Molekulare und chemische Dynamik in flüssiger Phase Experimente und Modelle

Größe: px
Ab Seite anzeigen:

Download "Molekulare und chemische Dynamik in flüssiger Phase Experimente und Modelle"

Transkript

1 Molekulare un chemische Dynamik in flüssiger Phase Experimente un Moelle 5. Vorlesung Quantenmechanik II Harmonischer Oszillator, Schwingungsspektren Peter Gilch Lehrstuhl für BioMolekulare Optik Fakultät für Physik Luwig-Maximilians-Universität München Nachtrag: Dichtematix un zeitabhängige Störungen Wir wollen mittels es Dichtematrix-Formalismus en Absorptionsprozess im 2-Niveau-System beschreiben. Der Absorptionsprozess kann mit einer zeitabhängige Störung V(t) beschrieben weren. Wir gehen von einem monochromatischen Lichtfel aus, as wir klassisch behaneln. E a E b Das System wechselwirkt über as elektrische oer magnetische Dipolmoment mit em elektrischen un magnetischen Fel. Wir nehmen an, ass ie Basiszustäne Φ a un Φ b keine Dipolmomente haben. Der zeitabhängige Hamilton- Operator nimmt ann folgene Form an:

2 i Die Liouville-Gl. ˆ ( t) = [ Hˆ, ˆ( t)] (zunächst noch ohne Störung un t h Relaxation) lautet: Mit er Lösung: Wir bauen ie Phasenfaktoren in ie Variablen ein: i Die Liouville-Gl. ˆ ( t) = [ Hˆ, ˆ( t)] (mit Störung) lautet: t h 11 i iωt iωt = E cosωt( µ 12e 21 µ 21e 12) t h 22 i iωt cos ( iωt = E ωt µ 21e 12 µ 12e 21) t h 12 η i iωt = i 12 E cosωte µ 12( 22 11) t h 21 η i iωt = i 12 E cosωte µ 21( 11 22) t h Wir benutzen ie Rotating Frame Approximation Jetzt berücksichtigen wir longituinale un transversale Relaxation:

3 Un erhalten ie optischen Bloch-Gleichungen y z x y x y x eq z z r y z k E t k t k E t µ η η µ ) (, = = = h h Von er Bloch-Gleichung zum Spektrum E a E b Wir betrachten ein 2-Niveau-System, as kontinuierlich mit monochromat. Licht bestrahlt wir. Es stellt sich ein stationärer Zustan ein, bei em mit konstanter Rate EM-Felenergie in Wärme umgewanelt wir. Wie groß ist iese Rate, wie ist Ihre Frequenz-Abhängigkeit? Stationaritätsbeingung für Bloch-Gl.: y z x y x y x eq z z r y z k E t k t k E t µ η η µ ) (, = = = h h

4 liefert Lorentz-Funktion: 2 Absorbierte Leistung Frequenz ω Das nächste Spielzeugsystem: Der harmonische Oszillator Der klassische un er quantenmechanische harmonische Oszillator ist in er Molekülphysik omnipräsent. Beispiele Schwingungsspektroskopie Elektrontransfer-Theorie Raman Infrarot Aus W.W. Coblentz (195) Investigations of Infrare Spectra Strahlungsfel Thermische Bäer

5 Abschätzung zur harmonischen Näherung für ie Kernbewegung in Molekülen Bei einem (stabilen) Molekül resultiert aus jeer Auslenkung r i er Atomkerne eine rücktreibene Kraft. Vornehmer: Ein Molekül ist ein (lokales) Minimum auf einer Born-Oppenheimer (BO) Hyperfläche. Die Kraft kann aher über as Hooksche Gesetz genähert weren as Potenzial über eine Parabel Für r i gegen null ist ie Parabel sicher eine gute Näherung, wie es bei typischen Auslenkungen aus? Betrachten wir azu ein zweiatomiges Molekül, z.b. HCl. Dessen BO- Fläche ist eine Kurve, ie sich mit em Morse-Potenzial nähern lässt. D e Dissoziationsenergie, k harmonische Kraftkonstante 4 35 Anharmonizität ist Energie E [cm -1 ] Situation ist bei polyatomaren Molekülen noch günstiger, a bei er Auslenkung eines Atoms mehrere Binungen rücktreiben wirken Abstan HCl r [A] 3 Energie E [cm -1 ] Abstan HCl r [A] Habil. Peter Gilch 24

6 Zeitunabhängige Schröinger-Gl. es harmonischen Oszillators Wir betrachten ein zweiatomiges Molekül, as urch ie ie Massen m 1 un m 2 er beien Atome, eines Gleichgewichtsabstanes x un einer Kraftkonstante k charakterisiert sei. Im Folgenen legen wir en Ursprung er Ortskoorinate auf en Gleichgewichtsabstan,.h. x =. Die zeitunabhängige Schröinger-Gl. für ieses Problem lautet: Mit imensionslosen Orts- un Impulsoperatoren (ω ist klassische Eigenfrequenz) Lösung (Eigenwerte un -funktionen). Die Eigenfunktionen bilen (wie immer) eine ONB. H n : Hermitsche Polynome, einige Beispiele N n : Normierungsfaktor Typische Werte für ω un k

7 Einige Eigenschaften er Lösungen - Energie-Niveaus äquiistant - Nullpunktsenergie - Zahl er Knoten steigt mit er Quantenzahl n - Verhalten wir mit n klassischer - Parität wechselt ab - Erwartungswerte für ie Ortskoorinate x Wie groß ist eine typische Auslenkung für n=1? Harmonischer Oszillator un ie zeitabhängige Schröinger-Gl. Wir untersuchen ie Zeitentwicklung eines Zustanes χ(x,t), er kein Eigenzustan es harmonischen Oszillators ist. Dieser Zustan kann in er ONB er Eigenfunktionen argestellt weren: Für ie zeitabhängigen Entwicklungskoeffizienten c n (t) gilt: Für alle Koeffizienten gilt: Die Wellenfunktion ist perioisch mit T=2π/ω!

8 Wir betrachten en wichtigen Spezialfall, bei em ie Funktion χ(x,t=) urch eine verschobene Gauß-Funktion gegeben ist: χ( x, t = ) = α e π 2 (1/ 2) α ( xx ) 2 Die Lösung lautet: χ( x, t) = α e π 2 2 (1/ 2) α [ xx( t)] + ( i / h) p( t)[ x(1/ 2) x( t)] Mit: Vergleich mit klassischer Schwingung Zeitentwicklung er Aufenthaltswahrscheinlichkeit: Wellenpakete un Femtosekunen-Spektroskopie Die kohärente Überlagerung von Schwingungswellenfunktionen stellen ein Wellenpaket ar. Ein Wellenpaket lässt sich urch elektronische Anregung eines Moleküls (S S 1 ) mit einem kurzem Laserimpuls präparieren. Im Zustan S 1 sei ie Kraftkonstante k unveränert, aber er GGW-Abstan x größer. S 1 S Präparation über chemische Reaktion T. Kühne, P. Vöhringer, J. Chem. Phys. 15 (1996) 1788

9 Schwingungen in polyatomaren Molekülen Normalmoen Ein nicht-lineares Molekül mit N Atomen besitzt 3N-6 innere Freiheitsgrae. Die potenzielle Energie hängt in er harmonischen Näherung wie folgt von iesen Freiheitsgraen ab (wir legen wieer en Ursprung auf ie GGW- Geometrie): Definition er Krafkonstante k ij Klassische Bewegungsgleichung Massegewichtete Größen Matrix-Darstellung System von gekoppelten Differentialgleichungen. Es kann wieer urch Diagonalisierung mit Hilfe einer Matrix T aus Eigenvektoren gelösten weren. Man erhält 3N-6 unabhängige harmonische Oszillatoren Jeer Oszillator wir ann getrennt quantenmechanisch behanelt. Die Gesamtwellenfunktion für ie Schwingungen ergibt sich als Proukt.

10 Die Eigenvektoren bezeichnet man als Normalmoen. Die zugehörigen Bewegungen er Atome berechnen sich aus: Beispiele: Normalmoen von H 2 O un CO 2 Matrixelemente un Auf- un Absteigeoperatoren Bei er Behanlung von Schwingungsspektren un er Schwingungsrelaxation sin Matrixelemente er Form von großer Beeutung (Dipolmoment!) In er harmonischen Näherung lassen sich iese Matrixelemente nach Einführung von Auf- un Absteigeoperatoren besoners leicht berechnen. Wirkung ieser Operatoren ( n> = χ n )

11 Ins Matrixelement eingesetzt: { n>} ist ONB Damit gilt für einen Dipolübergang ( <n x n > 2 ): Fluoreszenz- un Absorptionspektroskopie Experimentelle Methoen er Schwingungsspektroskopie IR-Spektroskopie Raman-Spektroskopie Wellenpakete un Fourier-Transformation

12 Schwingungsaten aus Absorption- un Emissionsspektren In er Absorption- un Emissionsspektroskopie im UV/Vis-Bereich beobachtet man Übergänge zwischen elektronischen Zustänen. Bei iesen Übergängen kann sich auch er Schwingungszustan eines Moleküls änern. Man spricht von vibronischen (= vibratorischen + elektronischen) Übergängen. Wir gehen avon aus, ass im Ausgangszustan nur er vibratorische Grunzustan besetzt ist. Absorption liefert Daten über Emission liefert Daten über S 1 S 1 S S Die Intensität eines vibronischen Übergangs hängt vom Franck-Conon-Faktor ab: Harmonische Näherung un gleiche Kraftkonstanten in S un S 1 :

13 Da in einem Molekül nicht alle Moen FC-aktiv sin, liefern Absorption- un Fluoreszenz-Spektren nur begrenzte Informationen. Zuem kommt es in Lösung zu homogen un inhomogen Verbreiterungen. Absorptionsspektren von Benzol Man beobachtet eine so genannte Schwingungsprogression mit er Differenzfrequenz Warum sin Linienbreiten bei vibronischen Übergängen größer als bei reinen Schwingungsübergängen? Aus Molekülphysik un Quantenchemie H. Haken, H.C. Wolff IR-Spektroskopie Unter IR-Spektroskopie versteht ie Absorptionsspektroskopie im Spektralbereich es mittleren Infraroten (ca cm -1 ). Man inuziert irekt Übergänge zwischen Schwingungsniveaus (meist bei n= beginnen). In er IR-Spektroskopie wir meist Interferogramm gemessen, aus em man urch Fouriertransformation ein Spektrum erhält (FTIR). Für en Extinktionskoeffizient einer IR-Bane gilt (Dipolmoment µ): Beispiel CO 2 IR-aktiv?

14 Raman-Spektroskopie In er Raman-Spektroskopie beobachtet as an Molekülen inelastisch gestreute Licht. Gestreute Lichtintenstität Frequenz ω Die Frequenz es Primärlichtes liegt im NIR- bis UV-Bereich. Die Intensität es gestreuten Lichtes ist proportional zu (Polarisierbarkeit α): Beispiel CO 2 Raman-aktiv? Für centro-symmetrische Moleküle (nur für iese!) gilt ein Ausschlussprinzip: IR aktiv Raman inaktiv un IR inaktiv Raman aktiv. Polarisation liefert zusätzliche Information: Depolarisationsverhältnis liefert Informationen über Symmetrie er Schwingung (hängt von Detektionsgeometrie ab)

15 Was schwingt wo im Spektrum? Ein Beispiel O OH H H H O N + O H Raman/IR Atlas of Organic Compouns, B. Schraer, W. Meier, Verlag Chemie 1974 Jenseits er harmonischen Näherung: Anharmonizitäten Die harmonische Näherung ist er Anfangspunkt bei er Beschreibung molekularer Schwingung. Sie ist aber nicht immer er Enpunkt. Viele Phänomene lassen sich nicht im Rahmen er harmonischen Näherung beschreiben, z.b: Ober- un Kombinationstöne Fermi-Resonanzen H 2 S. Il Nam et al. Bull. Korean Chem. Soc. 22 (21) 989 Umverteilung von Schwingungsenergie

16 Behanlung von Anharmonizitäten Man entwickelt wieer as Potenzial um ie Gleichgewichtslage, bricht aber nicht nach em zweiten Term ab: Meist weren Terme bis zur vierten Ornung berücksichtigt. Für ie Energien ergibt sich ann (n 1, n 2,.. sin ie Quantenzahlen er Moen): X ij sin ie Anharmonizitätskonstanten X ii iagonale Anharmonizität (am Beispiel es Morse-Potenzials) X ij außeriagonale Anharmonizität Besetzung er Moe j beeinflusst ie Frequenz er Moe i. Wichtig für er Verstännis von Temperatur-Effekten! Wegen er Nullpunktamplitue sehen ie Kerne auch bei T= K ein anharmonisches Potenzial. Auch Nullpunktenergien weren von Anharmonizitäten veränert.

17 Anharmonizität un 2-Niveau-System: Fermi-Resonanzen In einem polyatomaren Molekül kann es passieren, ass zufällig ie Energie einer funamentalen Anregung mit er eines Obertons zusammenfällt. IR Absorption Ohne Anharmonizität Mit Anharmonizität Frequenz ω Diese Aufspaltung bezeichnet man als Fermiresonanz. Sie liefert irekte Informationen über Anharmonizitäten. Ist ie Energie er funamentalen Anregung oer es Obertons abhängig vom Lösungsmittel, ann kann ie Fermi-Resonanz urch as Lösungsmittel an- un abgeschaltet weren. Ausblick: Anharmonizitäten un Energiefluss Bei er Erhaltung er Normalmoen wure ie Kraftkonstanten Matrix iagonalisiert. Dies beeutet, ass ie Normalmoen von einaner völlig unabhängig sin. Es finet emnach auch kein Energiefluss zwischen en Moen statt. Energiefluss ist emnach ein anharmonischer Effekt! Beispiel: Energiefluss in CCl 2 CH 2 Ingmar Hartl, Dissertation 1999

18 Reaer

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Schwingungsspektroskopie

Schwingungsspektroskopie Schwingungsspektroskopie In N-atomigen Molekülen haben wir 3N-5 (linear) bzw. 3N-6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm

Mehr

Schwingungsspektroskopie

Schwingungsspektroskopie In N atomigen Molekülen haben wir 3N 5 (linear) bzw. 3N 6 (nichtlinear) Freiheitsgrade der Schwingung, welche die Position der Atome relativ zueinander beschreiben. Der Potentialterm wird zu einer komplizierten

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i

Die Erwartungswerte von Operatoren sind gegeben durch. (x, t)a (x, t) =h A i Die Wahrscheinlichkeit, das System zu einem bestimmten Zeitpunkt in einem bestimmten Zustand anzutreffen, ist durch das Betragsquadrat der Wellenfunktion (x, t) 2 gegeben Die Erwartungswerte von Operatoren

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

Short Summary of the Essentials of the PC V Lecture. To be covered by the first excercise of this class

Short Summary of the Essentials of the PC V Lecture. To be covered by the first excercise of this class Short Summary of the Essentials of the PC V Lecture To be covered by the first excercise of this class Das elektromagnetische Spektrum und Spektralbereiche Lineare Polarisation Elektromagnetische Wellen

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12 Übungen zur Vorlesung Physikalische Chemie B. Sc. ösungsvorschlag zu Blatt 1 Prof. Dr. Norbert Hampp Jens Träger Wintersemester 7/8. 1. 8 Aufgabe 1 Welche Schwingungsübergänge in einem elektronischen Spektrum

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Molekulare Kerndynamik. Grundlagen

Molekulare Kerndynamik. Grundlagen Grundlagen Bei der Bestimmung der elektronischen Struktur von Molekülen haben wir bis jetzt den Fall betrachtet, daß die Kerne fest sind. Lösung der elektronischen Schrödingergleichung in einem festen

Mehr

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort

Mehr

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen

VL 24 VL Homonukleare Moleküle VL Heteronukleare Moleküle VL Molekülschwingungen VL 24 VL 22 22.1. Homonukleare Moleküle VL 23 23.1. Heteronukleare Moleküle VL 24 24.1. Molekülschwingungen Wim de Boer, Karlsruhe Atome und Moleküle, 17.07.2012 1 Zum Mitnehmen Moleküle: Rotation und

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 4. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 4. Vorlesung Pawel Romanczuk WS 2016/17 Zusammenfassung letzte VL Orts- und Impulsdarstellung Gaussches Wellenpacket Unendl. Potentialtopf

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Springer-Verlag Berlin Heidelberg New York 3-540-57460-3 Springer-Verlag

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Molekülphysik und Quantenchemie

Molekülphysik und Quantenchemie Hermann Haken Hans Christoph Wolf Molekülphysik und Quantenchemie Einführung in die experimentellen und theoretischen Grundlagen Mit 245 Abbildungen und 43 Tabellen Physikalische Bibliothek Fachbereich

Mehr

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13

1 Grundprinzipien des Lasers Licht im Hohlraum Atome im Laserfeld Ratengleichungen Lichtverstärkung 13 1 Grundprinzipien des Lasers 1 1.1 Licht im Hohlraum 1 1.2 Atome im Laserfeld 6 1.3 Ratengleichungen 10 1.4 Lichtverstärkung 13 1.5 Strahlungstransport* 15 1.6 Lichterzeugung mit Lasern 19 Aufgaben 22

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 20 29.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 20 Prof. Thorsten Kröll 29.06.2011 1 Anmeldung

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen.

Spektroskopie. im IR- und UV/VIS-Bereich. Schwingungen. Spektroskopie im IR- und UV/VIS-Bereich Schwingungen Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Resonanzschwingungen http://www.youtube.com/watch?v=eaxva XWZ8 Resonanzschwingungen

Mehr

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München

Laserphysik. Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli. Oldenbourg Verlag München Laserphysik Physikalische Grundlagen des Laserlichts und seine Wechselwirkung mit Materie von Prof. Dr. Hans-Jörg Kuli Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Grundprinzipien des Lasers

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

7 Anwendungen der Linearen Algebra

7 Anwendungen der Linearen Algebra 7 Anwenungen er Linearen Algebra 7.1 Extremwertaufgaben mit Nebenbeingungen Bemerkung 7.1. Wir behaneln as Problem: Gegeben ist eine zweimal stetig ifferenzierbare Funktion f : R n R un ein stetig ifferenzierbares

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 13. Vorlesung 11.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 1 Schwingungsspektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 1 Schwingungsspektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality Themenüberblick Schwingungsspektroskopie Physikalische Grundlagen: Mechanisches Bild

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

4.9 Der Harmonische Oszillator

4.9 Der Harmonische Oszillator 4.9 Der Harmonische Oszillator Zum harmonischen Oszillator gehört klassisch die Hamiltonfunktion H = p m + k x. 4.58) Damit wird z.b. näherungsweise die Bewegung von einzelnen Atomen in einem Festkörper

Mehr

PC2: Spektroskopie Störungsrechnung

PC2: Spektroskopie Störungsrechnung PC: Spektroskopie Störungsrechnung (neu überarbeitet im SS 014, nach: Wedler-Freund, Physikalische Chemie) Wir betrachten ein System aus quantenchemischen Zuständen m, n, zwischen denen durch die Absorption

Mehr

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm.

Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Termschema des neutralen Natriumatoms. Die Zahlen bei den schrägen Strichen sind die Wellenlängen beobachteter Übergänge in nm. Prof. Dr. D. Winklmair Wechselwirkung 1/11 Symmetrische Valenzschwingung

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 6. Vorlesung, 16. 5. 2013 Molekülspektren, Normalkoordinaten, Franck-Condonprinzip,

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien

Molekülphysik. Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder. Oldenbourg Verlag München Wien Molekülphysik Theoretische Grundlagen und experimentelle Methoden Von Wolfgang Demtröder Oldenbourg Verlag München Wien Vorwort XI 1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Einleitung 1 Kurzer historischer

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 5. Vorlesung, 25. 4. 2013 Born Oppenheimernäherung, Molekülrotation, Molekülschwingungen

Mehr

Schwingungsspektren organischer Moleküle

Schwingungsspektren organischer Moleküle 1. Theorie Schwingungsspektren organischer Moleküle Die Grundlagen der Rotationsschwingungsspektroskopie werden im Versuch Molekülspektroskopie besprochen, so dass hier lediglich auf die Schwingungsspektroskopie

Mehr

PC-II-04 Seite 1 von 8 WiSe 09/10

PC-II-04 Seite 1 von 8 WiSe 09/10 PC-II-04 Seite 1 von 8 WiSe 09/10 Nachdem wir uns mit dem Teilchen im ein- und dreidimensionalen Kasten beschftigt haben, und Wellenfunktionen finden konnten, wollen wir das gleiche Problem nun fr ein

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2 MA9203 http://www-m5.ma.tum.e/allgemeines/ma9203 2016S Sommersem. 2016 Lösungsblatt 9 (10.6.2016

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt.

Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. 12 Moleküle Slide 267 Vorbemerkungen Da Atome viele ununterscheidbare Elektronen besitzen, sind ihre Zustände durch interelektronische Coulomb- und Austausch-Wechselwirkungen bestimmt. Je 2 Elektronen

Mehr

Inhaltsverzeichnis Einleitung Mechanische Eigenschaften von Molekülen, Größe, Masse Moleküle in elektrischen und magnetischen Feldern

Inhaltsverzeichnis Einleitung Mechanische Eigenschaften von Molekülen, Größe, Masse Moleküle in elektrischen und magnetischen Feldern Inhaltsverzeichnis 1. Einleitung... 1 1.1 Was ist ein Molekül?... 1 1.2 Ziele und Methoden............................................ 3 1.3 Historische Bemerkungen.......................................

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie

Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie Übersicht: Kapitel 6: Schwingungsbewegung von Molekülen und Schwingungsspektroskopie 6.1 Schwingungen zweiatomiger Moleküle: harmonische Näherung 6.2 Auswahlregeln für vibratorische Übergänge 6.3 Schwingungen

Mehr

Quantenmechanik. Walter Greiner. Teill. Theoretische Physik. Ein Lehr- und Übungsbuch. Verlag Harri Deutsch. Band 4

Quantenmechanik. Walter Greiner. Teill. Theoretische Physik. Ein Lehr- und Übungsbuch. Verlag Harri Deutsch. Band 4 Theoretische Physik Band 4 Walter Greiner Quantenmechanik Teill Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 5., überarbeitete und erweiterte

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 13. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Variationsrechnung LCAO-Verfahren am Beispiel

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 4 Emission und Absorption elektromagnetischer Strahlung Stephan Huber, Markus Kotulla, Markus Perner 01.09.2011 Inhaltsverzeichnis 1 Emission und Absorption elektromagnetischer

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Das Jaynes-Cummings-Modell

Das Jaynes-Cummings-Modell Das Jaynes-Cummings-Modell Brem Samuel Hauer Jasper Lachmann Tim Taher Halgurd Wächtler Christopher Projekt in Quantenmechanik II - WS 2014/15 12. Februar 2015 Brem, Hauer, Lachmann, Taher, Wächtler Das

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.: phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Walter Greiner THEORETISCHE PHYSIK. Ein Lehr-und Übungsbuch für Anfangssemester. Band 4: Quantenmechanik. Eine Einführung

Walter Greiner THEORETISCHE PHYSIK. Ein Lehr-und Übungsbuch für Anfangssemester. Band 4: Quantenmechanik. Eine Einführung Walter Greiner THEORETISCHE PHYSIK Ein Lehr-und Übungsbuch für Anfangssemester Band 4: Quantenmechanik Eine Einführung Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 2.,

Mehr

Versuchsprotokoll: Modellierung molekularer Schwingungen

Versuchsprotokoll: Modellierung molekularer Schwingungen Versuchsprotokoll: Modellierung molekularer Schwingungen Teammitglieder: Nicole Schai und Cristina Mercandetti Datum: 11.12.12 Versuchsleiter: Claude Ederer 1. Einleitung Dieser Versuch befasste sich mit

Mehr

Methoden der Quantenmechanik mit Mathematica

Methoden der Quantenmechanik mit Mathematica James M. Feagin Methoden der Quantenmechanik mit Mathematica Übersetzt von Felix Pahl Mit einem Geleitwort von S. Brandt und H.D. Dahmen Mit 80 Abbildungen, zahlreichen Übungen und einer 3V 2 "-Diskette

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf L. D. LANDAU f E. M. LIFSCHITZ QUANTENTHEORIE In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf Mit 21

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 12. Vorlesung 4.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

3.4 Grundlagen der quantenmechanischen Beschreibung

3.4 Grundlagen der quantenmechanischen Beschreibung - - 3.4 Grundlagen der quantenmechanischen Beschreibung 3.4. Vorgehen Wie bei anderen spektroskopischen Experimenten wird auch in der NMR oder ESR ein Spektrum dadurch bestimmt, dass unterschiedliche Frequenzen

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007 Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr