Schwingungsspektroskopie

Größe: px
Ab Seite anzeigen:

Download "Schwingungsspektroskopie"

Transkript

1 Schwingungsspektroskopie In N-atomigen Molekülen haben wir 3N-5 (linear) bzw. 3N-6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm wird zu einer komplizierten Matrix, da jede Auslenkung eines Atoms im Prinzip die Kraft auf alle anderen beeinflusst. Man kann jedoch einen Satz von Koordinaten finden, welche die Matrix der potentiellen Energie diagonalisieren. Diese heißen Normalkoordinaten (-schwingungen oder moden), und stellen eine Überlagerung von Bewegungen aller Atome dar. Jede Normalschwingung kann als unabhängiger harmonischer Oszillator mit einer Eigenfrequenz ω i verstanden werden. Die Schwingungsenergie des Moleküls ergibt sich als Summe der Energien der unabhängigen Oszillatoren.

2 Schwingungsspektroskopie Die Normalschwingungen eines dreiatomigen Moleküls sind die symmetrische und asymmetrische Streckschwingung, sowie die Biegeschwingung. Streckschwingungen haben höhere Frequenzen als Biegeschwingungen, die asymmetrische i.a. eine höhere Frequenz als die symmetrische Die Anregung einer Normalschwingung ist erlaubt, wenn sich das Dipolmoment entlang der Normalkoordinate wahrend der Schwingung verändert. Die symmetrische Streckschwingung des CO 2 ist daher IR-inaktiv. Im H 2 O tauchen dagegen alle Schwingungen im IR-Spektrum auf. Wird die Anharmonizität einbezogen treten auch Obertöne und Kombinationsbanden auf.

3 Schwingungsspektroskopie Oft sind bestimmte Kraftkonstanten zwischen zwei Atomen groß und auch in verschiedenen Molekülen sehr ähnlich. Dies führt zum Konzept der Gruppenschwingung und ermöglicht die Identifikation funktioneller Gruppen. Die folgende Tabelle zeigt einige Beispiele: Wellenzahl /cm -1 Funktionelle Gruppe O-H N-H, -NH 2 (zwei Banden) C -CH 3, -CH 2 H 2800 CO-H (Aldehyd, zwei Banden) C=O C=C- 1500/1600 Benzolring 700 C-Cl

4 Schwingungsspektroskopie Fourier-Transform Spektroskopie beruht darauf, dass Zeit- und Frequenzdomäne äquivalent sind. Das Spektrum wird in der Zeitdomäne beobachtet und die beteiligten Frequenzen durch Fourier-Transformation gewonnen. In Analogie zur Musik wird ein ganzer Akkord aufgenommen und in seine einzelnen Töne zerlegt. Im IR werden daher Fourier-IR Spektrometer (FT-IR) verwendet, deren zentrales Element ein Michelson-Interferometer ist. Seine Vorteile liegen in der schnelleren Aufnahme von Spektren, dem besseren Signal/Rausch Verhältnis und der Möglichkeit, niederfrequente Schwingungen (< 400 cm -1 ) zu beobachten.

5 Ramanspektroskopie Eine Alternative in der Schwingungsspektroskopie bietet der Raman-Effekt, die inelastische Streuung von Licht an Molekülen. Der Raman-Effekt beruht auf dem durch die Strahlung induzierten Dipolmoment. Dieses ist proportional zur molekularen Polarisierbarkeit, die ein Maß für die Verschiebbarkeit positiver und negativer Ladungen relativ zueinander darstellt. Zusätzlich zum elastisch gestreuten Primärlicht (Rayleigh-Linie) treten noch die Stokes- und Anti-Stokes-Linien auf, deren Frequenzverschiebung einem Schwingungsübergang entspricht. Stokes Anti-Stokes v=1 v=0 ν 0 - ν ν 0 ν 0 + ν Stokes Anti-Stokes

6 Ramanspektroskopie Bedingung für Raman-Aktivität ist eine sich während der Schwingung ändernde Polarisierbarkeit. Diese Bedingung ist für alle zweiatomigen Moleküle, auch homonukleare, erfüllt, sowie für viele IR-inaktive Banden in mehratomigen Molekülen. Infrarot- und Raman-Spektroskopie ergänzen sich daher hervorragend. Für die Intensität des Streulichts gilt bzw. UV Bereich vorteilhaft. I Streu = 1 4 λ daher ist eine Anregung im Vis Die Vorteile der Raman-Spektroskopie bestehen a) in der Möglichkeit IRverbotene Banden zu beobachten, b) der Detektion im sichtbaren Spektralbereich, c) der leichten Kombination mit Mikroskopie und d) der Tatsache, dass Wasser ein schwacher Raman-Streuer ist. Die Raman-Spektroskopie erfordert eine intensive, schmalbandige Lichtquelle (Laser) zur Anregung sowie eine gute Unterdrückung der Anregungsfrequenz

7 IR- vs. Ramanspektroskopie Alternativverbot in Molekülen mit Inversionszentrum CS 2 Infrarotspektrum Ramanspektrum Frank-M. Schnepel, Chemie in unserer Zeit, 13, S. 33 (1979)

8 Klausuranmeldung Di, 24. Juni 18 Uhr, HS A TecFun & LA Gym Elektronische Prüfungsanmeldung mit sb@home 7HLOPRGXO3K\VLNDOLVFKH&KHPLH,,*UXQGODJHQGHU4XDQWHQPHFKDQLN XQG6SHNWURVNRSLHI¾U6WXGLHUHQGHGHU,QJHQLHXUZLVVHQVFKDIWHQ.XU]EH]HLFKQXQJ,3&701U HLQJHWUDJHQ6HPHVWHU 3U¾IHU)LVFKHU 3U¾IXQJVGDWXP8KU]HLW8KU %HJLQQ$QPHOGXQJ (QGH$QPHOGXQJ (QGH5¾FNWULWW

9 TecFun-Scheine Scheine IPC1, WS 2007/08 können täglich zwischen 8 und 11 Uhr bei Frau König im Sekretariat Physikalische Chemie, 2. Stock abgeholt werden Bescheinigung Herr Vorname Nachname Matrikelnummer hat im Wintersemester 2007/08 an dem Teilmodul Physikalische Chemie 1 für Ingenieure (IPC 1 und IPC 2) mit Erfolg teilgenommen. Die Veranstaltung entspricht 6 ECTS Punkten Die Teilmodulprüfung wurde mit der Note bewertet

10 Teilchen auf dem Ring Behandlung in Polarkoordinaten r und φ Hˆ Hamilton-Operator: 2 = 2 h 2 2I φ Wellenfunktion: Φ = A e m l imlφ Energie: E = 2 ml h 2I 2 Drehimpuls: L z = m l h m l =±2 m l =±1 m l =0 Rotationsenergie ist quantisiert Abstände zwischen Energieniveaus nehmen zu mit m l m l Entartung

11 Teilchen auf dem Ring Wellenfunktionen 2 λ = π m l r m l =0: Wellenfunktion hat überall die gleiche Amplitude, Aufenthaltswahrscheinlichkeit ist überall gleich, Teilchen ist komplett delokalisiert. Daher darf der Impuls genau bestimmt sein, ohne die Unschärferelation zu verletzen.

Schwingungsspektroskopie

Schwingungsspektroskopie In N atomigen Molekülen haben wir 3N 5 (linear) bzw. 3N 6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm wird zu einer komplizierten

Mehr

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie (Raman-Spektroskopie) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Funktionelle Gruppen

Mehr

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen VL 24 VL 22 22.1. Homonukleare Moleküle VL 23 23.1. Heteronukleare Moleküle VL 24 24.1. Molekülschwingungen Wim de Boer, Karlsruhe Atome und Moleküle, 17.07.2012 1 Zum Mitnehmen Moleküle: Rotation und

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

Molekulare Kerndynamik. Grundlagen

Molekulare Kerndynamik. Grundlagen Grundlagen Bei der Bestimmung der elektronischen Struktur von Molekülen haben wir bis jetzt den Fall betrachtet, daß die Kerne fest sind. Lösung der elektronischen Schrödingergleichung in einem festen

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 20 29.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 20 Prof. Thorsten Kröll 29.06.2011 1 Anmeldung

Mehr

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007 Raman- Spektroskopie Natalia Gneiding 5. Juni 2007 Inhalt Einleitung Theoretische Grundlagen Raman-Effekt Experimentelle Aspekte Raman-Spektroskopie Zusammenfassung Nobelpreis für Physik 1930 Sir Chandrasekhara

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar WS 17/18 3 Infrarot-Spektroskopie. Infrarot-Spektroskopie WS 17/18 Infrarot-Spektroskopie 1 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie

Spektroskopie-Seminar SS Infrarot-Spektroskopie. Infrarot-Spektroskopie Infrarot-Spektroskopie 3.1 Schwingungsmodi Moleküle werden mit Licht im Infrarot-Bereich (400-4000 cm -1 ) bestrahlt Durch Absorption werden Schwingungen im Molekül angeregt Im IR-Spektrum werden die absorbierten

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen.

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen. Spektroskopie im IR- und UV/VIS-Bereich Schwingungen Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Resonanzschwingungen http://www.youtube.com/watch?v=eaxva XWZ8 Resonanzschwingungen

Mehr

A56. Raman-Spektroskopie. Jan Herausgeber: Institut für Physikalische Chemie

A56. Raman-Spektroskopie. Jan Herausgeber: Institut für Physikalische Chemie Physikalische-Chemisches Praktikum für Anfänger A56 Raman-Spektroskopie Jan. 2017 Herausgeber: Institut für Physikalische Chemie 1 Aufgabe 1. Aufnahme der Raman-Spektren von CO 2 (s), CS 2 (l), C 6 H 6

Mehr

Infrarot-Spektroskopie

Infrarot-Spektroskopie SoSe 19 Infrarot-Spektroskopie E = h v = h c ሚθ E = Energie; h = Planck sches Wirkungsquantum; v = Frequenz; c = Lichtgeschwindigkeit, ሚθ = Wellenzahl 1 3.1 Schwingungsmodi T / % Moleküle werden mit Licht

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Schwingungsspektren organischer Moleküle

Schwingungsspektren organischer Moleküle 1. Theorie Schwingungsspektren organischer Moleküle Die Grundlagen der Rotationsschwingungsspektroskopie werden im Versuch Molekülspektroskopie besprochen, so dass hier lediglich auf die Schwingungsspektroskopie

Mehr

IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC

IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC IR-Spektroskopie Seminar Analytische Chemie I (BC3.4, MCB B1; WS2016/17) Dr. Peter Bellstedt NMR Plattform IAAC & IOMC Peter.Bellstedt@uni-jena.de Terminübersicht (14 täg.) Gruppe 1 Gruppe 2 1. Seminar

Mehr

PC-II-08 Seite 1 von 5 WiSe 09/10. Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie

PC-II-08 Seite 1 von 5 WiSe 09/10. Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie PC-II-08 Seite 1 von 5 WiSe 09/10 Zusammenhang zwischen Quantenmechanik und MolekÄlspektroskopie PC-II-08 Seite von 5 WiSe 09/10 Rotations- und Schwingungsspektroskopie Rotationsspektroskopie Die Rotationsspektroskopie

Mehr

Klausur zum Modul PC-3-P - Matrie und Strahlung

Klausur zum Modul PC-3-P - Matrie und Strahlung Klausur zum Modul PC-3-P - Matrie und Strahlung Nils Bartels 8. September 008 Formaldehyd 1 Spektroskopischer Nachweis von Formaldehyd in der Raumluft 1.1 Rotationsspektrum Die übergeordnete Auswahlregel

Mehr

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Finale (O-ho!) Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality Rückblick: IR Schwingung von Atomen kann im klassischen Bild als harmonische Schwingung (harmonischer

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Short Summary of the Essentials of the PC V Lecture. To be covered by the first excercise of this class

Short Summary of the Essentials of the PC V Lecture. To be covered by the first excercise of this class Short Summary of the Essentials of the PC V Lecture To be covered by the first excercise of this class Das elektromagnetische Spektrum und Spektralbereiche Lineare Polarisation Elektromagnetische Wellen

Mehr

Theorie der IR- und Ramanspektroskopie

Theorie der IR- und Ramanspektroskopie Theorie der IR- und Ramanspektroskopie Spektreninterpretation und Strukturaufklärung Dieter Baurecht Institut für Biophysikalische Chemie, Universität Wien, 006 (Version 4.03.014) Inhalt Theorie der IR-

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

9. Dynamik des Kristallgitters

9. Dynamik des Kristallgitters 9. Dynamik des Kristallgitters Gitterschwingungen harmonische Näherung Phononen als Energiequanten TO TA [http://www.chembio.uoguelph.ca/educmat/chm729/phonons/optmovie.htm] WS 2013/14 1 9.1 Eigenschwingungen

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

PC-II-04 Seite 1 von 8 WiSe 09/10

PC-II-04 Seite 1 von 8 WiSe 09/10 PC-II-04 Seite 1 von 8 WiSe 09/10 Nachdem wir uns mit dem Teilchen im ein- und dreidimensionalen Kasten beschftigt haben, und Wellenfunktionen finden konnten, wollen wir das gleiche Problem nun fr ein

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Raman-Spektroskopie. http://www.analytik.ethz.ch

Spektroskopie. im IR- und UV/VIS-Bereich. Raman-Spektroskopie. http://www.analytik.ethz.ch Spektroskopie im IR- und UV/VIS-Bereich Raman-Spektroskopie Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Raman-Spektroskopie Chandrasekhara Venkata Raman Entdeckung des

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 13. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Variationsrechnung LCAO-Verfahren am Beispiel

Mehr

Vorlesung 25: Vibration und Rotation der Moleküle Auswahlregeln. Folien auf dem Web:

Vorlesung 25: Vibration und Rotation der Moleküle Auswahlregeln. Folien auf dem Web: Vorlesung 25: Roter Faden: Vibration und Rotation der Moleküle Auswahlregeln Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag

Mehr

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 015/016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 11 vom 9.01.16 Aufgabe 11 1 L

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vorlesung Soft Matter" Prof. Dr. F. Kremer

Vorlesung Soft Matter Prof. Dr. F. Kremer Vorlesung Soft Matter" Prof. Dr. F. Kremer Outline of the lecture (9.6.0) Vibrational spectroscopy The quantenmechanical rotator The information content of IR-spectra Vibrational modes of molecules being

Mehr

Seminar zum Praktikum Anorganische Chemie III III

Seminar zum Praktikum Anorganische Chemie III III Seminar zum Praktikum Anorganische Chemie III III Metallorganische Chemie Dr. J. Wachter IR-Teil3 www.chemie.uni-regensburg.de/anorganische_chemie/scheer/lehre.html www.chemie.uniregensburg.de/anorganische_chemie/wachter/lehre.html

Mehr

Vorlesung 25: Vibration und Rotation der Moleküle Auswahlregeln. Folien auf dem Web:

Vorlesung 25: Vibration und Rotation der Moleküle Auswahlregeln. Folien auf dem Web: Vorlesung 25: Roter Faden: Vibration und Rotation der Moleküle Auswahlregeln Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Mit 245 Abbildungen und 43 Tabellen Physikalische Bibliothek Fachbereich

Mehr

Festkörperanalytik Dünne Schichten

Festkörperanalytik Dünne Schichten Institut für Angewandte Physik Festkörperanalytik Dünne Schichten Vorlesung Festkörperanalytik Organisatorisches Johannes Heitmann Institut für Angewandte Physik Gellert-Bau, EG.17 Tel.: 39 2590 E-Mail:

Mehr

Spektroskopie OC Grundpraktikum. Wintersemester 2006/2007

Spektroskopie OC Grundpraktikum. Wintersemester 2006/2007 Spetrosopie OC Grundpratium Wintersemester 2006/2007 Werner Schwalbach Erste Fassung 10. Dezember 2006 Werner Schwalbach schwalbach@chemie-mainz.de http://www.chemie-mainz.de Dieses Doument darf ohne das

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Molekulare und chemische Dynamik in flüssiger Phase Experimente und Modelle

Molekulare und chemische Dynamik in flüssiger Phase Experimente und Modelle Molekulare un chemische Dynamik in flüssiger Phase Experimente un Moelle 5. Vorlesung 11.11.28 Quantenmechanik II Harmonischer Oszillator, Schwingungsspektren Peter Gilch Lehrstuhl für BioMolekulare Optik

Mehr

Skript zum Versuch F62. Hochaufgelöstes Rotation-Schwingungsspektrum von CO 2. Dez Herausgeber: Institut für Physikalische Chemie

Skript zum Versuch F62. Hochaufgelöstes Rotation-Schwingungsspektrum von CO 2. Dez Herausgeber: Institut für Physikalische Chemie Physikalisch-Chemisches Praktikum für Fortgeschrittene Skript zum Versuch F62 Hochaufgelöstes Rotation-Schwingungsspektrum von CO 2 Dez. 2016 Herausgeber: Institut für Physikalische Chemie 1 Aufgabe Das

Mehr

Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie

Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie Klausur zur Vorlesung Symmetrie in Chemie und Spektroskopie Zulässige Hilfsmittel: Charakterentafeln, Schema Hierarchie der Punktgruppen SS 6 Prof. Dr. B. Dick Aufgabe 1 (15P): Finden Sie die Punktgruppe

Mehr

KRAFTKONSTANTEN UND ATOMABSTAND EINFACHER GASMOLEKÜLE AUS DEM IR-SPEKTRUM UND RAMAN-SPEKTROSKOPIE

KRAFTKONSTANTEN UND ATOMABSTAND EINFACHER GASMOLEKÜLE AUS DEM IR-SPEKTRUM UND RAMAN-SPEKTROSKOPIE KRAFTKONSTANTEN UND ATOMABSTAND EINFACHER GASMOLEKÜLE AUS DEM IR-SPEKTRUM UND RAMAN-SPEKTROSKOPIE Voraussetzung sind folgende Themen: Lambert-Beersches Gesetz Absorption Freiheitsgrade Quantenmechanik

Mehr

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien Molekülphysik Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder Oldenbourg Verlag München Wien Vorwort XI 1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Einleitung 1 Kurzer historischer

Mehr

IR- Kurs OC1-Praktikum

IR- Kurs OC1-Praktikum IR- Kurs OC1-Praktikum Dr. Julia Wirmer-Bartoschek Schwalbe Gruppe N160 Raum 315 ferner@nmr.uni-frankfurt.de Seite 1 Spektroskopische Methoden, Messgrössen -rays x-rays UV VIS IR -wave radio 10-10 10-8

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12 Übungen zur Vorlesung Physikalische Chemie B. Sc. ösungsvorschlag zu Blatt 1 Prof. Dr. Norbert Hampp Jens Träger Wintersemester 7/8. 1. 8 Aufgabe 1 Welche Schwingungsübergänge in einem elektronischen Spektrum

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Rückblick: Die Essentials der letzten Vorlesung Schwingung von Atomen kann im klassischen

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie

F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie Was ist Raman-Spektroskopie? Abteilung Physik der Mikro- und Nanostrukturen (Prof. Dr. P.J. Klar) I. Physikalisches Institut, Justus-Liebig-Universität

Mehr

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie

Methoden-Kurs - Teil IR-Spektroskopie. Anwendungen der IR-Spektroskopie Methoden-Kurs - Teil I-Spektroskopie Dr. Markus berthür Fachbereich Chemie, Uni Marburg aum 6217 oberthuer@chemie.uni-marburg.de Anwendungen der I-Spektroskopie Strukturaufklärung von organischen Molekülen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Physikalische Chemie für Fortgeschrittene. Protokoll

Physikalische Chemie für Fortgeschrittene. Protokoll Universität Leipzig Studiengang Chemie (Bachelor) Physikalische Chemie für Fortgeschrittene Sommersemester 014 Protokoll Versuch 3 Infrarotspektroskopie Rotationsschwingungsspektren Betreuer: M.Sc. Marcel

Mehr

Schriftliche Leistungsüberprüfung PC/CBI

Schriftliche Leistungsüberprüfung PC/CBI Abschlusstest - Physikalische Chemie CBI/LSE - SS09 - Blatt 1 Schriftliche Leistungsüberprüfung PC/CBI SS08-31.07.2009 Hörsaal H1/H2/H3 Name: Vorname: geb. am: in: Matrikelnummer: Studienfach: Unterschrift:

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Springer-Verlag Berlin Heidelberg New York 3-540-57460-3 Springer-Verlag

Mehr

5. Schwingungsspektroskopische Untersuchungen

5. Schwingungsspektroskopische Untersuchungen 5. Schwingungsspektroskopische Untersuchungen Die Cyanid- und Thiocyanatliganden gehören als lineare Moleküle ohne Symmetriezentrum zu der Punktgruppe C v. 117 Für das zweiatomige CN - -Molekül gibt es

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Das Schwingungsspektrum von Wasser

Das Schwingungsspektrum von Wasser Das Schwingungsspektrum von Wasser Vortrag im Rahmen des Seminars zum anorganisch-chemischen Fortgeschrittenenpraktikum Institut für Anorganische Chemie Universität Karlsruhe Matthias Ernst Freitag, 29.6.2006

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zur Vorlesung Anorganische Chemie III Wintersemester 2015/16 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah # Darstellungen für

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Schwingungsspektroskopie

Schwingungsspektroskopie Schwingungsspektroskopie SS 211 Infrarotspektroskopie / Ramanspektroskopie Analytik-Fragestellungen: Aufklärung der Struktur unbekannter Substanzen Bestimmung von Konzentrationen / kleiner Substanz- Mengen

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

N k H nk ( α k Q k )e α k

N k H nk ( α k Q k )e α k 6 AUSWAHLREGELN 78 6.4.4 Gesamt-Schwingungsustandsfunktionen Für die Auswahlregeln der Übergänge wischen den Schwingungsniveaus müssen die Smmetrien der ugehörigen Gesamt-Schwingungsustandsfunktionen betrachtet

Mehr

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie Übersicht: Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie 6.1 Schwingungen zweiatomiger Moleküle: harmonische Näherung 6.2 Auswahlregeln für vibratorische Übergänge 6.3 Schwingungen

Mehr

1.8 IR-Spektroskopie. Physikalisches Praktikum für Fortgeschrittene. Abteilung B: Institut für Festkörperphysik

1.8 IR-Spektroskopie. Physikalisches Praktikum für Fortgeschrittene. Abteilung B: Institut für Festkörperphysik 1.8 IR-Spektroskopie Physikalisches Praktikum für Fortgeschrittene Abteilung B: Institut für Festkörperphysik Inhaltsverzeichnis 1 Einführung 3 2 Theoretische Grundlagen 4 2.1 Rotationsschwingungsspektroskopie......................

Mehr

TU Clausthal Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/16 Praktikum Teil C und D. 1. Einleitung Seite 2. 2.

TU Clausthal Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/16 Praktikum Teil C und D. 1. Einleitung Seite 2. 2. Institut für Physikalische Chemie 5. IR-Spektroskopie Stand 4/6 IR SPEKTROSKOPIE Inhaltsangabe:. Einleitung Seite. Theorie Seite. Einleitung Seite. Rotation und Schwingung von zweiatomigen Molekülen Seite

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Kapitel 7: Elektronische Spektroskopie

Kapitel 7: Elektronische Spektroskopie Kapitel 7: Elektronische Spektroskopie Übersicht: 7.1 Drehimpuls-Kopplungshierarchien in Molekülen: Hundsche Fälle 7.2 Auswahlregeln für rovibronische Übergänge 7.3 Das Franck-Condon-Prinzip 7.4 Zerfall

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden Protokoll Kombinierte Anwendung verschiedener Spektroskopischer Methoden Zielstellung: Durch die Auswertung von IR-, Raman-, MR-, UV-VIS- und Massenspektren soll die Struktur einer unbekannten Substanz

Mehr

PC II Kinetik und Struktur. Grundzüge der Spektroskopie

PC II Kinetik und Struktur. Grundzüge der Spektroskopie PC II Kinetik und Struktur Kapitel 4 Grundzüge der Spektroskopie Spektralbereiche, Dipolmoment, Molekülschwingungen, Energie der Schwingungen, IR-Absorptions- und Raman-Spektroskopie 1 2 Elektromagnetisches

Mehr

Betrag des Drehimpulses

Betrag des Drehimpulses Voresung Spektroskopie Sommersemester 001 Prof. Dr. W. Knoche 5. Rotations- und Schwingungsspektren 5.1. Rotationsspektren Freie Rotation eines starren Moeküs um drei Achsen: x y J = J + J + J z J J =

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

heißt totale Streuintensität und ist gegeben durch den in den Raumwinkel gestreuten Photonenstrom Ψ P gestreute Energie I S

heißt totale Streuintensität und ist gegeben durch den in den Raumwinkel gestreuten Photonenstrom Ψ P gestreute Energie I S 6. Ramanspektren 6.1 Die Phänomenologie des Ramaneffektes Fallen auf eine Probe eines reinen Stoffes, zum Beispiel in der flüssigen Phase, Photonen mit der Wellenzahl, bei der die Moleküle der Probe keine

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf L. D. LANDAU f E. M. LIFSCHITZ QUANTENTHEORIE In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf Mit 21

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell

Vorlesung 9: Roter Faden: Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome. Spektren des Wasserstoffatoms. Bohrsche Atommodell Vorlesung 9: Roter Faden: Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Theoretische Chemie II. (Gruppentheorie)

Theoretische Chemie II. (Gruppentheorie) Theoretische Chemie II (Gruppentheorie) Modul BCh 4.4 Sommersemester 2016 i Vorwort Dieses Skript enthält die wesentlichen Inhalte, mathematischen Formeln und Abbildungen der Vorlesung Theoretische Chemie

Mehr