Statistik I für Betriebswirte Vorlesung 1

Größe: px
Ab Seite anzeigen:

Download "Statistik I für Betriebswirte Vorlesung 1"

Transkript

1 Statistik I für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 9. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 1

2 Organisatorisches Vorlesung: Mo, 11:00-12:30, FOR Übungen: Di, 7:30-9:00, FOR-0270, Dipl.-Math. Markus Dietz, Di, 14:00-15:30, RAM-2220, Dr. Anna Chekhanova, Mi, 11:00-12:30, LED-1105, Dr. Andreas Wünsche. Selbststudium (Laut Modulbeschreibung zusammen für beide Semester 120h Präsenzzeit und 150h Selbststudium.) Information: Prüfung: Klausur 120 Minuten, zugelassen sind Taschenrechner, Bücher, Mitschriften; nicht zugelassen sind Laptops, Handys. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 2

3 Themen Wahrscheinlichkeitsrechnung (ca. 7 Vorlesungen). Zufällige Ereignisse und Wahrscheinlichkeiten, bedingte Wahrscheinlichkeiten, Unabhängigkeit. Zufallsgrößen, Typen, Charakterisierung und Kenngrößen. Wichtige diskrete Wahrscheinlichkeitsverteilungen. Wichtige stetige Wahrscheinlichkeitsverteilungen. Beschreibende (deskriptive) Statistik (ca. 3 Vorlesungen). Beispiele und Grundbegriffe. Eindimensionale Merkmale. Zweidimensionale Merkmale. Indexzahlen. Schließende (induktive) Statistik (ca. 3 Vorlesungen). Stichproben. Parameterschätzungen. Fortsetzung im folgenden Semester: Statistik für Betriebswirte II. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 3

4 1. Wahrscheinlichkeitsrechnung 1.1 Einleitung Im praktischen Leben, in den Wissenschaften, usw. hat man es oft mit Situationen, Versuchen, Beobachtungen, etc., zu tun, bei denen Ergebnisse nicht genau vorausberechnet werden können, eine Unsicherheit besteht, bei denen aber Aussagen und/oder Entscheidungen getroffen werden sollen. Beispiele: Versicherungswesen (Zeitpunkte von Schadensfällen, Höhe von Einbzw. Auszahlungen). (Statistische) Qualitätskontrolle (notwendige Änderungen von Produktionsparametern wegen zu mangelhafter Qualität der Erzeugnisse). Produktionsplanung (Entwicklung der Nachfrage). Finanzmärkte (Entwicklung von Aktienkursen, Wechselkursen). Wetter- und Klimavorhersagen. Physikalische Grundgesetze (statistische Physik, Quantenphysik). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 4

5 1.2 Zufällige Ereignisse und Wahrscheinlichkeiten Ideales Zufallsexperiment, zufälliger Versuch, Zufallssituation: Genau festgelegte Bedingungen. Ausgang bzw. Ergebnis des Experiments ist nicht vorhersehbar, die möglichen Ausgänge sind vor Durchführung des Experiments bekannt. Es ist zumindest gedanklich beliebig oft wiederholbar und eine statistische Regularität kann beobachtet oder angenommen werden. In einfachen Fällen: Menge aller möglicher Ergebnisse (Ergebnismenge, Grundmenge) Ω. Elemente ω 1, ω 2,... der Ergebnismenge sind die Elementarereignisse, Versuchsausgänge oder Grundrealisierungen. Die verfügbare Information spielt eine große Rolle. Beispiele: Würfeln mit einem oder mehreren Würfeln. Bildquelle: de.wikipedia.org/wiki/spielwürfel Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 5

6 Zufällige Ereignisse Zufälliges Ereignis oder kurz Ereignis A zu einem betrachteten Zufallsexperiment: nach Durchführung des Zufallsexperiments muss man mit Sicherheit sagen können, ob das Ereignis A eingetreten ist oder nicht. Im Sinne der (mathematischen) Logik: Das Ereignis A ist eingetreten. ist entweder eine wahre oder falsche Aussage. Im Fall einer Ergebnismenge Ω: Teilmenge A der Ergebnismenge Ω; das Ereignis A tritt ein, falls das realisierte Ergebnis des zufälligen Versuchs in der Menge A enthalten ist. Beispiele: Würfeln mit einem oder mehreren Würfeln. Tägliche DAX-Schlusskurse. Bildquelle: Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 6

7 Wahrscheinlichkeiten Jedem zufälligen Ereignis A zu einem betrachteten Zufallsexperiment wird eine Zahl zwischen 0 und 1 zugeordnet, die sogenannte Wahrscheinlichkeit (für das Eintreten) des Ereignisses P(A). P(A) ist ein quantitatives Maß für die Chancen, dass das zufällige Ereignis A bei einer Realisierung des Experiments eintritt, z.b. P(A) 0 sehr geringe; P(A) 1 sehr große Chancen. Hintergrund sind Eigenschaften von relativen Häufigkeiten h n (A) = H n(a) n P(A) (falls n groß) ; H n (A) Häufigkeit des Eintretens von A in n (unabhängigen) Realisierungen des Zufallsexperiments. Häufigkeitsinterpretation für P(A): bei n Realisierungen des Zufallsexperiments wird (oft) das zufällige Ereignis A ungefähr n P(A) mal eintreten und n (1 P(A)) mal nicht eintreten. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 7

8 Stabilisierung von relativen Häufigkeiten Beispiel Quelle: N.Henze, Stochastik für Einsteiger, 2013, 10.Auflage, Kap.4. Ergebnisse von 300 Würfen einer Reißzwecke auf einen Steinboden mit den beiden möglichen Ergebnissen Spitze nach oben = 1 und Spitze schräg nach unten = 0. Fortlaufend notierte relative Häufigkeiten für 1 : Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 8

9 Verknüpfungen von Ereignissen Geg.: Zufallsexperiment mit Ergebnismenge Ω und zufälligen Ereignissen A, B. Vereinigung A B : A oder B (oder beide) treten ein. Durchschnitt A B : A und B treten beide ein. Differenz A \ B : A tritt ein, aber B nicht. Das zu A komplementäre (entgegengesetzte) Ereignis A = A c = A : tritt genau dann ein, wenn A nicht eintritt; A = Ω \ A. Unmögliches Ereignis : tritt niemals ein. Sicheres Ereignis Ω : tritt immer ein (gleich Ergebnismenge). A und B sind unvereinbar (sind disjunkt, schließen einander aus) : sie können nicht gemeinsam eintreten, d.h. A B =. Das Ereignis A zieht das Ereignis B nach sich : A B (wenn A eintritt, dann tritt auch B ein). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 9

10 Rechenregeln für Verknüpfungen von Ereignissen Geg.: Zufallsexperiment mit Ergebnismenge Ω und zufälligen Ereignissen A, B, C. Dann gelten wie allgemein für Teilmengen A, B, C einer Menge Ω die folgenden Rechenregeln. Kommutativität : A B = B A, A B = B A. Assoziativität : (A B) C = A (B C), (A B) C = A (B C). Distributivität : (A B) C = (A C) (B C), (A B) C = (A C) (B C). Regeln von de Morgan : A B = A B, A B = A B. ( ) A A = Ω, A A =, A \ B = A B, A = A, A = A, A =, A Ω = Ω, A Ω = A. Entsprechend können auch Vereinigungen und Durchschnitte von mehr als zwei Ereignissen definiert werden und auch die Rechenregeln können entsprechend verallgemeinert werden. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 10

11 Übungsbeispiel 1.1 Entwicklung von 3 konkreten Aktienkursen in einem festen Zeitraum an einer bestimmten Börse. S i = {Wert der Aktie i steigt}. Ges.: Darstellung der folgenden Ereignisse durch die Ereignisse S i. A = {Wert aller 3 Aktien steigt}. B = {Wert keiner der 3 Aktien steigt}. C = {Wert mindestens einer der 3 Aktien steigt}. D = {Wert genau einer der 3 Aktien steigt}. E = {Wert aller 3 Aktien fällt oder bleibt gleich}. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 11

12 Axiomatische Wahrscheinlichkeitsdefinition (Kolmogorow) Mathematisches Modell für ein Zufallsexperiment ist ein Wahrscheinlichkeitsraum (Ω, A, P). Ω ist eine nichtleere Menge (Grundraum, Ergebnismenge), sie wird in komplizierteren Situationen oft nicht explizit angegeben. A ist eine Menge von Teilmengen von Ω, so dass endlich viele oder abzählbar unendliche Verknüpfungen von Elementen aus A wieder zu einem Ergebnis in A führen (Ereignisalgebra, σ Algebra). Die Wahrscheinlichkeitsfunktion P ordnet jeder Menge A aus A die reelle Zahl P(A) zu, so dass die folgenden Axiome gelten: 1. 0 P(A) P(Ω) = P(A 1 A 2 = P(A 1 ) + P(A 2 ) falls A 1 A 2 =. ( ) 4. P A i = P(A i ) falls die Ereignisse A i paarweise unvereinbar i=1 i=1 sind, d.h. A i A j = (i j). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 12

13 Bemerkungen zu und Folgerungen aus den Axiomen Man benutzt oft weiter die Wahrscheinlichkeitsterminologie (z.b. Ereignis statt Teilmenge ). Axiome spiegeln Eigenschaften der relativen Häufigkeiten wider. Alle Zuordnungen von Wahrscheinlichkeiten die den Axiomen genügen sind mathematisch gesehen erst einmal korrekt (insbesondere auch subjektive Zuordnungen). P( ) = 0. P(A 1 A 2... A n ) = P(A 1 ) + P(A 2 ) P(A n ) falls die Ereignisse A i paarweise unvereinbar sind. P(A) = 1 P(A), P(A) = 1 P(A). (Oft sehr nützlich!) A B P(A) P(B), P(B \ A) = P(B) P(A). Additionsgesetz: P(A B) = P(A) + P(B) P(A B). Siebformel: P(A B C) = P(A)+P(B)+P(C) P(A B) P(A C) P(B C)+P(A B C). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 13

14 Übungsbeispiel 1.2 Für die Ereignisse A und B zu einem Zufallsexperiment seien folgende Wahrscheinlichkeiten bekannt: P(A) = 0.25, P(B) = 0.45, P(A B) = 0, 5. Berechnen Sie P ( A B ), P ( A B ) und P (( A B ) ( A B ))! Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 14

15 Klassische Wahrscheinlichkeitsdefinition (Laplace-Modell) Gilt für Zufallsversuche mit endlich vielen möglichen Versuchsergebnissen (n elementare Versuchsausgänge oder Elementarereignisse), die alle gleichwahrscheinlich sind (keines wird bevorzugt, alle haben dieselbe Chance einzutreten). Beispiele: Würfeln mit einem fairen oder gerechten Würfel, n = 6, Elementarereignisse sind 1, 2, 3, 4, 5, 6. Zahlenlotto 6 aus 49, n = Anzahl der möglichen Tipps mit 6 aus 49 Zahlen. Aus den Axiomen für Wahrscheinlichkeiten folgt dann die einzige mögliche Definition von Wahrscheinlichkeiten in dieser Situation (die sogenannte klassische Wahrscheinlichkeitsdefinition). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 15

16 Klassische Wahrscheinlichkeitsdefinition Für jedes der n Elementarereignisse gilt unter obigen Bedingungen: P(Elementarereignis) = 1 n. Für ein beliebiges Ereignis A gilt unter obigen Bedingungen: P(A) = Anzahl der Elementarereignisse in A n bzw. P(A) = Anzahl der für A günstigen Fälle Anzahl aller möglichen gleichwahrscheinlichen Fälle. Bei Wahrscheinlichkeitsberechnungen im Zusammenhang mit der klassischen Wahrscheinlichkeitsdefinition werden oft kombinatorische Formeln genutzt. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 16

17 Kombinatorische Formeln I Geg.: n Objekte, z.b. {1, 2,..., n}. Die Anzahl aller möglichen Reihenfolgen beträgt n! = n ( n Fakultät ). Geg.: n Objekte, die in k unterschiedlichen Sorten vorliegen, bestehend jeweils aus n i, i = 1,..., k, nicht unterscheidbaren Objekten (2 k n und n n k = n). Die Anzahl aller möglichen Reihenfolgen beträgt ( ) n = n 1, n 2,..., n k n! n 1! n 2!... n k! ( Polynomialkoeffizient ). Im Spezialfall k = 2, d.h. gegeben sind n Objekte, jedes gehört zu einer von zwei Sorten (z.b. Erfolg, Misserfolg ), gilt n 1 = m, n 2 = n m und die Anzahl aller möglichen Reihenfolgen beträgt ( ) n = m n! m!(n m)! ( Binomialkoeffizient ). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 17

18 Kombinatorische Formeln II Nun seien n Objekte gegeben. Dann ist eine Frage, wie viele Möglichkeiten es gibt, um daraus k Objekte auszuwählen? Die Antwort ist abhängig davon, ob sich in der Auswahl Objekte wiederholen dürfen (m.w.) oder nicht (o.w.) o.r. m.r. ob es auf die Reihenfolge der Auswahl (oder eine zusätzliche Anordnung) ankommt (m.r.) oder nicht (o.r.). ( o.w. ) n ( m.w. ) n + k 1 k k Kombinationen ( ) n k! k n k Variationen Beispiel: n = 4, k = 2. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 18

19 Übungsbeispiel 1.3 Eine Seminargruppe von 21 Studenten hat ihr Statistikseminar in einem Raum mit 25 Plätzen. Wieviele Anordnungsmöglichkeiten gibt es für die vier freien Plätze? Wieviele verschiedene Sitzordnungen gibt es? Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 19

20 1.3 Stochastische Unabhängigkeit Definition: Zwei zufällige Ereignisse A und B zu einem Zufallsversuch heißen (stochastisch) unabhängig, wenn gilt P(A B) = P(A) P(B). Beispiel: (Zweifacher Münzwurf mit symmetrischer Münze) A = {1. Wurf Zahl}, B = {2. Wurf Zahl}. P(A) = 1 2, P(B) = 1 2, P(A B) = 1 4 = Satz: A und B seien unabhängige Ereignisse zu einem zufälligen Versuch. Dann sind auch die zufälligen Ereignisse A und das Komplement von B, also B, unabhängig. Ebenso sind in diesem Fall A und B sowie auch A und B jeweils unabhängige Ereignisse. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 20

21 Unabhängigkeit von mehr als 2 Ereignissen Zufällige Ereignisse A 1,..., A n zu einem Zufallsversuch heißen paarweise unabhängig, falls alle Paare von ausgewählten Ereignissen unabhängig sind, d.h. P(A i A j ) = P(A i ) P(A j ) für alle i j. Diese Ereignisse heißen in Gesamtheit oder total oder vollständig (stochastisch) unabhängig, falls eine entsprechende Formel für alle möglichen Auswahlen (nicht nur von Paaren) gilt, d.h. für alle 2 k n, 1 i 1 <... < i k n gilt P(A i1... A ik ) = P(A i1 )... P(A ik ). Aus der totalen Unabhängigkeit der Ereignisse A 1,..., A n folgt die paarweise Unabhängigkeit der Ereignisse, aber die Umkehrung gilt im Allgemeinen nicht. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 21

22 Summenformel Summenformel für unabhängige Ereignisse A 1,..., A n : P(A 1... A n ) = 1 (1 P(A 1 ))... (1 P(A n )). Die Unabhängigkeit von Ereignissen wird der Einfachheit halber häufig vorausgesetzt, oft auch dann, wenn sie sachlich schwer begründbar ist. Oft beziehen sich unabhängige Ereignisse auf Versuchswiederholungen etc., die sich (scheinbar) nicht gegenseitig beeinflussen. Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 22

23 Anwendung in Zuverlässigkeitstheorie Betrachten die Serien- und Parallelschaltung von Bauteilen, Teilsystemen (z.b. in Produktionslinien) etc., die unabhängig voneinander ausfallen oder funktionstüchtig sind. 2 Bauteile T 1, T 2, F i = {Bauteil T i funktioniert}, P(F i ) = p i, F i stochastisch unabhängig (i = 1, 2). Serien- oder Reihenschaltung funktioniert, wenn sowohl T 1 als auch T 2 funktionieren: P(F 1 F 2 ) = P(F 1 )P(F 2 ) = p 1 p 2. Parallelschaltung funktioniert, wenn T 1 oder T 2 oder beide Bauteile funktionieren (also mindestens eines der Bauteile funktioniert): P(F 1 F 2 ) = P(F 1 ) + P(F 2 ) P(F 1 F 2 ) = p 1 + p 2 p 1 p 2. n Bauteile T 1,..., T n, F i = {Bauteil T i funktioniert} F i vollständig stochastisch unabhängig (i = 1,..., n). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 23

24 Serien- oder Reihenschaltung Serien- oder Reihenschaltung funktioniert (Ereignis S), wenn alle Bauteile T 1, T 2,..., T n funktionieren: S = F 1 F 2... F n = P(S) = P(F 1 ) P(F 2 )... P(F n ). Serien- oder Reihenschaltung funktioniert nicht, wenn mindestens eines der Bauteile T 1, T 2,..., T n nicht funktioniert: S = F 1 F 2... F n P(S) = 1 P(S) = 1 P(F 1 ) P(F 2 )... P(F n ) = 1 ( (1 P(F 1 )) (1 P(F 2 ))... (1 P(F n )) ). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 24

25 Parallelschaltung Parallelschaltung funktioniert (Ereignis S), wenn mindestens ein Bauteil T 1, T 2,..., T n funktioniert: S = F 1 F 2... F n = P(S) = 1 ((1 P(F 1 )) (1 P(F 2 ))... (1 P(F n ))). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 25

26 Parallelschaltung Parallelschaltung funktioniert nicht, wenn alle Bauteile T 1, T 2,..., T n nicht funktionieren: S = F 1 F 2... F n = P(S) = P(F 1 ) P(F 2 )... P(F n ) = (1 P(F 1 )) (1 P(F 2 ))... (1 P(F n )). Bei komplizierteren Schaltungen Zerlegung in einfachere Teilsysteme (reine Serien- und Parallelschaltungen). Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 26

27 Übungsbeispiel 1.4 Ein System besteht aus vier Komponenten. Dabei sei F i (i = 1,..., 4) das Ereignis, dass die i-te Komponente des Systems nicht ausfällt. Diese Ereignisse sind vollständig unabhängig und haben folgende Wahrscheinlichkeiten: P(F 1 ) = 0.95, P(F 2 ) = 0.85, P(F 3 ) = 0.9 und P(F 4 ) = 0.9. Das System funktioniert, falls von den Komponenten 1 und 2 und von den Komponenten 3 und 4 mindestens jeweils eine Komponente funktioniert. Wie groß ist die Wahrscheinlichkeit dafür, dass das System funktioniert? Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 27

Statistik I für Betriebswirte Vorlesung 1

Statistik I für Betriebswirte Vorlesung 1 Statistik I für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 1. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 1 Version: 18. März

Mehr

Statistik I für Betriebswirte Vorlesung 1

Statistik I für Betriebswirte Vorlesung 1 Statistik I für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 11.

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129

Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. und 2. Vorlesung - 2017 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom Übungsaufgaben 7. Übung SS 16: Woche vom 23. 5. 27. 5.. 2016 Stochastik I: Klassische Wkt.-Berechnung Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/... (SS16).html

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Vorlesung Statistik, H&A Mathe, Master M

Vorlesung Statistik, H&A Mathe, Master M Beispiel: Die Wahrscheinlichkeit dafür, dass ein Bewerber von Firma A angenommen wird ist P(A) = 0,2. Die Wahrscheinlichkeit von Firma B angenommen zu werden beträgt P(B) = 0,3. Von mindestens einer der

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell.

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell. SS 2013 Prof. Dr. J. Schütze/ J.Puhl FB GW Wkt.1 1 Grundbegriffe Zufallsexperiment unter gleichen Bedingungen wiederholbarer Vorgang (geplant, gesteuert, beobachtet oder auch nur gedanklich) Menge der

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7.1 Zufallsvorgänge - zufälliges Geschehen/ Zufallsvorgang/ stochastische Vorgang: aus Geschehen/Vorgang/Experiment (mit gegebener Ausgangssituation)

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung. Semester Begleitendes Skriptum zur Vorlesung im FH-Masterstudiengang Technisches Management von Günther Karigl FH Campus Wien 206/7 Inhaltsverzeichnis. Semester: Wahrscheinlichkeitsrechnung

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Kapitel N. Wahrscheinlichkeitsrechnung

Kapitel N. Wahrscheinlichkeitsrechnung Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II

Allgemeine diskrete Wahrscheinlichkeitsräume II 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume I

Allgemeine diskrete Wahrscheinlichkeitsräume I 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Stochastik Grundlagen

Stochastik Grundlagen Grundlegende Begriffe: Zufallsexperiment: Ein Experiment, das beliebig oft wiederholt werden kann. Die möglichen Ergebnisse sind bekannt, nicht jedoch nicht, welches Ergebnis ein einzelnes Experiment hat.

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Mathematik IV (Stochastik) für Informatiker

Mathematik IV (Stochastik) für Informatiker Bausteine zur Vorlesung von Prof. Dr. Bernd Hofmann Mathematik IV (Stochastik) für Informatiker Fakultät für Mathematik der Technischen Universität Chemnitz Sommersemester 2016 Dieser Text soll die Nacharbeit

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher

Inhaltsverzeichnis. Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: Autor: René Pecher Dozent: Andreas Nestke Lehrfach: Mathe 3 Thema: Wahrscheinlichkeitstheorie Datum: 24.01.2011 Autor: René Pecher Inhaltsverzeichnis 1 Permutation 1 1.1 ohne Wiederholungen........................... 1 1.2

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel II - Wahrscheinlichkeitsraum Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Wahrscheinlichkeitstheorie und Maßtheorie

Wahrscheinlichkeitstheorie und Maßtheorie KAPITEL 7 Wahrscheinlichkeitstheorie und Maßtheorie 7.1. Vorüberlegungen Die folgenden drei Beispiele sind Spezialfälle des Oberbegriffs Maß. Beispiel 7.1.1 (Verteilung der Ladung oder der Masse). Man

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Babeş-Bolyai Universität Fakultät für Mathematik und Informatik Oktober 2018 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Wahrscheinlichkeitstheorie Agenda:

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Wir betrachten Ereignisse, die in fast gleicher Form öfter auftreten oder zumindest öfter auftreten können. Beispiele: Werfen eines Würfels, Sterben an Herzversagen

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,

Mehr

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten

Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Mathe-Camp 2017 Stochastik: Geometrische Wahrscheinlichkeiten Jo rn Saß, sass@mathematik.uni-kl.de Fachbereich Mathematik, TU Kaiserslautern Arbeitsgruppe Stochastische Steuerung und Finanzmathematik Kaiserslautern

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Kombinatorik & Stochastik Übung im Sommersemester 2018

Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik Formeln & Begriffe Begrifflichkeiten Permutation = Anordnung in einer bestimmten Reihenfolge Kombination = Anordnung ohne bestimmte Reihenfolge

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 18: Woche vom Übungsaufgaben 9. Übung SS 18: Woche vom 11. 6. 15. 6. 2018 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Mustererkennung: Wahrscheinlichkeitstheorie D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Definitionen (axiomatisch) Wahrscheinlichkeitsraum (Ω, σ, P), mit Ω Die Grundmenge, die Menge der elementaren

Mehr

htw saar 1 MATHEMATIK 3: EINFÜHRUNG IN DIE STOCHASTIK

htw saar 1 MATHEMATIK 3: EINFÜHRUNG IN DIE STOCHASTIK htw saar 1 MATHEMATIK 3: EINFÜHRUNG IN DIE STOCHASTIK htw saar 2 Programm für heute Organisatorisches Kurzer Überblick: Was ist Stochastik? / Unterschied Wahrscheinlichkeitstheorie Statistik Kapitel 1:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 27. Oktober 2010 Teil III Wahrscheinlichkeitstheorie 1 Zufallsereignisse Vorüberlegungen Der Ereignisraum Konstruktionen

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Laplacesche Wahrscheinlichkeitsräume Kombinatorik Allgemeine diskrete Wahrscheinlichkeitsräume Deskriptive

Mehr

1 Grundbegriffe der Wahrscheinlichkeitsrechnung

1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4 1 Grundbegriffe der Wahrscheinlichkeitsrechnung 1.1 Grundlegende Begriffe Der Begriff wahrscheinlich wird im Alltag in verschiedenen Situationen verwendet, hat dabei auch unterschiedliche Bedeutung.

Mehr