D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II

Größe: px
Ab Seite anzeigen:

Download "D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II"

Transkript

1 Dr. A. aspar ETH Zürich, August 8 D-BIOL, D-HAB, D-HEST Prüfung zur Vorlesung Mathematik I/II. a) (i) ( Punkt) Die Ableitung ist mit Kettenregel f () = +. (ii) ( Punkte : jeweils.5 Punkt für a bzw. a und Punkt für a ) Es gilt T () = f() + f () + f (). Daher a = f() =, a = f () = und a = f () = ( + ) =. = b) (i) (3 Punkte: pro richtige Lösung ) Um die Fipunkte zu bestimmen, müssen wir die Gleichung + = lösen. Umgeformt erhalten wir ( ) = mit den drei Lösungen =, ±. (ii) ( Punkt) Es gilt die Konvergenz, wenn ein Fipunkt attraktiv ist, und es gilt die Konvergenz nicht, wenn die Funktion abstossend ist. Ein Fipunkt p ist attraktiv, falls g (p) < und ist abstossend, falls g (p) >. Wir berechnen g () = ( + ) und somit g () =, g () = und g ( ) =. Darum: (A) Für keinen. (B) Für einen. () Für zwei. (D) Für drei. (iii) ( Punkt: / für a und / für b) Wir suchen, a und b so, dass g > auf dem Intervall gilt. Das heisst wegen (ii) < g () = ( + ), das gilt genau dann, wenn < oder umformuliert < <, also a =, b =.

2 c) (i) ( Punkt) Mit dem Hinweis haben wir h() = cos(). (A) () (B) (D) (ii) ( Punkt) Mit dem Hinweis aus (i) haben wir h() = cos(). Bemerke, dass cos() auf [, ]. Daher h()d = cos()d = sin() = = =.

3 . a) ( Punkt) Es ist z = z z. Damit (Konjugation) liegt der gesuchte Punkt im ersten Quadrant, da z im 4. liegt. Ferner z = z >, da z <. Deswegen: (A) (B) () (D) b) ( Punkt) Sei z = a + bi, mit Re(z ) = a und Im(z ) = b. Dann haben wir a + b =, = tan( 4 ) = b a und drittens a >, b <. Es folgen b = a und a =. Da a >, die einzige Lösung ist Re(z ) = a = = folglich Im(z ) = b = =. und Alternative: Die Multiplikation ist hier die Drehung um 4 Radius, also in negativer Richtung, d.h. z = e 4 = i. im Uhrzeigersinn auf dem Kreis mit c) ( Punkt) A = ( ) a. Auf der Abbil- a dung: ( cos( ) sin( ) sin( ) cos( ) Av = ) = ( ) a a ( ) und darum Av = v = ( ) a a d) ( Punkt) B entspricht der Drehung um ϕ in die positive Richtung. Von der Abbildung liest man dann ϕ = 5 4 ab. e) Es gilt det(ef ) = det(e) det(f ) = b. (i) (.5 Punkt) b = 9.

4 (ii) (3.5 Punkte) richtig falsch Für b R ist det(ef ) auch eine reelle Zahl. Richtig, weil det(ef ) = b. Es gilt hier EF = F E. Falsch, EF = diag(, b, ), aber F E = diag( b,, ). Die Produktmatri EF ist eine Diagonalmatri. Richtig, EF = diag(, b, ). Für b ist E b =. Falsch, denn E = b Für b > reell, ist das Produkt der Eigenwerte von EF eine negative reelle Zahl. Falsch, EF = diag(, b, ) und daher sind die EWe von EF, b und. Das Produkt ist also b > falls b >.. Für b > reell, ist die Summe der Eigenwerte von EF eine negative reelle Zahl. Richtig, EF = diag(, b, ) und daher sind die EWe von EF, b und. Die Summe ist also b < falls b >. Ist λ ein Eigenwert von E, so ist λ ein Eigenwert von EF. Richtig, denn die EWe von E sind ±i b und und die EWe von EF sind, b und. f) (i) (3 Punkte) Wir berechnen das charakteristische Polnom: det( λe 3 ) = λ ( λ) + ( λ) = ( λ)(λ + i)(λ i). Davon lesen wir die Eigenwerte λ =, λ = i, λ 3 = i ab. (ii) (3 Punkte) Es gibt hier unterschiedliche Lösungsansätze, Beispiele:. Die drei EW λ =, λ = i, λ 3 = i sind paarweise voneinander verschieden. Damit sind drei EV v, v ±i zu den entsprechenden EW linear unabhängig. ( Punkt) Jeder Startvektor v kann geschrieben werden als v = α v + α v i + α 3 v i.

5 Da v = v, muss α = gelten also v =. ( Punkt) Jetzt folgt durch direkte Rechnung (4-mal Matri-Vektor-Produkt) v = v 4 mit, R. ±i Oder sei zum Beispiel v ±i =, dann ist v = v i + v i = und 4 v = 4 (v i + v i ) = 4 v i + 4 v i = i 4 v i + ( i) 4 v i = v i + v i = v. ( Punkt für einen korrekten Weg.). Wir suchen Eigenvektoren von 4 = zum Eigenwert λ =. ( Punkt) 6 Diese sind Linearkombinationen von und ( Punkt) und damit von der Form v = mit, R und v.( Punkt) 3. Es ist auch erlaubt, einen Vektor v zu raten ( Punkt), aber es muss dann v = v etc berechnet werden, sodass am Ende v 4 = v ist. ( Punkte)

6 3. a) ( Punkt) Wir sehen, dass es die stationäre Lösung bei = 3 gibt. Dass heisst = 3 + b, also b = 6. b) ( Punkt) Es gilt () = für = oder = 4. Diese entsprechen den stationären Lösungen. Die zweite Ableitung berechnen wir mit der DGL: = ( 4) + ( ) = ( 3). Das heisst = genau dann, wenn = ; 3; 4. Einen Wendepunkt gibt es also bei = 3. Auf ], 4[ ist < und die Lösungskurve streng monoton fallend, die Lösung hat also einen Wendepunkt dann, wenn [3, 4[. Achtung: = 3 wird auch als richtig bewertet. c) ( Punkt) Wir berechnen die Konstante für die unterschiedlichen Anfangsbedingungen: (, ) = (, ) ergibt = 5+ und = 4. (, ) = (, ) ergibt = 5+ und = 4.5. (, ) = (, ) ergibt = + und = 9. (, ) = (, ) ergibt = + und =. Bemerke, dass die Funktion () = auf ganz R definiert ist genau dann, wenn >. 5 + Deswegen: (A) (, ) = (, ) (B) (, ) = (, ) () (, ) = (, ) (D) (, ) = (, ) d) (3 Punkte) Mit Trennung der Variablen erhalten wir d Nach Integration ergibt das = 6d. ( Punkt) Nach aufgelöst bekommen wir die allgemeine Lösung = und () = 3. ( Punkt) + = 3, wobei R eine Konstante ist. ( Punkt) 3 + und mit () = ist = e) (3 Punkte) Die erste Zeile ist = +, die zweite Zeile ist = + 4. Aus der ersten Zeile erhalten wir = und =. ( Punkt) Das in die zweite Zeile eingesetzt ergibt = ( ) + 4 ( Punkt)

7 oder vereinfacht =. ( Punkt) Alternative: Bestimme Koeffizienten mit Formel 6 = ( + 4) ( Punkt) und 9 = det der Matri ( Punkt), und berechne die Lösung ( Punkt). f) (i) ( Punkte) Die Gleichung hat charakteristische Gleichung λ + 4λ + 4 = (λ + ) mit doppelter Nullstelle λ, = ( Punkt). Somit ist die allgemeine Lösung () = ( + )e ( Punkt). (ii) (3 Punkte) Berechne die Ableitung von : ( ( + )e ) = e ( ) ( Punkt) Die partikuläre Lösung erhalten wir, indem wir die Konstanten, aus dem folgenden Gleichungsstem berechnen; oder vereinfacht ( + )e = ( )e = ( Punkt) = ( ) =. Das ergibt =, = und () = ( + )e ( Punkt).

8 4. a) ( Punkte) (i) Wir berechnen f(, ) = = 8 f(, ) = = 6 f(, ) = = f(, ) = = 6 und deswegen: (A) (, ) (B) (, ) () (, ) (D) (, ) (ii) Wir berechnen f (, ) = und f (, ) = 5. Die einzige gemeinsame Nullstelle ist (, ) = ( 3, 5 ). Weiterhin ist D = f (, ) f (, ) (f (, )) = <, und es liegt bei (, ) also ein Sattelpunkt vor. (A) Keines. (B) Genau eines. () Genau zwei. (D) Genau drei. b) ( Punkte: für a und für b.) Aus der Vorlesung wissen wir, dass a = h (, ) = 9 + = = und b = h (, ) = 4 = = 6. c) (i) (.5 Punkte:.5 Punkt für r und Punkt für ϕ) { B = (r, ϕ) : r, ϕ 3 } (ii) (.5 Punkte:.5 Punkt für und Punkt für ) = {(, ) :, + }

9 (iii) (3 Punkte) Wir berechnen k(, )da = = = + ( )dd = ( ) ( )d =. ) ( d = + ( + ) ( + ) + d ( Punkt) für Doppelintegral und je ( Punkt) für Integrationsschritte. Alternative: Es ist k(, )da = mit ( )da = da = als Flächeninhalt ( Punkt) und ( Punkt). Also zusammen wieder. da da ( Punkt) da = wegen der Smmetrie

10 5. a) ( Punkt) Falls = stehen die Pfeile horizontal und haben mit übereinstimmendem Vorzeichen. Das schliesst bereits (A), (B) und () aus. (A) K(, ) = (, ) (B) K(, ) = (, ) () K(, ) = (, ) (D) K(, ) = (, ) b) ( Punkt) ( ) P K = ist konservativ genau dann, wenn Q Q = P für alle,. Wir berechnen Q = e + und P = ae + a. Es folgt Q = P für alle, für a =. c) (i) ( Punkt) Die Kurven in (A) und (B) fangen nicht in (, ) an. Die Kurve in (D) endet nicht in (, ). (A) γ (t) = (t, t ), t [, ] (B) γ (t) = ( t, t), t [, ] () γ (t) = ( + t, t), t [, ] (D) γ (t) = (t, t ), t [, ] (ii) ( Punkt) Eine Möglichkeit ist γ (t) = (cos( t), sin( t)), t [, 3 ]. Andere alternative Möglichkeiten beachten! d) (5 Punkte) Sei K das Vektorfeld mit K(, ) = ( ) a Sei γ = γ + γ + γ 3 die Kurve in der (, )-Ebene, die zusammengesetzt ist aus den Kurven γ, γ und γ 3, wie in Teilaufgabe c).

11 (i) Nennen wir das eingeschlossene Gebiet B. Nach dem Satz von Gauss ( Punkt) gilt dann γ K n ds = B div KdA = B (8 + + a)da = (8 + a) da = λ(b) (8 + a) B wobei λ(b) das Flächeninhalt von B ( Punkt) bezeichnet. Es soll also λ(b) (8 + a) =. Da λ(b), 8 + a = und darum a = 8. (ii) Ähnlich wie in der vorherigen Teilaufgabe erhalten wir λ(b) (8 + a) = +. ( Punkt) Es ist λ(b) = + (Fläche Halbkreis plus Fläche Dreieck). ( Punkt) Das ergibt a = 6. ( Punkt) e) (3 Punkte) Bemerke, dass K konservativ ist ( Punkt) und Potential f = + hat ( Punkt), das heisst f = K. Nach dem Fundamentalsatz der Integralrechnung gilt daher γ K dγ = f(3, 6) f(, ) = 44. ( Punkt) Alternative: Wähle eine einfache Verbindung der Punkt, z.b. gradlinig. ( Punkt) für Kurve, ( Punkt) für Kurvenintegral, ( Punkt) für Rechnung.

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 08 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 4 5 Total Vollständigkeit

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Februar 07 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Technische Universität Chemnitz 3. Mai Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomple 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme Letzter Abgabetermin:. Juni (in Übung

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) -

Höhere Mathematik für Ingenieure , Uhr - Aufgabenteil (180 min.) - Studiengang: Matrikelnummer: 1 3 4 5 6 Z Aufgaben Theorie Gesamt Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 13.. 17, 8. - 11. Uhr - Aufgabenteil (18 min.) - Zugelassene Hilfsmittel:

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

2.2 Eigenwerte und Eigenvektoren

2.2 Eigenwerte und Eigenvektoren 2.2. Eigenwerte und Eigenvektoren 39 2.2 Eigenwerte und Eigenvektoren Lineare Abbildungen werden je nach Basiswahl durch unterschiedliche Matrizen beschrieben. Besonders einfach ist die Diagonalform. Wir

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie

Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Aufgabe : Vermischte Aufgaben zu Mathematische Grundlagen der Ökonomie Bilden die Lösungsmengen der folgenden linearen Gleichungssysteme jeweils einen Unterraum des IR 3? Begründen Sie. (i) (ii) + 3 =

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden, 16. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK III für Bauingenieure (Fernstudium und Wiederholer) Name: Matrikel-Nr.:

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1.

INHALT. Mengenlehre. Komplexe Zahlen. Intergalrechnung. Doppelintegrale. Partielle Differentiation. Differentialgleichung 1. INHALT Mengenlehre Komplexe Zahlen Intergalrechnung Doppelintegrale Partielle Differentiation Differentialgleichung 1. Ordnung Mathe-Party StudiumPlus 1 Sommersemester 017 Mathe-Party StudiumPlus Sommersemester

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Analysis II - 2. Klausur

Analysis II - 2. Klausur Analysis II - 2. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Summe Analysis II - 2. Klausur 6.7.25 Aufgabe 6 Punkte Betrachten Sie die C

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am 9. März 7 - Musterlösung Name Matr.-Nr. Vorname Unterschrift Aufgabe 4 5 6 7 Summe Note Punkte Die Klausur

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

EINFÜHRUNG IN DIE MATHEMATIK 1 MA 9935, WINTERSEMESTER 2017/18. g = g 1 + g 2 = g 1 + g 2

EINFÜHRUNG IN DIE MATHEMATIK 1 MA 9935, WINTERSEMESTER 2017/18. g = g 1 + g 2 = g 1 + g 2 EINFÜHRUNG IN DIE MATHEMATIK MA 9935, WINTERSEMESTER 07/8 OLIVER DEISER UND CAROLINE LASSER. Übungsaufgabe 8 aus. Gegeben ist eine Gerade g : R R und x, x R mit x x. Zeigen Sie, dass sich g eindeutig als

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

Mathematik Übungsklausur 2013 Ausführliche Lösungen

Mathematik Übungsklausur 2013 Ausführliche Lösungen Mathematik Übungsklausur 0 Ausführliche Lösungen Analysis Aufgabe Die Nullstellen einer Funktion f mit Definitionsbereich D f sind die Lösungen der Gleichung f(x) = 0 in D f. Damit erhält man: a) f: x

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr