Anwendungen von heterogenen Gleichgewichten bei Trennverfahren

Größe: px
Ab Seite anzeigen:

Download "Anwendungen von heterogenen Gleichgewichten bei Trennverfahren"

Transkript

1 Anwendungen von heterogenen Gleichgewichten bei Trennverfahren Destillation: Sublimation: Gefriertrocknung: flüssig gasförmig flüssig Bei unterschiedlichen Siedepunkten lassen sich Flüssigkeitsgemische trennen. Beispiele: Ethanol (CH 3 -CH 2 -OH), Sdp. 78 C / H 2 O, Sdp. 100 C Hexan (C 6 H 14 ), Sdp C / Benzol (C 6 H 6 ), Sdp C fest gasförmig fest Wird zur Reinigung von Feststoffen im Vakuum genutzt. Sublimation von H 2 O in Form von Eis bei niedriger Temperatur und im Vakuum (ca Torr). Wird zur Entwässerung von schwerflüchtigen Feststoffen und Flüssigkeiten genutzt. Kristallisation: Feststoff + Lösungsmittel Lösung Beim Verdampfen des Lösungsmittels kristallisiert der Feststoff aus der Lösung aus. Die Methode wird zur Reinigung von Feststoffen genutzt, besonders von Feststoffgemischen mit unterschiedlicher Löslichkeit Feststoff mit geringerer Löslichkeit kristallisiert aus und der löslichere Feststoff bleibt in der Mutterlauge. Flüssig-flüssig-Extraktion: Bei Verteilung des gelösten Stoffes in den beiden nicht mischbaren Lösungsmitteln richtet sich nach dem Nernstsche Verteilungsgesetz. Chromatographie: Flüssigkeitschromatographie (LC - Liquid Chromatography; HPLC - High Pressure (Performance) LC stationäre Phase: fest mobile Phase: flüssig (Lösungsmittel wie Heptan, Ether, Essigester) Gaschromatographie (GC) stationäre Phase: flüssig oder fest (Film auf der Säulenwand oder imprägnierte Festphase) mobile Phase: Gas (He, N 2 )

2 Verschiedene Arten der Chromatographie

3 Stofftrennung durch Säulenchromatographie I: Stoffgemisch A/B, im Fließmittel gelöst, wird auf die stationäre Phase (in einer Glassäule) aufgegeben. II: Mit dem Fließmittel (= Elutionsmittel) wird nachgewaschen, A und B trennen sich bei der Wanderung durch die Säule. III: B ist mit dem Elutionsmittel aus der Säule herausgetropft und befindet sich im Eluat.

4 Dünnschichtchromatographie Schematische Zeichnung eines Dünnschichtchromatogramms I: Reiner Stoff A und Stoffgemisch sind an der Startlinie aufgetragen. II: Nach der Entwicklung des DCs. a = Laufstrecke von Stoff A, b = Laufstrecke von Stoff B, c = Laufstrecke des Fließmittels: R f -Wert für A: a/c; R f -Wert für B: b/c.

5 Gaschromatograph 1- Gaszylinder mit Trägergas (He, N 2 ) 2- Gasventil 3- Injektor 4- Trennsäule 5- Ausgang vom Detektor 6- Messgerät für den Gasfluss 7- Schreiber Trennsäule

6 Gaschromatogramm (Kappilar-GC)

7 Spektroskopische Methoden folie002 MS Massenspektroskopie (Massenspektrometrie) (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption = Aufnahme von elektromagnetischer Strahlung) MW Mikrowellen-Spektroskopie (Anregung von Rotationsfreiheitsgraden im Molekül; wichtig für die Ermittlung von Bindungsparametern; z.b. Bindungslängen und Bindungswinkel in CH 3 CH 2 Cl) IR Infrarot-Spektroskopie (Anregung von Schwingungs- und Rotationsfreiheitsgraden; wichtig für die Analyse funktioneller Gruppen z.b. CC, C=C, C=O, O-H, C-H usw.) UV-VIS Ultraviolett-Spektroskopie (Anregung von Elektronenübergängen, Schwingungs- und Rotationsfreiheitsgraden; wichtig für die elektronische Struktur von Aromaten, konjugierten Polyolefinen Farbstoffen NMR Kernresonanz-Spektroskopie (engl. Nuclear Magnetic Resonanz) (Anregung des Umklappens von Kernspins im Magnetfeld; heute wichtigste Methode zur Strukturermittlung von organischen Molekülen) ESR Elektronenspin-Resonanz-Spektroskopie (Anregung des Umklappens von Elektronenspins im Magnetfeld; wichtig für die Analyse von Verbindungen mit ungepaarten Elektronen, z.b. freie Radikale, Diradikale)

8 Absorption von elektromagnetischer Strahlung Energie des absorbierten Lichtquantes Frequenz DE = h = c/ Lichtgeschwindigkeit c = [cm. s -1 ] Frequenz [Hz] = [s -1 ] Wellenlänge [cm] Wellenzahl ~ = 1 / [cm -1 ] Anzahl der Wellen pro cm Planck sche Wirkungsquantum h = [Js]

9 Spektrum der elektromagnetischen Strahlung und ihre Anwendung in der Spektroskopie NMR MW, ESR IR UV-VIS [Hz] [cm] 100 m 1 m 1 cm 100 µm 1 µm 10 nm 100 Å Spektrum des sichtbaren Lichtes nm

10 Schematischer Aufbau eines Doppelstrahl-IR-Gerätes Vergleich optischer Nullabgleich Prisma oder Beugungsgitter Lichtquelle weißglühender Nernststift (ZrO 2 ) Probe Photometer Monochromator elektrische Spannung Detektor Verstärker Schreiber

11 Fourier-Transform-IR-Spektroskopie (FT-IR) S t Bewegungsrichtung Probe IR-Lichtquelle IP S b Detektor Datenspeicher Rechner Schreiber oder Bildschirm

12 Vom Interferogramm zum IR-Spektrum durch Fourier-Transformation

13 Mechanisches Modell eines schwingenden zweiatomigen Moleküls (Auslenkung Dr = x 1 + x 2 ) Nach dem Hookschen Gesetz ist die rücktreibende Kraft in erster Näherung proportional der Auslenkung Dr K = -k Dr

14 V(r) V k x 1 = k x = 2 2 osc x potentielle Energie Kraftkonstante Auslenkung = m m m m 1 2 = 1 2 reduzierte Masse osc Schwingungsfrequenz des Oszillators Potentialkurve des harmonischen Oszillators osc = 1 2 k ~ 1 = 2 c k

15 Mit der Schrödinger-Gleichung ergibt sich E VIB = h osc n 1 2 = h 2 k n 1 2 n = 0, 1, 2,... Potentialkurve des harmonischen Oszillators mit diskreten Schwingungsniveaus E i DE VIB = E n+1 E n = h osc n Schwingungsquantenzahl h Planck-Wirkungsquantum E VIB Schwingungsenergie (VIB von Vibration) h c DE = h = = hc ~ Lichtgeschw. c = cm s -1 [cm -1 ]- Wellenzahl

16 Mit der Schrödinger-Gleichung ergibt sich E VIB = h osc n 1 2 = h 2 k n 1 2 n = 0, 1, 2,... Potentialkurve des anharmonischen Oszillators (E 0 Nullpunktsenergie; E D Dissoziationsenergie; die unterschiedliche Pfeilstärke entspricht unterschiedlichen Übergangswahrscheinlichkeiten) DE VIB = E n+1 E n = h osc n Schwingungsquantenzahl h Planck-Wirkungsquantum E VIB Schwingungsenergie (VIB von Vibration)

17 A B H C H H C H Valenzschwingungen s as - symmetrisch - asymmetrisch s (CH 2 ) as (CH 2 ) H H H H C H Spreiz- ("bending") C "in plane" (eben) H Pendel- ("rocking") C H C H "out of plane" (nichteben) Torsions- ("twist") Kipp- ("wagging") Deformationsschwingungen Zur Kennzeichnung von lokalisierten Schwingungen benutzt man Symbole wie Valenzschwingungen (auch Streckschwingungen genannt) Deformationsschwingungen (auch Beugeschwingungen genannt) Deformationsschwingungen aus der Ebene (out of plane) Torsionsschwingungen (Änderung des Torsionswinkels)

18 Absorptionsbereiche des IR-Spektrums (am Beispiel Aceton) Oberschwingungen von (C = O) 3400 = cm -1

19 Bindung (CX) (cm -1 ) Atommasse von X ~ CH CD CC CCl Wellenzahl ~ ist proportional der Frequenz und damit ein Maß für die Energie (DE = h). ~ (C - D) ~ (C - H) = 1 2 C 1 2 C k = k = 0.73 m mh 12 = = 1 = = m m 12 1 m m C m m D 12 = C C D = C H 1.71 ber.: ~ (C-D) = = 2200 cm -1

20 Wellenzahlbereich von charakteristischen Valenzschwingungen organischer Moleküle

21 Aromatische Verbindungen (C=C-Valenzschwingungen) Gruppe Bande Bemerkungen aromatische Ringe 1600 (m) 1580 (m) 1500 (m) stärker, wenn weitere Konjugation zum Aryl-Ring vorliegt gewöhnlich die stärkste der zwei oder drei Banden Substitutionsmuster des Benzol-Ringes X n Gruppe Bande Substitutionsgrad fünf benachbarte H (s) (s) Monosubstitution; gewöhnlich zwei Banden (s. Toluol) vier benachbarte H (s) 1,2-Disubstitution (s. 1,2-Dimethylbenzol) drei benachbarte H (s) 1,3-Disubstitution, 1,2,3-Trisubstitution zwei benachbarte H (s) 1,4-Disubstitution, 1,3,4-Trisubstitution usw. isoliertes H (w) 1,3-Disubstitution usw.; gewöhnlich nicht intensiv genug, um von Nutzen zu sein

22 Beispiele von IR-Spektren

23

24

25

Anwendungen von heterogenen Gleichgewichten bei Trennverfahren

Anwendungen von heterogenen Gleichgewichten bei Trennverfahren Anwendungen von heterogenen Gleichgewichten bei Trennverfahren Folie103 Destillation: Sublimation: Gefriertrocknung: Kristallisation: flüssig gasförmig flüssig Bei unterschiedlichen Siedepunkten lassen

Mehr

Spektroskopische Methoden

Spektroskopische Methoden Spektroskopische Methoden OCIfolie367 MS - Massenspektroskopie (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption =

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen.

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen. Spektroskopie im IR- und UV/VIS-Bereich Schwingungen Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Resonanzschwingungen http://www.youtube.com/watch?v=eaxva XWZ8 Resonanzschwingungen

Mehr

Infrarot-Spektroskopie

Infrarot-Spektroskopie SoSe 19 Infrarot-Spektroskopie E = h v = h c ሚθ E = Energie; h = Planck sches Wirkungsquantum; v = Frequenz; c = Lichtgeschwindigkeit, ሚθ = Wellenzahl 1 3.1 Schwingungsmodi T / % Moleküle werden mit Licht

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

IR- Kurs OC1-Praktikum

IR- Kurs OC1-Praktikum IR- Kurs OC1-Praktikum Dr. Julia Wirmer-Bartoschek Schwalbe Gruppe N160 Raum 315 ferner@nmr.uni-frankfurt.de Seite 1 Spektroskopische Methoden, Messgrössen -rays x-rays UV VIS IR -wave radio 10-10 10-8

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie Infrarot-Spektroskopie 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden die absorbierten

Mehr

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie WS 17/18 Infrarot-Spektroskopie 1 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden

Mehr

Schwingungsspektroskopie

Schwingungsspektroskopie In N atomigen Molekülen haben wir 3N 5 (linear) bzw. 3N 6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm wird zu einer komplizierten

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC

IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC Peter.Bellstedt@uni-jena.de Terminübersicht (14 täg.) Gruppe 1 Gruppe 2 1. Seminar

Mehr

Schwingungsspektren organischer Moleküle

Schwingungsspektren organischer Moleküle 1. Theorie Schwingungsspektren organischer Moleküle Die Grundlagen der Rotationsschwingungsspektroskopie werden im Versuch Molekülspektroskopie besprochen, so dass hier lediglich auf die Schwingungsspektroskopie

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

2.) Welcher Kurvenverlauf deutet auf eine Abweichung vom Lambert-Beerschen Gesetz infolge Assoziation der absorbierenden Moleküle hin?

2.) Welcher Kurvenverlauf deutet auf eine Abweichung vom Lambert-Beerschen Gesetz infolge Assoziation der absorbierenden Moleküle hin? Fragen zum Gesamtthemenbereich Analytik Spektroskopische Verfahren 1.) Welche Aussage trifft zu? a) Die Absorption A wächst proportional zur Konzentration. b) Die Transmission T wächst proportional zur

Mehr

Seminar WiSe 2015/2016

Seminar WiSe 2015/2016 IR-Spektroskopie Seminar WiSe 2015/2016 PD Dr. Markus Nett Nachwuchsgruppenleiter Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie E-mail: markus.nett@hki-jena.de Anwendungsfelder der IR-Spektroskopie

Mehr

Umwandlung in substituierte Amide

Umwandlung in substituierte Amide Umwandlung in substituierte Amide CI_folie356 R C 3 R C Cl - Cl 2 Carbonsäurechlorid Amid S Cl 3 Sulfonsäurechlorid - Cl S 2 Sulfonamid S Cl Benzolsulfonylchlorid 3 C S Cl Ts Cl p-toluolsulfonylchlorid

Mehr

Schmelz- und Siedepunkte von typischen reinen Stoffen. Symbolik der Elektronenpaarbindung

Schmelz- und Siedepunkte von typischen reinen Stoffen. Symbolik der Elektronenpaarbindung Prof. Dr..-U. Reißig 2.01 Schmelz- und Siedepunkte von typischen reinen Stoffen Salzartig Diamantartig Flüchtige Stoffe Ionengitter Atomgitter diskrete Moleküle (Nal) (af 2 ) (Al 2 O 3 ) 4 6 6 l 4 O 2

Mehr

Schwingungsspektroskopie

Schwingungsspektroskopie Schwingungsspektroskopie In N-atomigen Molekülen haben wir 3N-5 (linear) bzw. 3N-6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 015/016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 11 vom 9.01.16 Aufgabe 11 1 L

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

Übungen zur IR-Spektroskopie (WS2008/WS2013)

Übungen zur IR-Spektroskopie (WS2008/WS2013) Übungen zur IR-Spektroskopie (WS2008/WS2013) Vorbemerkung: Diese Übungen können Sie sinnvoll nur unter Zuhilfenahme eines Spektroskopielehrbuchs bearbeiten. Das Lehrbuch brauchen sie, um die IR-spektroskopischen

Mehr

5 Analyseverfahren. Qualitative Analyse: Identifikation eines Stoffs bzw. Bestimmung der Zusammensetzung eines Stoffgemischs

5 Analyseverfahren. Qualitative Analyse: Identifikation eines Stoffs bzw. Bestimmung der Zusammensetzung eines Stoffgemischs 5 Analyseverfahren 1 Qualitative Analyse: Identifikation eines Stoffs bzw. Bestimmung der Zusammensetzung eines Stoffgemischs Quantitative Analyse: Bestimmung der absoluten Menge bzw. des Anteils (Konzentration)

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Schwingung von Atomen kann im klassischen

Mehr

18. Strukturaufklärung in der Organischen Chemie

18. Strukturaufklärung in der Organischen Chemie Inhalt Index 18. Strukturaufklärung in der Organischen Chemie Die Kenntnis der zahlreichen organischen Reaktionen und funktionellen Gruppen, die in den vorangegangenen Kapiteln vorgestellt wurden, sollten

Mehr

Die Farbstofflösung in einer Küvette absorbiert 90% des einfallenden Lichtes. Welche Extinktion hat diese Lösung? 0 0,9 1,9 keine der Aussagen ist richtig Eine Küvette mit einer wässrigen Farbstofflösung

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst Laboratory of Organic Chemistry HCI D323 martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/

Mehr

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Funktionelle Gruppen

Mehr

Methoden der Strukturaufklärung

Methoden der Strukturaufklärung Methoden der Strukturaufklärung LVN: 180542 Ort: HNC 30 Zeit: Mo 9-11 Uhr Mi 15-17 Uhr Kontaktinfos: Büro: NC 4/173 Email: christian.merten@rub.de www: www.rub.de/chirality Dr. Christian Merten, Ruhr-Uni

Mehr

Methoden der Strukturanalyse I

Methoden der Strukturanalyse I Methoden der Strukturanalyse I LVN: 180542 Ort: HNC 30 Zeit: Mo 9-11 Uhr Mi 15-17 Uhr Kontaktinfos: Büro: NC 4/173 Email: christian.merten@rub.de www: www.rub.de/chirality Dr. Christian Merten, Ruhr-Uni

Mehr

Strukturbestimmung einer unbekannten Verbindung. Daten sammeln über Herstellung und Herkunft der Verbindung.

Strukturbestimmung einer unbekannten Verbindung. Daten sammeln über Herstellung und Herkunft der Verbindung. Strukturbestimmung einer unbekannten Verbindung Daten sammeln über Herstellung und Herkunft der Verbindung. Sicherstellung hoher Reinheit 1 Zu bestimmende Struktur Elementaranalyse MS UV/VIS Chemische

Mehr

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen VL 24 VL 22 22.1. Homonukleare Moleküle VL 23 23.1. Heteronukleare Moleküle VL 24 24.1. Molekülschwingungen Wim de Boer, Karlsruhe Atome und Moleküle, 17.07.2012 1 Zum Mitnehmen Moleküle: Rotation und

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Z 12 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN

Z 12 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN ANALYTIK 1) BESTIMMUNG DER SUMMENFORMEL: a. AUS DEN MASSENPROZENTEN Ziel: Ermittlung einer Summenformel einer Substanz aus C, und O wenn die Massenprozent der Elemente und die Molmasse M r der Substanz

Mehr

Infrarot Spektroskopie organischer Verbindungen

Infrarot Spektroskopie organischer Verbindungen Infrarot Spektroskopie organischer Verbindungen Praktikum (B.C. 3.4) Lehrstuhl für Instrumentelle Analytik Michael Deicke Michael.Deicke@uni-jena.de Ziele des Praktikums IR-Spektren organischer Verbindungen

Mehr

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun UV/VIS-Spektroskopie: Optische Bestimmung der Dissoziationsenergie von I 2 Es soll ein UV/VIS-Spektrum von Ioddampf aufgenommen werden. Daraus sollen die Bandensysteme der v 00 -Progressionen (v 00 = 0,

Mehr

Spektroskopische Methoden. IR-Spektroskopie. Teil 1: Einführung und Grundlagen der IR. Einführung in die IR-Spektroskopie

Spektroskopische Methoden. IR-Spektroskopie. Teil 1: Einführung und Grundlagen der IR. Einführung in die IR-Spektroskopie IR-Spektroskopie Teil : Einführung und Grundlagen der IR. Allgemeiner Überblick spektroskopischer Methoden. Physikalische und apparative Grundlagen.3 IR-Spektrometer.4 Das IR-Spektrum.5 Probenpräparation.6

Mehr

III. Strukturbestimmung organischer Moleküle

III. Strukturbestimmung organischer Moleküle III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst HCI D323 martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/ ETH Zurich Dr.

Mehr

Instrumentelle Bioanalytik

Instrumentelle Bioanalytik 5. Infrarotspektroskopie - IR 5.1 Physikalische Grundlagen 5.2 IR-Spektroskopie (bio)organischer Moleküle 5.3 IR-Spektrometer und Probenvorbereitung 5.4 Proteinanalytik mit FT-IR 4-1 05.12.2011 5.1 Physikalische

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 20 29.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 20 Prof. Thorsten Kröll 29.06.2011 1 Anmeldung

Mehr

Primärstruktur Proteinsequenzierung

Primärstruktur Proteinsequenzierung Proteinanalytik II Primärstruktur Proteinsequenzierung Hydrolyse der Peptidbindung Aminosäurenachweis Ninhydrin Aminosäurenachweis Fluorescamin Proteinhydrolysat Ionenaustauschchromatographie Polypeptidstruktur

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie Methoden-Kurs - Teil I-Spektroskopie Dr. Markus berthür Fachbereich Chemie, Uni Marburg aum 6217 oberthuer@chemie.uni-marburg.de Anwendungen der I-Spektroskopie Strukturaufklärung von organischen Molekülen

Mehr

1 Infrarotspektroskopie

1 Infrarotspektroskopie 1 Infrarotspektroskopie 1.1 Grundlagen Elektromagnetisches Spektrum E = h f = h c / λ E Energie h Planksches Wirkungsquantum f Frequenz c Lichtgeschwindigkeit λ Wellenlänge ν = 1 / λ ν Wellenzahl (cm -1

Mehr

Chromatographie für Dummies

Chromatographie für Dummies Chromatographie für Dummies Bearbeitet von Karl Kaltenböck 1. Auflage 2010. Taschenbuch. 384 S. Paperback ISBN 978 3 527 70530 6 Format (B x L): 17,6 x 24 cm Gewicht: 586 g Weitere Fachgebiete > Chemie,

Mehr

Elektronenspektren Organischer Verbindungen (Vollhardt, 3. Aufl., S. 650-654, 4. Aufl. S. 725-729; Hart, S. 453-455; Buddrus, S. 41-45, S.

Elektronenspektren Organischer Verbindungen (Vollhardt, 3. Aufl., S. 650-654, 4. Aufl. S. 725-729; Hart, S. 453-455; Buddrus, S. 41-45, S. Vorlesung 25 Elektronenspektren Organischer Verbindungen (Vollhardt, 3. Aufl., S. 650-654, 4. Aufl. S. 725-729; Hart, S. 453-455; Buddrus, S. 41-45, S. 310-312) Warum sind manche Substanzen farbig, andere

Mehr

Spektroskopie OC Grundpraktikum. Wintersemester 2006/2007

Spektroskopie OC Grundpraktikum. Wintersemester 2006/2007 Spetrosopie OC Grundpratium Wintersemester 2006/2007 Werner Schwalbach Erste Fassung 10. Dezember 2006 Werner Schwalbach schwalbach@chemie-mainz.de http://www.chemie-mainz.de Dieses Doument darf ohne das

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Martin Pabst Laboratory of Organic Chemistry HCI D323 martin.pabst@org.chem.ethz.ch http://www.analytik.ethz.ch/

Mehr

IR-Spektroskopie - anwendungsorientiert. 01.07.2016 Folieninhalte Dr. Jan-Peter Ferner (AK Schwalbe)

IR-Spektroskopie - anwendungsorientiert. 01.07.2016 Folieninhalte Dr. Jan-Peter Ferner (AK Schwalbe) - anwendungsorientiert 01.07.2016 Folieninhalte Dr. Jan-Peter Ferner (AK Schwalbe) g-rays x-rays UV VIS IR m-wave radio 10-10 10-8 10-6 10-4 10-2 10 0 10 2 Wellenlänge (cm) n * l = c E = h * n ~ n ~ n

Mehr

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie UV-Vis-Spektroskopie 7.1 Allgemeines UV-Vis-Spektroskopie verwendet elektromagnetische Strahlung im sichtbaren und UV-Bereich. 190 nm bis 700 nm. Dabei kommt es zur Anregung von Elektronen ( Elektronenspektroskopie

Mehr

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger Warum Spektroskopie auf dem Mars? Befindet sich Wasser auf dem Mars? Gibt es eine Atmosphäre? Aus welchen Elemente besteht sie? Gibt es Leben?

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

7. Schülerpraktikum zur BIO-Analytik

7. Schülerpraktikum zur BIO-Analytik www.papa-gey.de 7. Schülerpraktikum zur BIO-Analytik Dienstag 03. März 2009, 9.30 16.00 Uhr 10 Schüler aus den Sächsischen Gymnasien: Ferdinand Sauerbruch-Gymnasium Großröhrsdorf Landau- Gymnasium Weißwasser

Mehr

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Teil 5 UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2018/19 www.ruhr-uni-bochum.de/chirality 1 Komplementärfarben Absorbiert eine Probe gelbes

Mehr

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie

UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Teil 5 UV/Vis-Spektroskopie oder auch: Elektronenanregungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Reminder: MO-Diagramm von O 2 2- MdS-1 UV/Vis-Spektroskopie

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3

Mehr

IR-Durchstrahlgeräte. Ältere dispersive Technik. Modernre FT-Technik IR 1. H.Hug/Instrumentelle Analytik/Europa-Nr.:72116, 2010

IR-Durchstrahlgeräte. Ältere dispersive Technik. Modernre FT-Technik IR 1. H.Hug/Instrumentelle Analytik/Europa-Nr.:72116, 2010 -Durchstrahlgeräte Ältere dispersive Technik Modernre FT-Technik H.Hug/Instrumentelle Analytik/Europa-Nr.:72116, 2010 1 -Durchstrahlgeräte Messprinzip : dispersives Einkanal -Gerät http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/3/anc/ir_spek/ir_geraete.vlu/page/vsc/de/ch/3/anc/ir_spek/ir_spektroskopie/ir_geraetetechnik/ir_8_4/zweistrahl_m35

Mehr

Schriftliche Prüfung BSc Herbst 2013

Schriftliche Prüfung BSc Herbst 2013 Prüfungen Analytische Chemie Dienstag, 13. August 2013 Schriftliche Prüfung BSc Herbst 2013 D CHAB/BIL Vorname:... Name:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt

Mehr

Flüssig-Flüssig Extraktion mittels SCPC Systemen

Flüssig-Flüssig Extraktion mittels SCPC Systemen Flüssig-Flüssig Extraktion mittels SCPC Systemen Die SCPC Systeme sind eine Kombination von HPLC mit dem SCPC als Trennsäule für die Aufreinigung von Wirkstoffen mittels Flüssig-Flüssig Extraktion bzw.

Mehr

Dünnschichtchromatographie

Dünnschichtchromatographie PB III/Seminar DC Dünnschichtchromatographie Dr. Johanna Liebl Chromatographie - Prinzip physikalisch-chemische Trennmethoden Prinzip: Verteilung von Substanzen zwischen einer ruhenden (stationären) und

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Teil 1 Aufgaben zum Stoff der Vorlesung OC1a (Grundvorlesung Organische Chemie) Maximale Punktezahl: 20 Notwendige Mindestpunkte: 8

Teil 1 Aufgaben zum Stoff der Vorlesung OC1a (Grundvorlesung Organische Chemie) Maximale Punktezahl: 20 Notwendige Mindestpunkte: 8 1. Klausur OC1 (BSc-Studiengang) PIN: 18.02.2016 11:00 14:00 Uhr N6 Name: Punkte: Matrikel Nr. Note: Notenskala: 80-78=1.0 77-75=1.3 74-71=1.5 70-67=1.7 66-63=2.0 62-59=2.3 58-56=2.5 55-53=2.7 52-50=3.0

Mehr

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU

Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU Die Grundlagen der Spektroskopie: Theorie FÜR EINE BESSERE WISSENSCHAFT AGILENT AND YOU 1 Agilent engagiert sich für Ausbildung und Lehre und möchte den Zugang zu firmeneigenem Material ermöglichen. Diese

Mehr

Posten 1a. Wie sieht das Kugelwolkenmodell aus von einem Sauerstoffatom? Antworten: a) (=> Posten 9o) b) (=> Posten 16l) c) (=> Posten 8k)

Posten 1a. Wie sieht das Kugelwolkenmodell aus von einem Sauerstoffatom? Antworten: a) (=> Posten 9o) b) (=> Posten 16l) c) (=> Posten 8k) Posten 1a Wie sieht das Kugelwolkenmodell aus von einem Sauerstoffatom? a) (=> Posten 9o) b) (=> Posten 16l) c) (=> Posten 8k) d) (=> Posten 13f) Posten 1d Welcher der beiden Stoffe hat den tieferen Siedepunkt?

Mehr

UV/IR- Kurs OC1-Praktikum 10-10 10-8 10-6 10-4 10-2 10 0 10 2 Wellenlänge (cm)

UV/IR- Kurs OC1-Praktikum 10-10 10-8 10-6 10-4 10-2 10 0 10 2 Wellenlänge (cm) Spektroskopische Methoden, Messgrössen γ-rays x-rays UV VS R μ-wave radio UV/R- Kurs OC1-Praktikum 10-10 10-8 10-6 10-4 10-2 10 0 10 2 Wellenlänge (cm) Dr. Julia Wirmer-Bartoschek Schwalbe Gruppe N160

Mehr

Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 26. April 2017 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Energieaufgelöste Beobachtung der Wechselwirkung Materie - elektromagnetische Strahlung : Spektroskopie. IR-Spektroskopie: Molekülschwingungen

Energieaufgelöste Beobachtung der Wechselwirkung Materie - elektromagnetische Strahlung : Spektroskopie. IR-Spektroskopie: Molekülschwingungen nergieaufgelöste Beobachtung der Wechselwirkung Materie - elektromagnetische Strahlung : Spektroskopie NMR SR rot vib M * M M + + e - M A + B 0 2 4 6 8 10 [ev] 1000 700 400 300 200 λ [nm] UKW IR NIR VIS

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Strukturaufklärung in der Organischen Chemie

Strukturaufklärung in der Organischen Chemie Strukturaufklärung in der rganischen hemie 1.1 Der harmonische szillator IR-Spektroskopie Beschreibt man die in der IR-Spektroskopie auftretenden Schwingungen mit ilfe der klassischen Mechanik, so resultiert

Mehr

Kontrollaufgaben zur Optik

Kontrollaufgaben zur Optik Kontrollaufgaben zur Optik 1. Wie schnell bewegt sich Licht im Vakuum? 2. Warum hat die Lichtgeschwindigkeit gemäss moderner Physik eine spezielle Bedeutung? 3. Wie nennt man die elektromagnetische Strahlung,

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Grundlagen der FT-IR-Spektroskopie

Grundlagen der FT-IR-Spektroskopie Grundlagen der FT-IR-Spektroskopie Basis-Modul Spektroskopie Elektromagnetische Strahlung UV-Licht, sichtbares Licht Infrarot-Licht Elementanalyse, z.b. IP, RFA Molekül-Analyse, z.b. (M)-IR Infrarotspektroskopie

Mehr

5026 Oxidation von Anthracen zu Anthrachinon

5026 Oxidation von Anthracen zu Anthrachinon NP 506 xidation von Anthracen zu Anthrachinon KMn /Al C H 0 KMn C H 8 (78.) (58.0) (08.) Literatur Nüchter, M., ndruschka, B., Trotzki, R., J. Prakt. Chem. 000,, No. 7 Klassifizierung Reaktionstypen und

Mehr

Vorwort... V Abkürzungen... XIII Zeichen und Symbole...XVIII

Vorwort... V Abkürzungen... XIII Zeichen und Symbole...XVIII VII Vorwort... V Abkürzungen... XIII Zeichen und Symbole...XVIII Klassische quantitative Analyse 4. Grundlagen und allgemeine Arbeitsweisen quantitativer Analysen und Analysenverfahren... 3 4.1 Größen

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Schriftliche Prüfung BSc Frühling 2014

Schriftliche Prüfung BSc Frühling 2014 Prüfungen Analytische Chemie Samstag, 1. Februar 2014 Schriftliche Prüfung BSc Frühling 2014 D CHAB/BIL Vorname:... ame:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt

Mehr

PS4. Grundlagen-Vertiefung Version vom 2. März 2012

PS4. Grundlagen-Vertiefung Version vom 2. März 2012 PS4 Grundlagen-Vertiefung Version vom 2. März 2012 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu Auösungsvermögen eines Gitters. 2 3 2.1 Entstehung optischer Spektren......................... 3 2.2 Einteilung

Mehr

Spektroskopie-Seminar SS18 2 Chromatographie 2.1 Definition am Beispiel Papierchromatographie

Spektroskopie-Seminar SS18 2 Chromatographie 2.1 Definition am Beispiel Papierchromatographie SS18 2.1 Definition am Beispiel Papierchromatographie Chromatographie (griechisch, χρῶμα chroma Farbe und γράφειν graphein schreiben ) häufig angewendete Trennmethode Beruht auf unterschiedlichen Wechselwirkungen

Mehr

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts

Basiswissen Chemie. Vorkurs des MINTroduce-Projekts Basiswissen Chemie Vorkurs des MINTroduce-Projekts Christoph Wölper christoph.woelper@uni-due.de Sprechzeiten (Raum: S07 S00 C24 oder S07 S00 D27) Was bislang geschah Kovalente Bindung Oktett-Regel Valence-Bond-Theorie

Mehr

Schriftliche Prüfung 2. Vordiplom Frühling 2004

Schriftliche Prüfung 2. Vordiplom Frühling 2004 Prüfungen Analytische Chemie Montag, 10. März 2004 Schriftliche Prüfung 2. Vordiplom Frühling 2004 D CAB/BIL Vorname:... Name:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt

Mehr

Physikalische Chemie für Fortgeschrittene. Protokoll

Physikalische Chemie für Fortgeschrittene. Protokoll Universität Leipzig Studiengang Chemie (Bachelor) Physikalische Chemie für Fortgeschrittene Sommersemester 014 Protokoll Versuch 3 Infrarotspektroskopie Rotationsschwingungsspektren Betreuer: M.Sc. Marcel

Mehr

Schriftliche Prüfung BSc Herbst 2014

Schriftliche Prüfung BSc Herbst 2014 Prüfungen Analytische Chemie Montag, 25. August 2014 Schriftliche Prüfung BSc Herbst 2014 D CHAB/BIL Vorname:... Name:... Jede Aufgabe wird separat bewertet. Die maximal erreichbare Punktzahl beträgt 36.

Mehr

Klausur zum Modul PC-3-P - Matrie und Strahlung

Klausur zum Modul PC-3-P - Matrie und Strahlung Klausur zum Modul PC-3-P - Matrie und Strahlung Nils Bartels 8. September 008 Formaldehyd 1 Spektroskopischer Nachweis von Formaldehyd in der Raumluft 1.1 Rotationsspektrum Die übergeordnete Auswahlregel

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch

Spektroskopie. im IR- und UV/VIS-Bereich. Spektrometer. http://www.analytik.ethz.ch Spektroskopie im IR- und UV/VIS-Bereich Spektrometer Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Allgemeiner Aufbau eines Spektrometers Lichtintensität d I 0 Probe I

Mehr