Halbleiter. )). Durch Integration des Produktes ergibt sich die Anazahldichte der Elektronen im LB zu. Die Fermi- Dirac Funktion für Löcher ist

Größe: px
Ab Seite anzeigen:

Download "Halbleiter. )). Durch Integration des Produktes ergibt sich die Anazahldichte der Elektronen im LB zu. Die Fermi- Dirac Funktion für Löcher ist"

Transkript

1 Halbleiter In Halbleitern ist das letzte efüllte Band (Valenzband - VB) durch eine Enerielücke, E, vom nächste leeren band (Leitunsband - LB) etrennt. Im realen Raum können die Valenzbandzustände mit atom-artien Zuständen erklärt werden während die Leitunsbandzustände eine emeinsamer Eneriezustand im durchänien esamten Kristall bilden. durch den esamten Kristall Im k-raum setzt man oft den obersten Punkt des Valenzbandes leich Null. Dann ist die k-dispersion des LB: ² ECB E k ² in der m e die effektive Masse des Elektrons beschreibt. Bei 2me Anreun eines Elektrons aus dem VB ins LB bleibt im VB ein loch zurück. Durch hoppin von Elektronen von loch zu Loch trät das Loch zum Leitunsprozess bei. Diese Tatsache trät man durch Einführun einer Dispersion für Löcher mit ² EVB k ² Rechnun. ür die meisten Halbleiter ist m h > m e, d.h. die effektive 2mh Masse der Lochzustände ist rößer als die der Elektronen. Deshalb ist die Krümmun der Parabel des LB viel schmaler als die des VB. In Halbleitern, wie GaAs, InAs, InP befindet sich das Minimum des LB und Maximum des VB bei k=0 (direkte Halbleiter). In dieser Bandstruktur können sehr leicht Elektron-Loch Paar durch Photo Absorption mit E h E ebildet werden. In Halbleitern, wie Silizium oder photon Germanium befindet sich das LB Minimum bei k>0, aber das VB Maximum wbei k=0. (indirekter Halbleiter). Um ein Elektron aus dem VB ins LB anzureen, benötit das Elektron einen zusätzlichen Impuls, der meistens durch die Wechselwirkun mit Gitterschwinunen realisiert wird. Die erforderliche Photonenenerie ist E h E in der die Enerie einer Gitterschwinun ist. photon V 2me 1/ 2 Die Zustandsdichte (DOS) der Elektronen beträt: D( E) ( ) ( E E ), 2 ² ² die ermi-dirac Verteilun ist f(e) f ( E, T) exp( ( E / kbt )). Durch Interation des Produktes eribt sich die Anazahldichte der Elektronen im LB zu 2 m ekbt) n 2( ) exp(( E E )/ kbt). Die ermi- Dirac unktion für Löcher ist ² f 1 f exp(( E )/ k T) und die Löcher DOS beträt h V 2m D 2 ² ² 2 m hkbt) p 2( ) ² e h h( E) ( ) ( ) B 1/ 2 exp( sich die Bedinun für die Lae der ermienerie:. Deshalb beträt die Anzahldichte der Löcher im VB: / k T). Im reinen Halbleiter ilt n=p. Daraus eribt B E E 3 m e kt ln 2. In den 4 mh E meisten ällen kann man den 2. Term vernachlässien und es ilt: E : Die Zahl 2 der bei E=kT anereten electron Loch Paare beträt: kt 2 4 E 2( ) 3/ ( ) 3/ ni pi mem h exp( ). Bei 300K ist n i = cm -3 für Ge und 2 ² 2kBT cm -3 für Si.

2 Die Leitfähikeit des HL kann man mit neµ e peµ h beschreiben und skaliert mit der Bewelichkeit (mobility) von Elektronen, µ e, und Löchern, µ h. Die Zahl der Ladunsträer, die am Leitunsprozess teilnehmen, kann sinifikant durch Dotierun erhöht warden. Dabei wird eine Gitteratom der Kernladunszahl Z durch ein Element der Ordnunszahl Z+1(Donator) oder eines Elements mit Z-1 (Akzeptor) ersetzt. ür Silizum sind Donatoren Elemente der 5. Hauptruppe und Akzeptoren der 3. Hauptruppe. Die Wechselwirkun zwischen den zusätzlichen Elektronen/Löchern mit dem Gastitter kann im Rahmen eines modifizierten Wasserstoffmodells beschrieben werden, mit den Ersetzunen e² e²/ und m m e,h, wobei die statistische dielektrische Konstante des Wirtsitter beschreibt Die me Bindunsenerie des Donatorelektrones beträt Ed 13.6eV (0.045 ev für P in m ² Si) und ist erinfüi kleiner als das Minimum des CB im Si. Die Bindunsenerie mh für Löcher beträt Ea 13.6eV (0.045eV für Bor in Si) und ist kurz oberhalb des m ² Maximums des VB lokalisiert. Der Bohrsche Radius des Elektrons um das m Donatoren beträt rd nm und beträt 8nm in Ge und 3nm in Si. Nach me Dotierun beträt die Anzahldichte der Elektronen im LB: mekt n 2( ) Nd exp( d / 2kT) wobei N d die Zahl der Dotieratome/cm³ ist. 2 ² Deshalb variiert die Leitfähikeit im dotierten HL bei tiefen Temperaturen mit E d, bei hohen Temperaturen aber mit E. E ist bei niedrien Temperaturen zwischen E d und dem CB lokalisiert verschiebt sich aber bei hohen Temperaturen zu E /2. Halbleiter pn-überan: p-type HL und n-type HL zusammen bilden eine HL Diode. Die Majoritäts Ladunsträer (LT) im p-type HL sind die Löcher, und im n-type HL die Elektronen. Daeen befinden sich in jedem Material kleine Menen Verunreiniunen, die als Minoritäts LK bezeichnet werden. An der Grenzflächen zwischen n- und p-gebiet werden sich die Elektronen durch Diffusion ins p-gebiet beween, um die dortien Löcher zu füllen. Die zurückbleibenden positiv bzw. neativ eladenen Ionen sind Ursache eines sich aufbauenden Elektrische eldes welches einen Driftstrom eneriert, der dem ursächlichen Diffusionsstrom enteen erichtet ist. Im stromlosen pn-überan stellt sich ein Gleichewicht zwischen j Diff = j Drift ein und eneriert ein LT freies Gebiet, in dem weder freie Elektronen noch freie Löcher existieren. Diese Raumladunszone hat auf der n-seite die Breite 2V 0 0 na 1 nd Zn und auf der p-seite Z p Zn. Hier ist n d die e nd na nd na Donatorkonzentration auf der n-seite und n a die Akzeptorkonzentration auf der p- kt nn Seite und V0 ln ist das Kontaktpotenzial. Innerhalb der Raumladunszone e np en variiert das Elektrische eld wie d en E( z) Zn bzw. E( z) a Z p. 0 0 Bei Anleen einer äußeren Spannun mit positive Kontakt an der p-seite und neative an der n-seite werden weitere Elektronen aus der n-seite (bzw. Löcher aus der P- Seite) über die Raumladunszone hinwe zum positiven (neativen Kontakt diffundieren, die Breite der Raumladunszone wird kleiner (Durchlass Richtun). Im

3 Geensatz dazu wird der Majorität LT Strom verschwinden, wenn der positive Kontakt auf der n-seite und der neative Kontakt auf der p-seite liet. Dann wird die Breite der Raumladun rößer und der Stromfluss zum Erlieen kommen (Sperrrichtun). Die I-U Kennlinie einer HL Diode zeit exponentiell anwachsenden Strom in Durchlassrichtun aber einen sehr kleinen, aber konstanten Strom in Sperrrichtun. Letzterer wird von den Minoritäts LK verursacht. Infole dieses Verhaltens kann eine HL Diode zur Gleichrichtun von Wechselstrom verwendet werden. I-U Kennlinie einer HL Diode (aus wikipedia) Die HL Diode kann auch als Photodiode enutzt werden. Hier wird die Diode in Sperrrichtun betrieben Erzeuter Photostrom einer Photodiode (aus Wikipedia) Einfallende Photonen erzeuen in der LT freien Zone Elektron-Loch Paare, die zu den Kontakten hin fliessenden Photostrom erzeuen (siehe Abb.). Weil die Bilduns-enerie eines e-h Paares in Si E np =3.6eV beträt, können Photonen höherer Enerie eine bestimmte Anzahl, N, von e-h Paaren entsprechend der Relation h N* erzeuen. Die Zahl N von Elektronen(Löchern kann in einen E np Kondensator espeichert und dort abefrat werden und ist damit ein Maß für die Photonen-enerie.

4 Solarzelle sind moderne Anwendunen von pn-überänen: Die Sonne sendet eine Eneriedichte von 1367±7 W/m² auf die Oberfläche der Erdatmosphäre. Die totale Enerie, die die Erdoberfläche erreicht beträt W/Jahr, das ist das 10 4 ache der jährlichen Eneriekonsumption der Weltbevölkerun. In Deutschland beträt die mittlere Eneriedichte der Sonneneinstrahlun 844 W/m² wenn man die unterschiedlichen Einstrahlwinkel der Sonne im Sommer und Winter berücksichtit. In einer Sollarzelle ( pn-überan) beträt die induzierte Stromdichte : ev I Is exp 1 I L kt, wo I L den Verluststrom beschreibt. Die Solarzelle wird bei -1 < I < 0A und 0 < V < 1V betrieben, d.h.im 3.Quadranten der I-U Kennlinie (siehe) Hier wird der Schnittpunkt der Kurve mit der V-Achse (I=0) open-circuit Spannun, V oc, qbezeichnet. Bei V=0 beträt der Strom I=I L (Kurzschluss-Strom). Die läche des Rechtecks I sc x V oc beschreibt die maximal umsetzbare Lichtleistun in elektrische Leistun (power conversion). Bei Verwendun des Ladewiderstandes R L bestimmt man der Arbeitspunkt der Diode bei I m und V m und definiert den üllfaktor der ImVm Solarzelle als 1. Die Spannun ist dann IscVoc KT IL V oc ln( 1) welche sich mit steiender Lichtleistun zur rößeren Ween e Is verschiebt. Die elektrische Ausansleistun ist dann ev P IV IsV exp 1 ILV kt Die Bedinun dp/dv=0 definiert den Arbeitspunkt kt kt kt Vm Voc ln( 1 Vm ) und Im IL(1 ) e e evm Die pro Photon an den Ladewiderstand am Punkt Pm ILEm / eelieferte elektrische Leistun ist kt kt kt Em e V oc ln( 1 Vm ) e e e Die ideale Solarzelle hat einen Wirkunsrad von P m / Pin. Shockley und Queisser postulierten einen maximalen Wirkunsrad von ca. 31%. ür optimale Solarzellen aus einkristallinem Si wurden bereits Wirkunsrade von >40% erzielt.

5 Band Diskontinuitäten am pn-überan: Im dotierten HL befindet sich erminiveau bei tiefen Temperaturen zwischen Donator-Störband und LB bzw. Akzeptor- Störband und VB Bei Kontakt muß im thermischen Gleichewicht das chemische Potenzial = erminiveau leich sein. Änderun der Lae des erminiveaus relativ zum LB und VB wird durch Ladunen bzw. elektrisches eld bewirkt. Raumladunszone für N d =N a beschreibt man: Raumladunszone reicht von x m /2 < 0 < +x m /2. Um Elektronen vom n- ins p-gebiet 2 en zu brinen, ist im elektrischen eld Arbeit erforderlich: d x W m, leiche Arbeit 4 sind von den Löchern aufzubrinen, daher fließt kein Strom. Im Spannunslosen pn-üg ist die Zahl der Leitunselektronen im LB proportional E kt e / auf p-seite und e ( E ) auf n-seite.

6 Strom von p n) p n) Ce ( Elektronen fallen herunter) und von n p ( EG )/ kt Ce W wobei W die Wahrscheinlichkeit beschreibt, dass [ E ( EG )] Elektronen zur p-seite hinauf kommen. W e Damit wird ( EG ) [ E ( EG )] Ce e Ce und p n) mit edn np C e, mit D n ist der Diffusionskoeffizient und L n die Diffusionsläne, n p Ln die Elektronenkonzentration auf der p-seite. Anleern einer Spannun in Sperrrichtun: V<0: erminiveau wird auf der + Seite um ev abesenkt. Damit wird p n) Ce (wie vorher) ( EG ) [ E ( EG ) ev]/ kt ev aber Ce e Ce. Da V<0 ist p n), d.h. Elektronen fliessen von p n, Strom ev ist, I Ce ( e 1) der konstant wird für ev >>kt p n) Ce (Sperrrstrom) Spannun in lußrichtun : V>0: erminiveau auf Seite anehoben. Daher p n) Ce aber ev ev Ce d.h. I Ce ( e 1). Da V>0 steit Strom exponentiell mit V an (analo der Löcherstrom) ev I-U Kennlinie folt der unktion I I ( e 1) I, I L ist Verluststrom. s L

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.)

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.) Die Bardeen - Shockley - Brattain (Bell Labs.) Wiederholung Bsp.: Si: E F =560meV-12meV Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Der

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.)

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.) Die Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Wiederholung Haynes Shockley Experiment Manipulation der elektrischen Eigenschaften Extrinsischer oder Dotierungshalbleiter Elektrisches Feld im

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Elektronen und Löcher 3 2 3 2L 2mkT Eg nn e p exp 2 2 kt n e 3 3/2 2L 2mkT Eg np exp 2 2 2kT Die FermiEnergie liegt in der

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung 2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Festkörperelektronik 5. Übung

Festkörperelektronik 5. Übung estkörperelektronik 5. Übung elix Glöckler 7. Juli 2006 1 Übersicht Themen heute: Übungs-Umfrage Bandstruktur Gruppengeschwindigkeit effektive Masse Driftstrom Löcher Zustandsdichte ermi-verteilung Bloch-Oszillation

Mehr

2.17 Verspannte Quantenfilme

2.17 Verspannte Quantenfilme .7 Verannte Quantenfilme Baut man Heterostrukturen aus Materialien mit unterschiedlicher Gitterkonstante auf, so kann unterhalb einer kritischen Schichtdicke die Gitterfehlanpassun durch elastische Verannun

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Warum Halbleiter verstehen?

Warum Halbleiter verstehen? 7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Lage des Ferminiveaus beim intrinsischen HL

Lage des Ferminiveaus beim intrinsischen HL 9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F

Mehr

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter Halbleiterarten Halbleiter kristalline Halbleiter amorphe Halbleiter elektronische Halbleiter Ionenhalbleiter elektronische Halbleiter Ionenhalbleiter Element Halbleiter Verbindungshalbleiter Eigen Halbleiter

Mehr

Halbleiter. pn-übergang Solarzelle Leuchtdiode

Halbleiter. pn-übergang Solarzelle Leuchtdiode Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Stromdichten in Halbleitermaterialien

Stromdichten in Halbleitermaterialien Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Bandabstand als f(temperatur) Wiederholung

Bandabstand als f(temperatur) Wiederholung Bandabstand als f(temperatur) Wiederholung Bandabstand verringert sich mit steigender Temperatur Quelle: F.X. Kärtner Temperaturabhängigkeit der Beweglichkeit Wiederholung Beweglichkeit wird bestimmt durch

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte.

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte. PN Übergang Sebastian Schwerdhöfer der Shockley Hauptseminar zu Grundlagen der Experimentellen Physik im SS. 2012 Gliederung Ziel: Shockley der Diodenkennlinie ) ) U I U) = I S exp 1 n U T Weg: Dichte

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... ...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt

Mehr

Elektrische Eigenschaften von Festkörpern

Elektrische Eigenschaften von Festkörpern Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Das elektrochemische Potential

Das elektrochemische Potential 11.1 Das elektrochemische Potential Die Trennung von Drift und Diffusionsströmen ist nur ein Hilfsmittel zur quantitativen Modellierung (ähnlich wie bei der Überlagerung von verschiedenen Kräften)! Woher

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell

Mehr

2.15 Linienverbreiterung

2.15 Linienverbreiterung 2.15 Linienverbreiterun Bei den bisherien Rechnunen wurden die Eneriezustände immer als beliebi scharf anenommen. Dies ist allerdins selbst für isolierte Atome nicht richti, da die Zustände aufrund der

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement

IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im

Mehr

Formelsammlung Baugruppen

Formelsammlung Baugruppen Formelsammlung Baugruppen RCL-Schaltungen. Kondensator Das Ersatzschaltbild eines Kondensators C besteht aus einem Widerstand R p parallel zu C, einem Serienwiderstand R s und einer Induktivität L s in

Mehr

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.)

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.) Der Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Elektrisches Feld im Halbleiter Aufbau Ladungsträgertransport

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten

Mehr

Praktikum Lasertechnik, Protokoll Versuch Halbleiter

Praktikum Lasertechnik, Protokoll Versuch Halbleiter Praktikum Lasertechnik, Protokoll Versuch Halbleiter 16.06.2014 Ort: Laserlabor der Fachhochschule Aachen Campus Jülich Inhaltsverzeichnis 1 Einleitung 1 2 Fragen zur Vorbereitung 2 3 Geräteliste 2 4 Messung

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

Festkörper. Festkörper

Festkörper. Festkörper Festkörper Einteilung der Materie in drei Aggregatszustände: fest, flüssig, gasförmig Unterscheidung Festkörper behält seine Form Nachteil: Ungenaue Abgrenzung Beispiel: Ist Butter Festkörper oder Flüssigkeit

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht

Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht Kapitel 5 Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht 5. Der intrinsische Halbleiter Abbildung 5.: Schematisch: a) Die Zustandsdichte und b) die Fermiverteilung für einen intrinsischen

Mehr

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen

Mehr

Berechnung der Leitfähigkeit Wiederholung

Berechnung der Leitfähigkeit Wiederholung Berechnung der Leitfähigkeit Wiederholung Quantitativ wird die Leitfähigkeit σ berechnet durch: Ladung des Elektrons Beweglichkeit der Ladungsträger im Leitungsband Anzahl der Ladungsträger im Leitungsband

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Einführung in die optische Nachrichtentechnik. Photodioden (PH)

Einführung in die optische Nachrichtentechnik. Photodioden (PH) M E F K M PH/1 Photodioden (PH) Zur Detektion des optischen Signals werden in der optischen Nachrichtentechnik vorwiegend Halbleiterphotodioden eingesetzt und zwar insbesondere pin-dioden sowie Lawinenphotodioden.

Mehr

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen?

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Norbert Koch Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof Helmholtz Zentrum Berlin für Materialien und Energie GmbH

Mehr

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen

Dotierung. = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau. von Atomen mit 3 Valenzelektronen Halbleiter Dotierung = gezieltes Verunreinigen des Si-Kristalls mit bestimmten Fremdatomen. n-dotierung Einbau von Atomen mit 5 Valenzelektronen = Donatoren Elektronengeber (P, Sb, As) p-dotierung Einbau

Mehr

Aufgabensammlung Halbleiterbauelemente I

Aufgabensammlung Halbleiterbauelemente I Aufgabensammlung Halbleiterbauelemente I 1. Berechnen Sie die Elektronen- und Löcherkonzentrationen und ihr Verhältnis bei einer Temperatur von T = 300K für: (a) eine p-leitende Si-Probe mit dem spezifischen

Mehr

9.5.2 Was man wissen muss

9.5.2 Was man wissen muss 9.5.2 Was man wissen muss Wir kennen auswendig, weil verstanden, die wichtigsten Gleichungen für reale (= dotierte Halbeiter im Gleichgewicht. n Maj = N Dot n Min (T = n i 2 (T N Dot R = G = n Min τ Wir

Mehr

Die Silizium - Solarzelle

Die Silizium - Solarzelle Die Silizium - Solarzelle 1. Prinzip einer Solarzelle Die einer Solarzelle besteht darin, Lichtenergie in elektrische Energie umzuwandeln. Die entscheidende Rolle bei diesem Vorgang spielen Elektronen

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

Physik 4 Praktikum Auswertung PVM

Physik 4 Praktikum Auswertung PVM Physik 4 Praktikum Auswertung PVM Von J.W, I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Solarzelle......... 2 2.2. PV-Modul......... 2 2.3. Schaltzeichen........ 2 2.4. Zu ermittelnde

Mehr

Was man wissen muss

Was man wissen muss 10.4.2 Was man wissen muss Ganz tief verinnerlicht ist der Zusammenhang von Diodenkennlinie und Solarzellenkennlinie. Wir verstehen, was mit den durch Licht zusätzlich generierten Ladungsträgern passiert

Mehr

Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung

Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung Susanne Siebentritt Université du Luxembourg Was sind Dünnfilmsolarzellen? Wie machen wir Solarzellen? Wie funktioniert eine Solarzelle?

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches:

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches: Redmann, Nil, Wiessner, Köck Millikan Versuch Entstehun des Versuches: Anfan des 20. Jahrhunderts entstand die Frae, ob alle messbaren Ladunen auf eine kleinste Ladunseinheit zurückeführt werden können.

Mehr

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003 Festk003_3 195 5/6/003 AlGaAs: grün GaN: blau, ultraviolett GaP(N): gelb Kombiniert man effiziente Leuchtdioden mit einem Resonator, kann man Halbleiterlaser herstellen. Die ffizienz kann durch die Verwendung

Mehr

Inhaltsverzeichnis Ladungsträger im Halbleiter Halbleiterdiode ohne äußere Beschaltung Halbleiterdiode mit äußerer Beschaltung MIS-Kondenstor

Inhaltsverzeichnis Ladungsträger im Halbleiter Halbleiterdiode ohne äußere Beschaltung Halbleiterdiode mit äußerer Beschaltung MIS-Kondenstor Inhaltsverzeichnis 1 Ladungsträger im Halbleiter 3 1.1 Debye-Länge.................................. 3 1. Diffusionskonstante............................... 3 1.3 Diffusionslänge.................................

Mehr

Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz

Physik und Sensorik. Photodetektoren.   Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren

Mehr

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig.

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig. Schematische Darstellung des Effekts eines Donor oder Akzeptoratoms im Siliziumgitter das 5. Elektron ist fuer Bindung im Kristall nicht noetig und ist daher sehr schwach gebunden (grosser Radius) Fig.

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

Übersicht Halbleiterphysikalische Grundlagen

Übersicht Halbleiterphysikalische Grundlagen Übersicht 3.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterphysikalische Grundlagen 3.1 Materialien für die Photovoltaik 3.2 Elektronen in Halbleitern 3.3 Absorption, Relaxation, Rekombination

Mehr

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003 Übunen zur Physikvrlesun für Wirtschaftsinenieure WS2003 Lösunsvrschläe zum Übunsblatt 2 1. Ein June verma einen Schlaball unter einem Abwurfwinkel vn 30 52m weit zu werfen. Welche Weite könnte er bei

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Halbleiterbauelemente 1. Leitfähigkeit.

Halbleiterbauelemente 1. Leitfähigkeit. Leitfähigkeit Seite 1 Bändermodell E F E G LB ca. 8eV E G LB VB LB VB E F VB Isolator Halbleiter Leiter Halbleiter Si Ge GaAs GaP GaN Gap E G (ev) 1,12 0,66 1,42 2,26 3,39 Seite 2 Leitfähigkeit im Halbleiter

Mehr

Berechnung der Dichte der Ladungsträger

Berechnung der Dichte der Ladungsträger Wiederholung Berechnung der Dichte der Ladungsträger Genauso kann für die Besetzung des Valenzbandes mit Löchern abgeleitet werden: WF W p = NV exp kt mit NV 2 V 3 2π mkt 2 h = 2 h N V ist die effektive

Mehr

Formelsammlung Werkstoffkunde

Formelsammlung Werkstoffkunde Werkstoffkunde.nb Formelsammlung Werkstoffkunde Diese Formelsammlung wurde von Jan Peters (www.jan-peters.net) erstellt und hat vielen Studenten durch ihr Vordiplom geholfen. Den Autoren wuerde ein Link

Mehr

Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Elektronik I, WS 09/10 Übung 15

Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Elektronik I, WS 09/10 Übung 15 Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Elektronik I, WS 09/10 Übung 15 U N S A R I V E R S A V I E I T A S N I S S Aufgabe 1) Metall-Halbleiter-Übergang: Dotierung,Sperrschichtkapazität.

Mehr

Wir wünschen Ihnen bei der Bearbeitung viel Erfolg!

Wir wünschen Ihnen bei der Bearbeitung viel Erfolg! Semesterabschlussklausur Wintersemester 200/2006: WERKSTOFFE UND BAUELEMENTE DER ELEKTROTECHNIK I (Bauelemente) Name: Matrikelnummer: Lesen Sie bitte vor dem Beginn der Bearbeitung die einzelnen Aufgaben

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 2.1 Vorläufige Terminplanung Vorlesung Solarenergie WS 2007/2008 Stand: 21.10.2007 Vorlesung Termin Thema Dozent Nr. 1 Di. 23.10.07 Wirtschaftliche Aspekte/Energiequelle

Mehr

Elektrizitätslehre 3.

Elektrizitätslehre 3. Elektrizitätslehre 3. Elektrischer Strom Strom = geordnete Bewegung der Ladungsträgern Ladungsträgern: Elektronen Ionen Strom im Vakuum Strom im Gas Strom in Flüssigkeit (Lösung) Strom im Festkörper Leiter

Mehr

-Q 1 Nach Aufladen C 1

-Q 1 Nach Aufladen C 1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Ladungsträgertransport in Volumensmaterial

Ladungsträgertransport in Volumensmaterial Ladungsträgertransport in Volumensmaterial Driftstromdichte Die resultierende Bewegung eines Elektrons oder Loches in einem Halbleiter unter Einfluss eines elektrischen Feldes wird als Drift bezeichnet

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

UNIVERSITÄ T REGENSBURG

UNIVERSITÄ T REGENSBURG UNIVERSITÄ T REGENSBURG PHYSIKÄLISCHES B-PRÄKTIKUM -PHOTOVOLTÄIK- 1 Inhalt 1 Einleitung... - 1-2 Grundlagen... - 1-2.1 Physikalische Grundlagen aus der Halbleiterphysik... - 1-2.1.1 Elektronen im Festkörper...

Mehr

Die kovalente Bindung

Die kovalente Bindung Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit

Mehr

Physik und Technologie der Halbleiterbauelemente

Physik und Technologie der Halbleiterbauelemente Name, Vorname: Punkte(20): Matr.Nr.: Note: Physik und Technologie der Halbleiterbauelemente 1. Technologie (6 Punkte) 1.1 Zeichnen Sie einen planaren n-kanal-mos-transistor im Querschnitt. a) Bezeichnen

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

Ergänzung zur Berechnung der Zustandsdichte

Ergänzung zur Berechnung der Zustandsdichte Ergänzung zur Berechnung der Zustandsdichte Dichte der Zustände im k-raum: 1 1 L g(k)= = = 3 V (2 π /L) π 2 k 3 Abb. III.5: Schema zur Berechnung der elektronischen Zustandsdichte Zustandsdichte Dichte

Mehr

Intrinsische Halbleiter

Intrinsische Halbleiter Intrinsische Halbleiter Ein völlig reines Halbleitermaterial (ohne Fremdatome, ohne Fehlstellen, ohne "Antisites") nennt man intrinsisch. Bei einem intrinsischen Halbleiter hängen die Ladungsträgerkonzentrationen

Mehr