Der Operationvertärker beitze allgemein die Vertärkung V () = und e gilt: R e!1, R a!

Mehr

1.1) Welche Übertragungscharakteristik weist die Strecke auf? (1 P)

1.1) Welche Übertragungscharakteristik weist die Strecke auf? (1 P) Klauur Impultehnik I & II 05.09.200 Aufgabe : 7 Punkte Gegeben ei der in Abbildung dargetellte idealiierte Amplituden- und Phaengang einer tranatlantihen Internet-Übertragungtreke: A j j Abbildung : Idealiierter

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt 8 Muterlöungen rundlagen de Filterentwurf 3 8. Entwurf eine paiven Filter mit kriticher

Mehr

1.1) ja(j!)j 6= f (!) ) Die Strecke verhält sich wie ein Allpaß. (1 P) Abbildung 1: Gruppenlaufzeit

1.1) ja(j!)j 6= f (!) ) Die Strecke verhält sich wie ein Allpaß. (1 P) Abbildung 1: Gruppenlaufzeit Muterlöung zur Klauur Impultechnik I & II 050900 Löung Aufgabe : 7 Punkte ) ja(j!)j 6 f (!) ) Die Strecke verhält ich wie ein Allpaß ( P) ) Die Gruppenlaufzeit wird betimmt durch g d d! :(P) T t g p T

Mehr

Aufgabe 1: Musterlösung zur Klausur Impulstechnik I & II Punkte. 1.1) Spannungsteiler, idealer OP: U + = U. Knotengleichung: (4 P)

Aufgabe 1: Musterlösung zur Klausur Impulstechnik I & II Punkte. 1.1) Spannungsteiler, idealer OP: U + = U. Knotengleichung: (4 P) Muterlöung zur Klauur Impultechnik I & II 04.09.00 Aufgabe : 7 Punkte.) Spannungteiler, idealer OP: U + U Knotengleichung: R 3 U Z U a R 3 + R 4, U a U Z + R 4 R 3, I Z U a U Z R (Z I Z ) + U e U Z 0 @»

Mehr

Klausur Impulstechnik I & II Z 1. Abbildung 1.1: 0 V ). U e s. (1,5P)

Klausur Impulstechnik I & II Z 1. Abbildung 1.1: 0 V ). U e s. (1,5P) Klauur Impultechnik I & II 26.08.99 Aufgabe 1: 14 Punkte Gegeben it die Schaltung nach Abbildung 1.1. R 1 R C u e t u 1 t Z e Z 1 R 2 R R 3 R R 4 R C R 5 R Abbildung 1.1: Die Operationvertärker ind ideal

Mehr

W S 2002/2003 ITE ITE. URL:

W S 2002/2003 ITE ITE. URL: ITE Intitut ITE für Techniche Elektronik Aachen URL: http://www.ite.rwth-aachen.de Email: ekretariat@ite.rwth-aachen.de Ü b u n g e n z u r I m p u l t e c h n i k I W S 2002/2003?!??!?!?! Nachdruck verboten!

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Phyik für Chemiker 2 Prof. T. Weitz SS 2017 Übungblatt 8 Übungblatt 8 Beprechung am 03.07.2017 Aufgabe 1 Elektromotor. Ein Elektromotor wandelt elektriche Energie in mechaniche Energie

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

2. Laboreinheit - Hardwarepraktikum SS 2005

2. Laboreinheit - Hardwarepraktikum SS 2005 2. Laboreinheit - Hardwarepraktikum SS 2 1. Veruch: Der bipolare Tranitor al Schalter Tranitor (Funktion, Betrieb, etc) idealer und realer Schalter Flankenantieg-, Flankenabfallzeit und Signallaufzeit

Mehr

Musterlösung Aufgabe 1:

Musterlösung Aufgabe 1: Klauur Impultechnik I & II 30.08.000 Muterlöung Aufgabe :?? Punkte.) Mit Überlagerungatz und den Eigenchaften de idealen, zurückgekoppelten Operationvertärker (u + (t) u (t)): U + () U () U e () R R +

Mehr

Der ideale Op-Amp 2. Roland Küng, 2009

Der ideale Op-Amp 2. Roland Küng, 2009 Der ideale Op-Amp 2 Roland Küng, 2009 Reiew Reiew o f(, 2 ) L: o /2 + 2 Strom-Spannungswandler Photodiode liefert Strom proportional zur Lichtmenge Einfachstes Ersatzbild: Stromquelle V out -R 2 i in Anwendung:

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie eil - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann Urban Brunner Inhalt Muterlöungen - Laplace-ranformation zeitkontinuierlicher Signale... 3. Berechnung der Laplace-ranformierten

Mehr

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe

Technische Universität Ilmenau Fakultät für Elektrotechnik und Informationstechnik. Hausaufgabe Techniche Univerität Ilmenau Fakultät für Elektrotechnik und Informationtechnik Hauaufgabe im Fach Grundlagen der Schaltungtechnik (WS13/14) Bearbeiter Mat.-nr. Emailadree Aufgabe erreichte Punkte mögliche

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B 1 Übertragungsfunktion, Filter Gegeben sei die folgende Schaltung: R U 2 1. Berechnen Sie die Übertragungsfunktion H( jω)= U 2. 2. Bestimmen Sie die Zeitkonstante.

Mehr

Sie sollten zweckmäßigerweise mit Bleistift schreiben um Fehler leichter korrigieren zu können

Sie sollten zweckmäßigerweise mit Bleistift schreiben um Fehler leichter korrigieren zu können Hochchule Mnchen FK 3 Machinenbau Diplomprfung Elektronik SS 9 Prof. Dr. J. Höcht Prof. Dr. G. Buch Zugelaene Hilfmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prfung: 9 Minuten nterchrift: Höraal:

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für

2.1) Aufgrund der geraden Symetrie verschwinden alle Sinuskoeffizienten, also U b 1s;n = 0 für Muterlöung: Grundgebiete der Elektrotechnik IV 7.0.004 Aufgabe : 0 Punkte.) Aufgrund der geraden Symetrie verchwinden alle Sinukoefienten, alo U b ;n 0 für alle n IN (0,5 P).) Der Gleichanteil berechnet

Mehr

Formelsurium E Technik Stand:

Formelsurium E Technik Stand: : nur handchriftlich in den gekennzeichneten Feldern, Textmarker ind überall zuläig zuläig ind weitere Formeln, tichwortartige Sachverhalte, Skizzen nicht zuläig ind komplette Herleitungen, Altaufgaben

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

Abbildung 1.1: Operationsverstärkerschaltung. 1.1) Berechnen Sie die Strom-Spannungsübertragungsfunktion Y (s) =I Z (s) =U e (s).

Abbildung 1.1: Operationsverstärkerschaltung. 1.1) Berechnen Sie die Strom-Spannungsübertragungsfunktion Y (s) =I Z (s) =U e (s). Klausur Impulstehnik I & II 04.09.2002 Aufgabe 1: 17 Punkte Gegeben sei die Operationsverstärker-Shaltung nah Abb. 1.1. Der OP ist als ideal anzunehmen, d.h. es gilt: R e!1, R a! 0, v 0!1. R 3 R s 4 H

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

INSTITUT FÜR TECHNISCHE ELEKTRONIK

INSTITUT FÜR TECHNISCHE ELEKTRONIK INSTITUT FÜR TECHNISCHE ELEKTRONIK der Rheinisch-Westfälischen Technischen Hochschule Aachen Prof. Dr.-Ing. Bernhard Hill Korrespondenzen zur Laplacetransformation F(s) f(t) s s + α s + β ε(t) α e - α

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 01.04.2015 01.04.2015 Musterlösung Grundlagen der Elektrotechnik B Seite 1 von 14 Aufgabe 1: Gleichstrommaschine (20 Punkte) LÖSUNG

Mehr

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Übung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Übung Grundlagen der analogen Schaltungtechnik Filterynthee Analye eine Filter. Ordnung (Aufgabe 7) 0 V V R C 3 0. C R v OPI 4 V.0 E.0 E.0 E0.0 E.0 E Frequency M agnitude d B P hae d e g 0-0 -0-30 -00-5

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Aufgabe 1: Abweichungsrechnung

Aufgabe 1: Abweichungsrechnung Aufgabe 1: Abweihungrehnung a) Volltändige Meergebni für η f(r, v, ρ, ρ ) it P 95%: Die gegebene Gleihung lautet: η r g 9 v ( ρ ρ ) Die Erdbehleunigung g 9,81 /² kann laut Aufgabentellung al exakt angenoen

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben.

BSc PRÜFUNGSBLOCK 2 / D-MAVT Musterlösung. Um die Note 6 zu erlangen, genügen 6 vollständig und richtig gelöste Aufgaben. Intitut für Me- und Regeltechnik BSc PRÜFUNGSBLOCK 2 / D-MAVT. 0. 2005 REGELUNGSTECHNIK I Muterlöung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte Hilfmittel: 20 Minuten 8

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 7.4.2 7.4.2 Musterlösung Grundlagen der Elektrotechnik B Seite von 4 Version vom 6. Mai 2 Aufgabe : Ausgleichsvorgang 2 Punkte).

Mehr

Uebungsserie 4.2 Der Transformator

Uebungsserie 4.2 Der Transformator 15 September 017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 4 Der Transformator Aufgabe 1 Netzwerktransformation Ein idealer Übertrager mit dem Spannungsübersetzungsverhältnis = U 1 U ist sekundärseitig

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr

Fachhochschule Hannover M1B/M1C

Fachhochschule Hannover M1B/M1C Fachhochchule Hannover MB/MC 7..6 Fachbereich Machinenbau Zeit: 9 min Fach: Phyik im WS 5/6 Hilfmittel: Formelammlung zur Vorleung. In einem Bautellenbereich fahren zwei PKW mit gleicher echwindigkeit

Mehr

PID-Reglerplatine. Beschreibung der PID-Reglerplatine

PID-Reglerplatine. Beschreibung der PID-Reglerplatine Peglerplatine Bechreibung der Peglerplatine er requenzgang eine bechalteten Operationvertärker (. Bild ) berechnet ich au dem negativen Quotienten der mpedanz de ückführnetzwerke Z r und der mpedanz de

Mehr

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion

Aufgabe 1 Bestimmen Sie die Laplace-Transformierte der Rampenfunktion Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 aplace-tranformation Dr Alexander Schaum, ehrtuhl für vernetzte elektroniche Syteme Chritian-Albrecht-Univerität zu Kiel Aufgabe Betimmen Sie die aplace-tranformierte

Mehr

7.1 Aktive Filterung von elektronischem Rauschen (*,2P)

7.1 Aktive Filterung von elektronischem Rauschen (*,2P) Fakultät für Physik Prof. Dr. M. Weber, Dr. K. abbertz B. Siebenborn, P. Jung, P. Skwierawski,. Thiele 17. Dezember 01 Übung Nr. 7 Inhaltsverzeichnis 7.1 Aktive Filterung von elektronischem auschen (*,P)....................

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

So verstehen Sie die Leistung einer Stromquelle

So verstehen Sie die Leistung einer Stromquelle Univerität amburg, Fachbereich Informatik Arbeitbereich Techniche Apekte Multimodaler yteme (TAM) Praktikum der Technichen Informatik T2 3 MO-Tranitor: Kennlinien, Vertärker igitale rundchaltungen Name:...

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 ax 1 mit f a ( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 ax 1 mit f a ( x) Abchluprüfung Berufliche Oberchule Mthemti Techni - A II - Löung Teilufgbe. Gegeben ind die reellen Funtionen f mit f ( x) unbhängigen Definitionmenge ID f IR \ {}. x x x in der vom Prmeter IR Teilufgbe.

Mehr

Praktikum 2.1 Frequenzverhalten

Praktikum 2.1 Frequenzverhalten Elektrizitätslehre 3 Martin Schlup, Martin Weisenhorn. November 208 Praktikum 2. Frequenzverhalten Lernziele Bei diesem Versuch werden die Frequenzabhängigkeiten von elektrischen Grössenverhältnissen aus

Mehr

Analyse zeitkontinuierlicher Systeme im Frequenzbereich

Analyse zeitkontinuierlicher Systeme im Frequenzbereich Übung 3 Analye zeitkontinuierlicher Syteme im Frequenzbereich Diee Übung bechäftigt ich mit der Analye von Sytemen im Frequenzbereich. Die beinhaltet da Rechnen mit Übertragungfunktionen, den Begriff der

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch

Mehr

Übungsklausur Regelungstechnik SS 2014

Übungsklausur Regelungstechnik SS 2014 Übungklauur egelungtechnik SS 04 Aufgabe : Für ein Sytem mit er Übertragungfunktion G S () 5 ( )( 5) oll ein egler imenioniert weren. Die Führungprungantwort arf maximal 8,5% Überchwingen, e oll abei keine

Mehr

Antriebssystemtechnik für Fahrzeuge. Übung WS09/10

Antriebssystemtechnik für Fahrzeuge. Übung WS09/10 Antriebytemtechnik für Fahrzeuge Übung WS09/10 Inhalt 2 Vorabverion Bezüglich Fehlerkorrektur oder Verbeerungvorchläge bitte eine E-Mail an: ziegler@fzg.mw.tum.de Dieer Umdruck wurde mit Hilfe von Studenten

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... Nachklausur Grundlagen der Elektrotechnik I-A 6. April 2004 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 135 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben

Mehr

K l a u s u r N r. 2 G k P h 12

K l a u s u r N r. 2 G k P h 12 .1.010 K l a u u r N r. G k P h 1 Aufgabe 1 Behreiben Sie den Unterhied zwihen einer Läng- und einer Querwelle. Nennen Sie für jeden Wellentyp ein Beipiel. In welhen Stoffen können ih Querwellen aubreiten?

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Physik 12 Technik - Aufgabe I - Lösung Abchluprüfung Berufliche Oberchule 03 Phyik Technik - Aufgabe I - Löung Teilaufgabe 0 Die unten tehende Abbildung zeigt da Profil einer Achterbahn Ein Wagen bewegt ich auf Schienen vom Punkt P bi zum Punkt

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 9 Prof r Holger ette Muterlöung Statitik I Sommeremeter 009 r Melanie Birke Blatt 9 Aufgabe : 4 Punkte E eien X,, X n unabhängig identich N µ, -verteilt a Man berechne die Fiher-Information I µ für µ b E

Mehr

Muster zu Kurztest Nr. 2 Fach EK 2

Muster zu Kurztest Nr. 2 Fach EK 2 Muster zu Kurztest Nr. Fach EK Auswahl von Aufgaben Prüfung Thema: OpAmp Nichtidealitäten und Filter, 3 Aufgaben, 45 Min. Aufgabe : Einfluss von Offset-Spannung und Biasstrom 9 Punkte Ein Opamp mit I Bias

Mehr

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt

Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2010 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

TECHNIKEN ZUR BERECHNUNG DER DIMENSION

TECHNIKEN ZUR BERECHNUNG DER DIMENSION TECHNIKEN ZUR BERECHNUNG DER DIMENSION KATHARINA KIESEL Zuammenfaung Im Folgenden werden Tehniken zur Berehnung der Dimenion von Fraktalen aufgezeigt E wird unter anderem definiert wa eine Mae-Verteilung

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Universität Ulm Institut für Allgemeine Elektrotechnik und Mikroelektronik Prof. Dr.-Ing. Albrecht Rothermel A A2 A3 Note Schriftliche Prüfung in Grundlagen der Elektrotechnik I 27.2.29 9:-: Uhr Name:

Mehr

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren

Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren Fachraktikum Elektriche Machinen Veruch 4: Tranformatoren Theorie & Fragen Baierend auf den Unterlagen von LD Didactic Entwickelt von Thoma Reichert am Intitut von Prof. J. W. Kolar FS 2013 Vorbereitung

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 5. Juli 03 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese

8. Vorlesung Grundlagen der analogen Schaltungstechnik Filtersynthese 8. Vorleung Grundlagen der analogen Schaltungtechnik Filterynthee H()= 86 6 8 3 38 39 8 3 Nulltellen (o): Pole (x): 5 3, 5 3 3, 3, 3 x Re( ), y Im( ), z H( ) mit j Im - - Re - - Magnitude db 3.E3.E.E.E.E.4...8

Mehr

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( )

Aufgabe 1: Frequenzgang und Bode-Diagramm ( 10 Punkte) ( ) Aufgabe : Frequenzgang und Bode-Diagramm ( 0 Punte) Gegeben ei ein einface Sytem mit der Übertragungfuntion: Betimmen Sie analytic den Verlauf de zugeörigen Amplitudengange G ( ω) in Dezibel: ( ) G ( ω)

Mehr

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am

Übungen zur Vorlesung PN1 Lösung Übungsblatt 12 Besprechung am Übungen zur Vorleung PN1 Löung Übungblatt 12 Beprechung am 22.1.2013 Aufgabe 1: Gedämpfte Schwingung An einer Feder mit der Federhärte 20 N/m hängt eine Kugel der Mae 100g. Die Kugel wird um 10 cm nach

Mehr

Musterlösung Grundlagen der Elektrotechnik B

Musterlösung Grundlagen der Elektrotechnik B Prof. Dr.-Ing. Joachim Böcker Musterlösung Grundlagen der Elektrotechnik B 16.09.2014 16.09.2014 Musterlösung Grundlagen der Elektrotechnik B Seite 1 von 13 Aufgabe 1: Gleichstrommaschine (20 Punkte) LÖSUNG

Mehr

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018

Grundlagen der Elektrotechnik I im Wintersemester 2017 / 2018 +//6+ Prof. Dr.-Ing. B. Schmülling Klausur Grundlagen der Elektrotechnik I im Wintersemester 7 / 8 Bitte kreuzen Sie hier Ihre Matrikelnummer an (von links nach rechts). Vor- und Nachname: 3 4 3 4 3 4

Mehr

Labor Grundlagen Elektrotechnik

Labor Grundlagen Elektrotechnik Fakultät für Technik Bereich Informationstechnik ersuch 5 Elektrische Filter und Schwgkreise SS 2008 Name: Gruppe: Datum: ersion: 1 2 3 Alte ersionen sd mit abzugeben! Bei ersion 2 ist ersion 1 mit abzugeben.

Mehr

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Name: Abschlussprüfung Elektronische Bauelemente WS2010/11 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 26.1.2011 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Lösungen zur Klausur: Grundlagen der Elektrotechnik am 3. Juli 06 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Univerität Hannover Intitut für urboahinen und Fluid-Dynaik Prof. Dr.-Ing. J. Seue lauur Herbt 7 Ströungehanik I Bearbeitungdauer 9 in zugelaene Hilfittel: - ahenrehner (niht rograierbar) - FD-Forelalung

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = 0 Maschenregel Σ ( ) = 0 Ersatzquellen Überlagerungsprinzip

Mehr

Regelungstechnik (A)

Regelungstechnik (A) Intitut für Elektrotechnik und Informationtechnik Aufgabenammlung zur Regelungtechnik (A) Prof. Dr. techn. F. Gauch Dipl.-Ing. C. Balewki Dipl.-Ing. R. Berat 08.01.2014 Übungaufgaben in Regelungtechnik

Mehr

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten

1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur Name:... Vorname:... Matr.-Nr.:... Bewertung. Bearbeitungszeit: 135 Minuten 1. Klausur Elektrische Netzwerke Veröffentlichte Musterklausur 2013 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bearbeitungszeit: 135

Mehr

6. Signalgeneratoren und gesteuerte Quellen

6. Signalgeneratoren und gesteuerte Quellen Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 6. Signalgeneratoren und gesteuerte Quellen Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 18. Mai 2006

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I

Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J.Seume. Klausur Frühjahr Strömungsmechanik I Univerität Hannover Intitut für Strömungmahinen Prof. Dr.-Ing. J.Seume Klauur rühjahr Strömungmehanik I Bearbeitungdauer PO : 9 min zugelaene Hilfmittel: Tahenrehner (niht rogrammier- oder grahikfähig)

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

Lösungsvorschlag. Qq r 2 F C = 1

Lösungsvorschlag. Qq r 2 F C = 1 Löungvorchlag 1. Zunächt zwei Skizzen zur Verdeutlichung der Situation: Link it da Kügelchen mit der Ladung q zu ehen. Recht it die Kugel mit der Ladung Q 1 µc an die Stelle de Kügelchen gebracht worden.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

Elektronik II 4. Groÿe Übung

Elektronik II 4. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 9. Juni 2015 1/15 Elektronik II 4. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 9. Juni 2015 G.

Mehr

TET - Formelsammlung

TET - Formelsammlung TET - Formelsammlung Matthias Jung 30. August 2008 1 Dierentialgleichungen Characterisierung von DGLn: Linear: y(t) sowie ẏ(t), ÿ(t)... kommen nur in der 1. Potenz vor Gewöhnlich: y(t) hängt nur von einer

Mehr

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1

FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-1 FH OOW / Fachb. Technik / Studiengänge Informatik und Medientechnik Seite 4-4.) Lineare Schaltungen mit passiven Bauelementen 4. Die Schaltelemente Widerstand, Kapazität, Induktivität und Übertrager 4..

Mehr

Masse und Geschwindigkeit von Neutrinos

Masse und Geschwindigkeit von Neutrinos Autor: Walter Bilin 1 on 5 walter.bilin.h/blog/ 10.05.013 3:05 Mae und Gehwindigkeit on Neutrino Dientag, 9. April 013-16:03 Autor: wabi Themen: Wien, Phyik, QM Bi zur ntdekung der Neutrino-Ozillation

Mehr

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel 3. - Beispiel Taschenlichtorgel Anforderungen: Drei farbige LEDs, Mikrofoneingang, Empfindlichkeitseinstellung, kleines Format, geringe Betriebsspannung und Leistung, geringster Material- und Arbeitsaufwand.

Mehr

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik Feldeffekttransistoren Ausgehend vom Ersatzschaltbild werden die wichtigsten statischen SPICE-Parameter bestimmt. Es folgt eine Einführung in die analoge Schaltungstechnik mit JFET's. Auf die Theorie wie

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 4. Juli 04 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1

Uebungsserie 2.2. Abbildung 1: CR-Glied. Gegeben sei der Zweipol aus Abb. 1. Bestimmen Sie die Frequenzgangfunktion U 2 /U 1 29. Oktober 205 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 2.2 Aufgabe. CR-Glied Abbildung : CR-Glied Gegeben sei der Zweipol aus Abb.. Bestimmen Sie die Frequenzgangfunktion /U a) direkt durch

Mehr