Hans Walser Rhombenkörper

Größe: px
Ab Seite anzeigen:

Download "Hans Walser Rhombenkörper"

Transkript

1 Hans Walser Rhombenkörper Braunschweig, 8. Mai 2018 Zusammenfassung: Wir besprechen konvexe Körper, welche von kongruenten Rhomben begrenzt sind. Mit einigen von ihnen lässt sich der Raum lückenlos und ohne Überlappungen auffüllen. Dies lässt sich mit Papiermodellen zeigen. Die Inkugeln der Raumfüller bilden eine Kugelpackung. Insbesondere werden wir die optimale Kugelpackung (Kepler, Hales) antreffen. Zusätzlichen Regularitätsvoraussetzungen führen zu Rhombenkörpern mit Kantenberührkugeln. Sämtliche Rhombenkörper lassen sich in Rhombenhexaeder zerlegen.

2 Hans Walser: Rhombenkörper 2 / 25 1 Rhomben gleicher Seitenlänge 1.1 In der Ebene Wir beginnen mit einer Kette von Rhomben gleicher Seitenlänge und füllen die Lücken mit weiteren Rhomben (Abb. 1). Abb. 1: Rhomben in der Ebene Obwohl die Figur rein planimetrisch konzipiert ist, erhalten wir schließlich den Eindruck einer räumlichen Figur.

3 Hans Walser: Rhombenkörper 3 / 25 In der Abbildung 2 sind die Start-Rhomben sternförmig angeordnet. Wir erhalten schließlich den Eindruck einer gewölbten Fläche. Abb. 2: Flach oder gewölbt? 1.2 Auf in den Raum Dieser Eindruck ist aber falsch, wie das erste Bild der Abbildung 3 zeigt. Abb. 3: Aufbruch in den Raum Wir fügen nun (Abb. 3, mitte) in der Mitte neue Rhomben ein, die wirklich in den Raum ragen. Ihre Kanten haben gegenüber der horizontalen Tellerebene die Steigung 1, also den Steigungswinkel 45. Die neuen Rhomben sind so bemessen, dass ihre senkrechte Projektion auf die Tellerebene mit den ursprünglichen zentralen Rhomben zusammenfällt. Nun können wir in die Lücken einen weiteren Kranz von Rhomben einfügen (Abb. 3, rechts).

4 Hans Walser: Rhombenkörper 4 / 25 Wir können fröhlich weiterfahren (Abb. 4). Abb. 4: Nächste Runden Die Rhombenkanten haben zwar alle dieselbe Steigung, da sie parallel sind. Trotzdem werden die Rhombenflächen mit jeder Runde steiler. Warum ist das so? Die obersten roten Rhomben (Abb. 4, rechts) habe ihre Projektion im zweitäußersten Ring von roten Rhomben im horizontalen Teller. Wir können also noch eine Runde weiterfahren (Abb. 5, links). Das ist aber noch nicht das Ende der Fahnenstange. Wir können eine Runde von senkrecht stehenden Rhomben einfügen (Abb. 5, mitte), die in der Projektion nicht mehr als Rhomben sichtbar sind. Da die Kanten dieser Rhomben gegenüber der horizontalen Tellerfläche einen Winkel von 45 haben, sind sie Quadrate. Abb. 5: Äquator Dieser Kranz von Quadraten spielt die Rolle des Äquators. Weiter oben spitzt sich die Situation zu (Abb. 5, rechts, Abb. 6).

5 Hans Walser: Rhombenkörper 5 / 25 Abb. 6: Die Situation spitzt sich zu Nach zwei weiteren Schritten sind wir bei einem geschlossenen Rhombenkörper angelangt (Abb. 7, mitte). Abb. 7: Rhombenkörper. Kosinusspindel Zum Vergleich ist (Abb. 7, rechts) die Kosinusspindel angegeben. Das ist die Rotationsfläche mit der Kosinuskurve zwischen zwei Nullstellen als Meridiankurve. Unser Rhombenkörper ist eine Approximation der Kosinusspindel (vgl. Glaeser 2013, p. 38). Im Beispiel der Abbildung 7, mitte, haben die Rhomben gegenüber der Horizontalebene die Kantensteigung 1. Wir können auch mit anderen Kantensteigungen arbeiten. Im Beispiel der Abbildung 8 wurde mit der Kantensteigung ½ gearbeitet.

6 Hans Walser: Rhombenkörper 6 / 25 Abb. 8: Kantensteigung ½ 1.3 Minimallösung In der Abbildung 2 wurde mit 14 Rhomben gestartet. Die Minimallösung wäre ein Start mit 3 Rhomben. Es sind dann 60 -Rhomben, die an einer stumpfen Ecke zusammenstoßen (Abb. 9, links). Bei einer Kantensteigung 1 2 erhalten wir den Würfel. Abb. 9: Minimallösung Bei einer größeren Kantensteigung ergibt sich ein spitzes Rhombenhexaeder (zwei diametrale Ecken mit nur spitzen Rhombenwinkeln, Abb. 10, links), ein einer kleineren Kantensteigung ein stumpfes Rhombenhexaeder.

7 Hans Walser: Rhombenkörper 7 / 25 Abb. 10: Spitzes und stumpfes Rhombenhexaeder 1.4 Vier Rhomben im Zentrum Wenn vier Rhomben im Zentrum zusammenkommen, sind es Quadrate (Abb. 11). Abb. 11: Vier Rhomben im Zentrum

8 Hans Walser: Rhombenkörper 8 / 25 Mit der Kantensteigung 1 2 ergibt sich das Rhombendodekaeder (Abb. 12). Die Rhomben sind kongruent und haben das Diagonalenverhältnis 2 :1. Abb. 12: Rhombendodekaeder 1.5 Fünf Rhomben im Zentrum Rhombenikosaeder Bei fünf Rhomben im Zentrum können wir zum ersten Mal einen zweiten Kranz von Rhomben anfügen (Abb.13). Abb. 13: Fünf Rhomben im Zentrum Bei einer Kantensteigung ½ ergeben sich kongruente Rhomben mit dem Diagonalenverhältnis im Goldenen Schnitt. Die Abbildung 14 zeigt die ersten beiden Schritte.

9 Hans Walser: Rhombenkörper 9 / 25 Abb. 14: Die ersten beiden Schritte Wenn wir wie gewohnt weiterfahren, erhalten wir das Rhombenikosaeder (Abb. 15, 16). Abb. 15: Rhombenikosaeder Abb. 16: Rhombenikosaeder

10 Hans Walser: Rhombenkörper 10 / Rhombentriakontaeder Wir können aber auch nach zwei Runden eine Zone von zehn senkrecht stehenden Rhomben einbauen (Abb. 17, links) und dann zum Rhombentriakontaeder schließen. Da diese zehn Rhomben zur horizontalen Ebene senkrecht stehen, sind sie in der Projektion auf diese Ebene nicht sichtbar. Allerdings können wir nicht die beiden gewohnten Farben rot und blau verwenden. Abb. 17: Rhombentriakontaeder Die Abbildung 18 zeigt ein Papiermodell des Rhombentriakontaeders. Abb. 18: Rhombentriakontaeder Die Abbildung 19 zeigt eine andere Ergänzung der fünf zentralen Rhomben.

11 Hans Walser: Rhombenkörper 11 / 25 Abb. 19: Ergänzung zum Stern Es handelt sich um die Projektion eines Sternkörpers (Abb. 20). Abb. 20: Sternkörper

12 Hans Walser: Rhombenkörper 12 / 25 2 Reguläre Rhombenkörper 2.1 Kriterien Wir legen folgende Kriterien für reguläre Rhombenkörper fest: Alle Seitenrhomben kongruent Konvex An den Ecken je gleiche Winkel. Da diese entweder alle spitz oder alle stumpf sind, sprechen wir von spitzen beziehungsweise stumpfen Ecken. Zunächst einige Gegenbeispiele: In den Figuren der Abbildungen 7 und 8 sind die Seitenrhomben nicht kongruent. Der Sternkörper (Abb. 19, 20) ist nicht konvex. Im spitzen Rhombenhexaeder (Abb. 10, mitte) gibt es Ecken mit zwei stumpfen und einem spitzen Winkel. Im stumpfen Rhombenhexaeder ist es umgekehrt. Im Rhombenikosaeder (Abb. 15) gibt es Ecken mit vier spitzen und einem stumpfen Winkel. 2.2 Kopfgeometrie Denken wir uns eine Ecke mit stumpfen Winkeln. Diese müssen mehr als 90 messen. Es können daher an einer konvexen Ecke höchstens drei stumpfe Winkel zusammenstoßen. Andererseits müssen an jeder Ecke mindestens drei Winkel zusammenstoßen, damit eine räumliche Ecke entsteht. Somit haben wir an den Ecken mit stumpfen Winkeln genau drei stumpfe Winkel. Diese sind kleiner als 120. Die spitzen Winkel sind daher größer als 60. An einer konvexen Ecke mit spitzen Winkeln können daher höchstens fünf spitze Winkel zusammenstoßen. Somit gibt es nur Ecken, an denen drei oder vier oder fünf spitze Winkel zusammenstoßen. Man kann sogar zeigen (aufwändig, siehe Regulaere_Rhomboeder), dass an den Ecken eines regulären Rhombenkörpers ausschließlich drei oder vier oder fünf spitze Winkel zusammenstoßen. Die zugehörigen Rhombenkörper sind dann der Würfel, das Rhombendodekaeder und das Rhombentriakontaeder. Wir werden diese drei Figuren im Folgenden je ausführlich besprechen.

13 Hans Walser: Rhombenkörper 13 / 25 3 Würfel Die rechten Winkel der Quadratseiten des Würfels können im Wechsel als Grenzfälle von spitzen beziehungsweise stumpfen Winkeln gesehen werden. Die Abbildung 21 zeigt die Netztopologie. Die roten Punkte markieren Grenzfälle von spitzen, die blauen Punkte Grenzfälle von stumpfen Ecken. Abb. 21: Netztopologie des Würfels Die Abbildung 22 zeigt ein Himmel-und-Hölle-Modell des Würfels. Abb. 22: Himmel und Hölle Der Würfel ist ein Raumfüller. Man kann den Raum lückenlos und ohne Überlappung mit Würfeln auffüllen.

14 Hans Walser: Rhombenkörper 14 / 25 4 Rhombendodekaeder Das Rhombendodekaeder (Abb. 12) ist ebenfalls ein Raumfüller (Abb. 23). Abb. 23: Rhombendodekaeder als Raumfüller Um dies einzusehen, wählen wir einen anderen Zugang zum Rhombendodekaeder. Wir beginnen mit einem Würfel (Abb. 24, links) und setzen eine halb so hohe Pyramide auf. Die Seitendreiecke der Pyramide haben einen Neigungswinkel 45. Entsprechend setzen wir auf den Seitenflächen Pyramiden auf. Abb. 24: Pyramiden auf dem Würfel Zwei an einer Würfelkante anstoßende Seitendreiecke liegen in einer Ebene (Abb. 25, links). Sie bilden einen Rhombus mit dem Diagonalenverhältnis 2 :1. Insgesamt erhalten wir somit die zwölf Rhomben des Rhombendodekaeders.

15 Hans Walser: Rhombenkörper 15 / 25 Abb. 25: Rhombendodekaeder Für den Nachweis der Raumfüllungseigenschaft denken wir uns den Raum im Sinne eines dreidimensionalen Schachbrettes mit Würfelchen aufgefüllt und die Würfelchen im Wechsel schwarz und weiß gefärbt. Die schwarzen Würfelchen zerlegen wir von der Mitte aus in sechs Pyramiden, welche je eine Seitenfläche des Würfelchens als Basis haben. Diese Pyramiden sind genau halb so hoch wie die Würfelchenkanten. Wir kleben nun die Pyramiden an die angrenzenden weißen Würfelchen und erhalten so die Rhombendodekaeder. Bei unserer Konstruktion haben die Rhombendodekaeder zuoberst eine spitze Ecke mit vier spitzen Rhombenwinkeln. Die Abbildung 26a zeigt eine Packung von solchen Rhombendodekaedern. Die Inkugeln der Rhombendodekaeder bilden ihrerseits eine Kugelpackung. Es handelt sich dabei um die von Kepler vermutete und von Hales bewiesene dichteste Kugelpackung. In den obersten vier Lagen der Abbildung 26a sind die Rhombendodekaeder transparent gezeichnet, so dass die Kugelpackung sichtbar wird. Die Abbildung 26b zeigt dieselbe Kugelpackung mit Glaskugeln. Das Bodenraster verhindert das Wegrollen der Kugeln. Bei dieser Kugelpackung handelt es sich um die dichteste Kugelpackung (Vermutung von Kepler 1611, Beweis von Hales ).

16 Hans Walser: Rhombenkörper 16 / 25 Abb. 26a: Rhombendodekaeder und Inkugeln Abb. 26b: Glaskugeln

17 Hans Walser: Rhombenkörper 17 / 25 Die Abbildung 26c zeigt eine Approximation einer Kugel durch Rhombendodekaeder. Abb. 26c: Approximation einer Kugel durch Rhombendodekaeder

18 Hans Walser: Rhombenkörper 18 / 25 In der Abbildung 26d sind die Rhombendodekaeder durch ihre Inkugeln ersetzt. Abb. 26d: Kugel durch Kugeln approximiert

19 Hans Walser: Rhombenkörper 19 / 25 Wir können den Raum auch so mit Rhombendodekaedern auffüllen, dass jeweils eine stumpfe Ecke zuoberst ist (Abb. 27a). Abb. 27a: Stumpfe Ecke nach oben Die Abbildung 27b zeigt den Minimaltetraeder mit Orangen. Abb. 27b: Minimaltetraeder

20 Hans Walser: Rhombenkörper 20 / 25 Die beiden Packungen sind bis auf die Raumorientierung dieselben. Beides sind die dichteste Kugelpackung. Die Abbildung 28 zeigt die Netztopologie des Rhombendodekaeders. Abb. 28: Netztopologie des Rhombendodekaeders Da die Rhomben des Rhombendodekaeders das Diagonalenverhältnis 2 :1 haben, lassen sie sich mittig in ein Papier im DIN-Format einpassen (Abb. 29). Wir können nun die vorstehenden Ecken hochbiegen und zwölf solche Bauteile zu einem Rhombendodekaeder zusammentackern. Abb. 29: Rhombendodekaeder aus Ansichtskarten

21 Hans Walser: Rhombenkörper 21 / 25 Die Abbildung 30 zeigt ein Himmel-und-Hölle-Modell des Rhombendodekaeders. Abb. 30: Himmel-und-Hölle 5 Rhombentriakontaeder Das Rhombentriakontaeder ist kein Raumfüller. Hingegen können wir es in interessante Teilkörper zerlegen. Zunächst können wir die grün-gelbe, zickzackförmige Äquatorzone (Abb. 17) entfernen und den Deckel parallel herunterschieben. Das wegfallende Stück kann in fünf spitze und fünf stumpfe Rhombenhexaeder zerlegt werden. Übrig bleibt ein Rhombenikosaeder (Abb. 15, 16). Dieses ist nicht regulär. Wir können auch beim Rhombenikosaeder eine Zone, bestehend aus 8 Rhomben, aber nicht mehr alternierend im Zick-Zack, entfernen und den Rest zusammenschieben. Dadurch fallen 8 Rhombenhexaeder weg, vier spitze und vier stumpfe. Übrig bleibt das Rhombendodekaeder zweiter Art (Abb. 31a).

22 Hans Walser: Rhombenkörper 22 / 25 Abb. 31a: Rhombendodekaeder zweiter Art. Das Rhombendodekaeder zweiter Art wurde von Bilinski (1960) beschrieben. Es ist nicht regulär, aber ein Raumfüller (Abb. 31b). Abb. 31b: Raumfüller Weglassen einer Zone mit 6 Rhomben führt je nachdem zu einem spitzen oder einem stumpfen Rhombenhexaeder.

23 Hans Walser: Rhombenkörper 23 / 25 6 Kantenberührkugel Genau die regulären Rhombenkörper haben eine Kantenberührkugel, also eine Kugel, welche sämtliche Kanten berührt. Beim Würfel ist es die Kantenmittenkugel (Abb. 32a). a) b) Abb. 32: Kantenmittenkugel beim Würfel. Spielwürfel Die Schnittfigur des Würfels mit seiner Kantenmittenkugel ist der Spielwürfel (Abb. 32b). Die Abbildung 33 zeigt das Rhombendodekaeder mit der Kantenberührkugel sowie die Schnittfigur der beiden. Abb. 33: Rhombendodekaeder und Kantenberührkugel

24 Hans Walser: Rhombenkörper 24 / 25 Die Berührpunkte teilen die Kanten im Verhältnis 2:1. Die Abbildung 34 schließlich zeigt das Rhombentriakontaeder mit der Kantenberührkugel. Abb. 34: Rhombentriakontaeder und Kantenberührkugel Die Berührpunkte teilen die Kanten im Verhältnis Φ 2 :1. Dabei ist Φ = der Goldene Schnitt (Walser 2013). Der Nachweis, dass genau die regulären Rhombenkörper eine Kantenberührkugel haben, ergibt sich aus der Abbildung 35. Die Schnittkreise der Rhomben mit der Kantenberührkugel sind auch die Inkreise dieser Rhomben. Die Inkreise benachbarter Rhomben müssen sich aber berühren (Abb. 35a), damit sie zur selben Kugel gehören können. Das heißt, dass bei den Rhomben spitze Winkel auf spitze Winkel treffen müssen. Die Situation der Abbildung 35b ist ausgeschlossen. Somit haben wir es mit regulären Rhombenkörpern zu tun. a) b) Abb. 35: Kissing point

25 Hans Walser: Rhombenkörper 25 / 25 Literatur Bilinski, Stanko (1960): Über Rhombenisoeder. Glasnik mat.-fiz. i astr. 15, 1960, No. 4, S Glaeser, Georg (2013): Nature and Numbers a mathematical photo shooting. Ambra V. Medecco Holding GmbH, Vienna. ISBN Walser, Hans (2013): Der Goldene Schnitt. 6., bearbeitete und erweiterte Auflage. Mit einem Beitrag von Hans Wußing über populärwissenschaftliche Mathematikliteratur aus Leipzig. Edition am Gutenbergplatz, Leipzig. ISBN Websites Walser, H.: Goldener Rhombus Walser, H.: Kosinusspindel Walser, H.: Regulaere_Rhomboeder Walser, H.: Rhomben Walser, H.: Rhombenfiguren

a) b) Abb. 1: Würfel und Kantenmittenkugel

a) b) Abb. 1: Würfel und Kantenmittenkugel Hans Walser, [0180511] Drachenkörper Anregung: Werner Blum, Braunschweig 1 Worum es geht Ausgehend vom Würfel werden mit der immer gleichen Technik zuerst das Rhombendodekaeder und anschließend der Deltoidvierundzwanzigflächner

Mehr

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45.

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45. Hans Walser, [20180201] Mehrfarbige Packungen 1 Worum geht es? Die gängigen räumlichen Packungen werden bezüglich der Minimalzahl der benötigten Farben untersucht. Wenn zwei Füller-Elemente eine Fläche

Mehr

1 Worum geht es? Aus vier stumpfen Rhombenhexaedern mit dem Diagonalenverhältnis Rhombendodekaeder zusammenbauen.

1 Worum geht es? Aus vier stumpfen Rhombenhexaedern mit dem Diagonalenverhältnis Rhombendodekaeder zusammenbauen. Hans Walser, [20110313b], [20131230g] Andocken Anregung: A. G., R. 1 Worum geht es? Aus vier stumpfen Rhombenhexaedern mit dem Diagonalenverhältnis Rhombendodekaeder zusammenbauen. 2 lässt sich das Rhombendodekaeder.

Mehr

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel.

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel. Hans Walser, [20110903a] Kugeln als Baumaterial 1 Worum geht es? Es werden einige bekannte Figuren als Kugelpackungen dargestellt. Dabei wird die dichteste Kugelpackung verwendet. Statt Kugeln können auch

Mehr

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1.

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1. Hans Walser, [20170526] Kreispackungen Anregung: Heinz Klaus Strick, Leverkusen. Siehe auch (Strick 2017, S. 269f). 1 Ausgangslage Wir arbeiten mit zwei Kreisscharen (Abb. 1). Abb. 1: Zwei Kreisscharen

Mehr

Abb. 1: Konstruktionsfolge

Abb. 1: Konstruktionsfolge Hans Walser, [20180501] DIN-Format, Goldener Schnitt und gleichseitiges Dreieck 1 Worum geht es? Die klassische Konstruktion eines Rechtecks im DIN-Format (Walser 2013b) wird iteriert und führt zum gleichseitigen

Mehr

Hans Walser, [ ] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder.

Hans Walser, [ ] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder. Hans Walser, [20161008] Dodekaeder-Würfel 1 About Ein Papiermodell (Abb. 1) eines Würfels hat enge Beziehungen zu Dodekaeder und Ikosaeder. Abb. 1: Dodekaeder-Würfel 2 Bauteile Das Modell besteht aus sechs

Mehr

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten

Abb. 1: Einfalten der Kantenmitten. Abb. 2: Ecken einfalten Hans Walser, [20140901] Origami im Raum Anregung: G. G., B. 1 Worum geht es? Statt mit einem quadratischen Origami-Papier arbeiten wir mit entsprechenden Analoga im Raum. 2 Klassisches Origami und einige

Mehr

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon

Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige

Mehr

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010]

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010] Hans Walser, [011019a] Pentagramma mirificum Anregung: [Heinrich 010] 1 Worum es geht Ein Pentagramma mirificum ist ein sphärisches Pentagramm mit rechten Winkeln an den Spitzen. Die Abbildung zeigt ein

Mehr

Ein System zum Bau von geometrischen Körpern

Ein System zum Bau von geometrischen Körpern Die Entdeckung des Prinzips der Verschränkung von geschlitzten, ebenen Kunststoffbauelementen eröffnete die Möglichkeit fast beliebig komlizierte geometrische Modelle zu bauen. Das System verwendet keinen

Mehr

Abb. 2: Grafische Lösung

Abb. 2: Grafische Lösung Hans Walser, [20170320] Prozentuale Veränderungen Anregung: A. B., F. 1 Worum geht es? Ausgehend von einer Prozent-Aufgabe werden Probleme mit prozentualen Veränderungen besprochen. 2 Die Aufgabe Die Aufgabe

Mehr

b a B A c Abb. 1: Trisektrix

b a B A c Abb. 1: Trisektrix Hans Walser, [2030620] Gleichschenklige Trisektrix-Dreiecke usarbeitung einer Idee von H. M.-S., V. Trisektrix von MacLaurin Die beiden Dreieckspunkte und seien fest vorgegeben. Der dritte Dreieckspunkt

Mehr

n x n y n Tab.1: Zwei Beispiele

n x n y n Tab.1: Zwei Beispiele Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa

Mehr

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben Hans Walser, [20150129] Kopunktale Geraden 1 Worum geht es? In der Schule lernt man, dass sich die drei Schwerlinien eines Dreieckes in einem Punkt schneiden, dem Schwerpunkt. Wir fragen nun umgekehrt:

Mehr

Hans Walser, [ ] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch

Hans Walser, [ ] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch Hans Walser, [20180212] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch z = x 3 3xy 2 (1) beschriebene Fläche wird als Affensattel bezeichnet

Mehr

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten

Hans Walser, [ a] Polyedermodelle aus rechteckigen Karten Hans Walser, [20090829a] Polyedermodelle aus rechteckigen Karten 1 Die Idee Wir schrägen bei einem Polyeder die Ecken ab und anschließend die ursprünglichen Kanten. Dadurch entsteht aus jeder ursprünglichen

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben Aufgaben zu Merkmalen und Eigenschaften von Körpern 1 Sicheres Wissen und Können am Ende der Klasse 6 1 Allgemeine Merkmale vergleichen und beschreiben 1. Die folgenden Zeichnungen zeigen Körper. Fülle

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

a) b) Abb. 2: Verkleinertes Fünfeck

a) b) Abb. 2: Verkleinertes Fünfeck Hans Walser, [20170828], [20181120] Halbregulärer Pflasterstein Anregungen: Heinz Klaus Strick, Leverkusen; Boris Odehnal, Wien 1 Worum geht es? Mit dem regelmäßigen Fünfeck lässt sich die Ebene nicht

Mehr

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken Hans Walser Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM 9. - 11. September 2016 Saarbrücken Zusammenfassung: Analog zum Reuleaux-Dreieck, das sich in verschiedenen Positionen ins immer gleiche Quadrat

Mehr

a) b) Abb. 1: Der kürzeste Weg ist ein Tunnel

a) b) Abb. 1: Der kürzeste Weg ist ein Tunnel Hans Walser, [20180114] 1 Kürzeste Würfelwege 1.1 Symmetrisches Beispiel 1.1.1 Der Tunnelweg Auf dem Würfel der Abbildung 1a sind der Mittelpunkt einer Kante und der Mittelpunkt einer Seitenfläche markiert.

Mehr

Magische Kreise 1 Die Probleme 1.1 Drei Kreise Abb. 1: Drei Kreise

Magische Kreise 1 Die Probleme 1.1 Drei Kreise Abb. 1: Drei Kreise Hans Walser, [20050829a], [20171103] Magische Kreise 1 Die Probleme 1.1 Drei Kreise In die quadratischen Felder sind die Zahlen 1 bis 6 so einzusetzen, dass auf jedem Kreis die Summe gleich ist. Abb. 1:

Mehr

Abb. 1: Abrollen des Dreiecks. Beim Fünfeck haben wir vier Kreisbogen. Die Radien sind die Seiten- und Diagonalenlängen. Abb. 2: Abrollen des Fünfecks

Abb. 1: Abrollen des Dreiecks. Beim Fünfeck haben wir vier Kreisbogen. Die Radien sind die Seiten- und Diagonalenlängen. Abb. 2: Abrollen des Fünfecks Hans Walser, [20111231] / [20120102] Zykloidenapproximation Anregung: R. W., F. 1 Abrollen eines regelmäßigen n-ecks Wir rollen ein regelmäßiges n-eck mit Umkreisradius 1 auf einer Geraden ab und verfolgen

Mehr

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck Hans Walser, [09030] Wurzel--Dreieck Anregung: Horst Steibl, Braunschweig Worum geht es? Das rechtwinklig gleichschenklige Dreieck (Abb. a) hat das Seitenverhältnis ::. Wir vertauschen nun die beiden Längen

Mehr

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das?

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das? Hans Walser, [20131013], [20160331], [20160401] Quetschwürfel 1 Worum geht es? Es wird auf die Problematik der in Schulen weitverbreiteten Schrägbilder eingegangen. 2 Das Bild In Schulbüchern und Arbeitsblättern

Mehr

Hans Walser, [ a], Das DIN Rechteck 1/29

Hans Walser, [ a], Das DIN Rechteck 1/29 Hans Walser, [0050930a], Das DIN Rechteck /9 Hans Walser Das DIN Rechteck DIN-Format Inhalt Internationale Papierformate (ISO/DIN)... Schnittpunkte...4 3 Drehstreckung...6 4 Oktogon aus einem DIN Rechteck...

Mehr

Gegenstände der Geometrie

Gegenstände der Geometrie Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,

Mehr

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.

Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W. Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders

Mehr

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n Hans Walser, [20181104] Hinkende Parität 1 Worum geht es? Es wird ein Beispiel mit hinkender Symmetrie besprochen. Auflistung von Daten. Der Hintergrund ist eine Verallgemeinerung der Fibonacci-Folge und

Mehr

Abb. 1.1: Radien 1, 2, 3

Abb. 1.1: Radien 1, 2, 3 Hans Walser, [20160915], [20180205] Kreisausschöpfung Anregung: Chr. H., O. 1 Worum geht es? Es werden falsche und richtige Methoden der Kreis- und Kugelberechnung besprochen. 2 Kreis 2.1 Kreisfläche Ein

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt! Hans Walser! www.walser-h-m.ch/hans! 1! Drohne:!! Mutti, wie bin ich auf die Welt gekommen?! 1 1 2! Eine männliche Biene (Drohne)! hat nur eine Mutter (Königin)!! Unbefruchtetes Ei!

Mehr

Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich?

Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich? Hans Walser, [20090625c] Fibonacci-Trapeze Anregung: [Deshpande 2009] 1 Hexagon mit angesetzten Quadraten 1.1 Basisfigur Wir basieren unsere Überlegungen auf folgender Figur. Einem zentralen Hexagon werden

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Modul 206 Regelmäßige Vielecke!

Modul 206 Regelmäßige Vielecke! Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2).

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2). Hans Walser, [20160521] Gigampfi 0 Worum geht es? Es werden zwei Gigampfi-Probleme mit invarianten Winkeln vorgestellt. 1 Beispiel 1 1.1 Das Problem An der Spitze eines gleichseitigen Dreiecks bringen

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden

1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden Hans Walser, [010706] Das FIN-Rechteck 1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden ( ) :1, im (

Mehr

Hans Walser, [ ] Erdbilder 1 Worum geht es? Es wird ein Modell besprochen (Abb. 1). Geodaten aus [1]. 2 Orthografische Projektionen

Hans Walser, [ ] Erdbilder 1 Worum geht es? Es wird ein Modell besprochen (Abb. 1). Geodaten aus [1]. 2 Orthografische Projektionen Hans Walser, [20170424] Erdbilder 1 Worum geht es? Es wird ein Modell besprochen (Abb. 1). Geodaten aus [1]. Abb. 1: Modell 2 Orthografische Projektionen a) b) Abb. 2: Orthografische Projektionen Hans

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Meisterklasse Dresden 2014 Olaf Schimmel

Meisterklasse Dresden 2014 Olaf Schimmel Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?

Mehr

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper.

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Würfelmodell 1 Würfelmodell 1.1 Bauteil Wir bauen ein Kantenmodell mit einem Bauteil pro Kante, insgesamt also 12 Bauteilen. In der folgenden

Mehr

Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G.

Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. Hans Walser, [20090928a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. 1 Worum geht es? In der ebenen Geometrie scheinen sich Quadrat und regelmäßiges Dreieck zu beißen. Es ist

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE.

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE. IV. BUCH: RAUM MIT n-dimensionen 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE http://www.polytope.de/ Übersicht mit Eckcharakterisierung 1 {4, 6, 10} beim Riesen bedeutet beispielsweise an jeder Ecke trifft ein

Mehr

Abb. 1: Kiepert-Hyperbel

Abb. 1: Kiepert-Hyperbel Hans Walser, [20150124] Kiepert-Hyperbel 1 Die Kiepert-Hyperbel Der Kegelschnitt durch die drei Eckpunkte eines Dreieckes sowie dessen Schwerpunkt und Höhenschnittpunt ist immer eine gleichseitige Hyperbel

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

( ) und Radius. f ( x, y) = x n + y n x n 1 y n 1 = a f ( x, y,z) = x n + y n + x n x n 1 y n 1 z n 1 = a (1)

( ) und Radius. f ( x, y) = x n + y n x n 1 y n 1 = a f ( x, y,z) = x n + y n + x n x n 1 y n 1 z n 1 = a (1) Hans Walser, [20160414] Bumerang und Affensattel Anregung: R. S., C. 1 Worum geht es? Es werden einige Kurven und Flächen mit den impliziten Darstellungen: f ( x, y) = x n + y n x n 1 y n 1 = a f ( x,

Mehr

Geometrie zum Anfassen

Geometrie zum Anfassen www.math.unibas.ch/~walser Geometrie zum Anfassen 1 Unterlagen: www.math.unibas.ch/~walser Vorträge Geometrie zum Anfassen, Leipzig 2005 > Vortragsskript (pdf) > Power Point Presentation (ppt) www.math.unibas.ch/~walser

Mehr

Hans Walser, [ ] Flächengleiche Rechtecke

Hans Walser, [ ] Flächengleiche Rechtecke Hans Walser, [20130529] Flächengleiche Rechtecke 1 Worum es geht Flächengleiche Rechtecke und Parallelogramme sind zerlegungsgleich. Es werden einige Beispiele zum Auffinden der Zerlegungsgleichheit diskutiert.

Mehr

Hans Walser. Raumgeometrie. Modul 4 Die Ebene Lernumgebung Teil 2

Hans Walser. Raumgeometrie. Modul 4 Die Ebene Lernumgebung Teil 2 Hans Walser Raumgeometrie Modul 4 Die Ebene Lernumgebung Teil 2 Hans Walser: Modul 4, Die Ebene. Lernumgebung. Teil 2 ii Inhalt 1 Abstand Punkt / Ebene... 1 2 Abstand... 2 3 Neigungswinkel... 3 4 Neigungswinkel...

Mehr

Platonische und archimedische Parkettierungen. Meisterklasse Mathematik Dresden 2016 Olaf Schimmel

Platonische und archimedische Parkettierungen. Meisterklasse Mathematik Dresden 2016 Olaf Schimmel Platonische und archimedische Parkettierungen Meisterklasse Mathematik Dresden 2016 Olaf Schimmel Inhaltsübersicht 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische

Mehr

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates Hans Walser, [20111220a] Rechtecksunterteilung Anregung: F. E., V. Ein Rechteck wird in dazu ähnliche Rechtecke unterteilt. Neben dem Quadrat gibt das DIN-Rechteck einige schöne Beispiele her. Auch die

Mehr

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit Hans Walser, [20130516], [20130520], [20130525b] Zerlegungsgleichheit 1 Worum es geht In der Ebene sind flächengleiche Polygone immer auch zerlegungsgleich. Wie finden wir bei Dreiecken und Rechtecken

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

Abb. 1: Unterteilung des Quadrates

Abb. 1: Unterteilung des Quadrates Hans Walser, [20131019] Würfelpuzzle 1 Unterteilung des Quadrates Wir unterteilen ein Quadrat durch seine Diagonalen in vier Dreiecke (Abb. 1) und färben diese mit genau vier Farben, zum Beispiel schwarz,

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Hans Walser. Raumgeometrie. Modul 1 Der Würfel

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Hans Walser Raumgeometrie Modul Der Würfel Hans Walser: Modul, Der Würfel ii Inhalt Zeichnen von Würfeln.... Würfel im Karonetz..... Der 2---Würfel.....2 Der 5-3-2-Würfel.....3 Autostereogramm... 2.2 Kavalierperspektive

Mehr

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht

Das Innere eines Oktaeders. Michael Hofer, Workshop: Origami im Geometrieunterricht Das Innere eines Oktaeders Michael Hofer, Workshop: Origami im Geometrieunterricht Schritt 1 Halbiere das Quadrat über die Seiten (2x) und öffne die Faltungen wieder. Schritt 2 Drehe das Blatt um und halbiere

Mehr

( 2 ) 2 π 1 4 π = 1 2 = A Dreieck

( 2 ) 2 π 1 4 π = 1 2 = A Dreieck Hans Walser, [20130407] Die Möndchen von Hörhausen Ausarbeitung einer Idee von R. L. 1 Das Möndchen Der Hypotenuse eines rechtwinklig gleichschenkligen Dreiecks setzen wir gemäß Abbildung 1 ein Möndchen

Mehr

Hans Walser Schnittpunkte

Hans Walser Schnittpunkte Hans Walser Schnittpunkte 501-600 Die Bildsequenzen sind als Bilder ohne Worte konzipiert. Farbreihenfolge: Dunkelgrün, blau, rot. Nach Bedarf werden auch andere Farben verwendet. Die drei kleinen Bilder

Mehr

Parameter: Die beiden Diagonalenlängen Modell: Heidelberger Kreuz 2.2 Seiteneigenschaft Viereck mit vier gleich langen Seiten (Abb. 2).

Parameter: Die beiden Diagonalenlängen Modell: Heidelberger Kreuz 2.2 Seiteneigenschaft Viereck mit vier gleich langen Seiten (Abb. 2). Hans Walser, [20170723a] Rhomben im Raster 1 Worum geht es Wir zeichnen Rhomben im Quadratraster und im Dreiecksraster. Dabei treffen wir auch auf einen grafischen Zugang zu den Formeln der pythagoreischen

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme.

Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme. Hans Walser, [20111120b] Jedes zweite ist schwarz Analyse und Spielereien um die Formulierung jedes zweite. Es zeigen sich Paritätsprobleme. 1 Schachbrett Im Schachbrett (Abb. 1) ist jedes zweite Feld

Mehr

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 1

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 1 Hans Walser Raumgeometrie Modul 1 Der Würfel Lernumgebung, Teil 1 Hans Walser: Modul 1, Der Würfel. Lernumgebung, Teil 1 ii Inhalt 1 Der 12-7-5-Würfel... 1 2 Schnittpunkte am Quader... 2 3 Zwölf oder dreizehn

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

Die alternierende Seitenquadratsumme ist null. Es wird versucht, diesen Sachverhalt auf verschiedene Weisen zu illustrieren. a 2 b 2 + c 2 d 2 = 0 (1)

Die alternierende Seitenquadratsumme ist null. Es wird versucht, diesen Sachverhalt auf verschiedene Weisen zu illustrieren. a 2 b 2 + c 2 d 2 = 0 (1) Hans Walser, [20160615] Orthodiagonale Vierecke Anregung: Heinz Klaus Strick, Leverkusen 1 Worum geht es Orthodiagonale Vierecke haben orthogonale Diagonalen. In der üblichen Bezeichnung (Abb. 2) können

Mehr

Der Goldene Schnitt! Hans Walser!

Der Goldene Schnitt! Hans Walser! Der Goldene Schnitt Hans Walser www.walser-h-m.ch/hans 1 Der Goldene Schnitt Wo steckt der Goldene Schnitt? 2 Der Goldene Schnitt 3 Der Goldene Schnitt Stetige Teilung (Euklid, 3. Jh. v. Chr.) 4 Der Goldene

Mehr

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)

= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima) Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Abb. 1: Acht Kartenausschnitte

Abb. 1: Acht Kartenausschnitte Hans Walser, [20161103] Abroll-Globus 1 Worum geht es? Wir bauen einen Papierglobus, der abrollen lässt. 2 Kartengrundlagen Die Abbildung 1 zeigt acht Kartenausschnitte. Jeder Ausschnitt zeigt einen Viertel

Mehr

[ ] (1) ( ) ( ) ( ) π 2, π 2 ( )

[ ] (1) ( ) ( ) ( ) π 2, π 2 ( ) Hans Walser, [20170718] Kosinusspindel Indirekte Anregung: F. H., B. 1 Worum geht es? Rotationsfläche mit einer Kosinuskurve als Meridian. 2 Parameterdarstellungen 2.1 Einheitskugel Wir gehen aus von der

Mehr

Die Platonischen Körper im Sechseck

Die Platonischen Körper im Sechseck Alle Platonischen Körper weisen (auch) eine dreizählige Symmetrie auf und können deshalb in ein regelmässiges Sechseck eingezeichnet werden. In einem zweiten Schritt ist es möglich, die Durchdringungen

Mehr

Eine Visualisierung des Kosinussatzes

Eine Visualisierung des Kosinussatzes Hans Walser blau + blau + grün = rot Eine Visualisierung des Kosinussatzes SLA-Herbsttagung 2008 St. Gallen Hans Walser: Eine Visualisierung des Kosinus-Satzes 2/15 Inhalt 1 Worum es geht...3 2 Bildsprache...3

Mehr

Abb. 1: Viereck mit aufgesetzten halben Quadraten. Dann sind die beiden roten Strecken gleich lang und orthogonal.

Abb. 1: Viereck mit aufgesetzten halben Quadraten. Dann sind die beiden roten Strecken gleich lang und orthogonal. Hans Walser, [20120528] Viereck Es werden einige Spielereien am Viereck untersucht. Daraus ergeben sich interessante Eigenschaften für spezielle Vierecke, die im üblichen Kanon des Hauses der Vierecke

Mehr

Hans Walser Schnittpunkte 701 -

Hans Walser Schnittpunkte 701 - Hans Walser Schnittpunkte 701 - Die Bildsequenzen sind als Bilder ohne Worte konzipiert. Farbreihenfolge: Dunkelgrün, blau, orange, rot. Nach Bedarf werden auch andere Farben verwendet. Die drei kleinen

Mehr

Lösungen Klasse 11 A B. Figur 1

Lösungen Klasse 11 A B. Figur 1 Lösungen Klasse 11 Klasse 11 1. Thomas markiert auf der Oberfläche eines Würfels einige Punkte, so dass folgende Bedingung erfüllt ist: Es gibt keine zwei Seitenflächen mit gleich vielen markierten Punkten.

Mehr

a) b) Abb. 1: Abgeschrägtes Dodekaeder

a) b) Abb. 1: Abgeschrägtes Dodekaeder Han Waler, [018066] Abgechrägte Dodekaeder Idee und Anregung: Frank Heinrich, Braunchweig 1 Worum geht e? Da abgechrägte Dodekaeder (Abb. 1) it ein archimedicher Körer mit 1 regelmäßigen Fünfecken und

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

Hans Walser Schnittpunkte

Hans Walser Schnittpunkte Hans Walser Schnittpunkte 301-400 Die Bildsequenzen sind im Sinne einer minimal art als Bilder ohne Worte konzipiert. Dabei wurde folgende grafische Systematik verwendet: Ausgangspunkt Folgepunkt Schnittpunkt

Mehr

Neun Punkte auf dem Einheitskreis ( ( )). In der

Neun Punkte auf dem Einheitskreis ( ( )). In der Hans Walser, [20100228a] Radlinien als Enveloppen Anregung: J. W., B.-M. 1 Sehnen im Kreisraster Wir wählen eine Modulzahl m! und zeichnen auf dem Einheitskreis m Punkte P n in regelmäßigen Abständen.

Mehr

11b. Die

11b. Die IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de

Mehr

E r g ä n z u n g. zur Trigonometrie

E r g ä n z u n g. zur Trigonometrie E r g ä n z u n g zur Trigonometrie Klasse 10 b 2018 / 19 Deyke www.deyke.com Trigonometrie.pdf W I N K E L F U N K T I O N E N Die Strahlensätze und der Satz des Pythagoras sind bisher die einzigen Hilfsmittel

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Workshop: Falten im DIN-Format

Workshop: Falten im DIN-Format Hans Walser Workshop: Falten im DIN-Format 27. Schweizerischer Tag über Mathematik und Unterricht Mittwoch, 7. September 2016 Kantonsschule Wil Zusammenfassung: Wir lernen ebene und räumliche Faltmodelle

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader

Seiten 5 / 6. Lösungen Geometrie-Dossier Würfel und Quader 1 a) c) d) Seiten 5 / 6 Lösungen eometrie-ossier Würfel und Quader Aufgaben Würfel (Lösungen sind verkleinert gezeichnet) Bei allen drei entsteht das gleiche Bild. ie Lösungsidee: 1. Zuerst anhand der

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Abb. 1: Sektoren. Abb. 2: Winkel

Abb. 1: Sektoren. Abb. 2: Winkel Hans Walser, [20131223] Matterhorn 1 Worum geht es? Es wird ein Bauteil vorgestellt, mit dem sich die Ebene parkettieren lässt. Insbesondere können auch spiralförmige Parkette ausgelegt werden. Es gibt

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild: IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich

Mehr

Gruppenarbeit Satzgruppe des Pythagoras

Gruppenarbeit Satzgruppe des Pythagoras Anregungen zur Gestaltung schülerzentrierter, materialgestützter Unterrichtsphasen Gruppenarbeit Satzgruppe des Pythagoras Lösungshinweise für Lehrkräfte ie folgenden Lösungshinweise sollen die Lehrkräfte

Mehr

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge!

Ich wünsche dem Betrachter viel Erfolg beim Entdecken tiefer Zusammenhänge! Eine Pyramide aus Kugeln Eine Pyramide aus übereinander gelegten Kugeln das ist sehr einfach und kompliziert zugleich! In der Draufsicht So wie in den Abbildungen links wurden damals im Mittelalter Kanonenkugeln

Mehr

r 1 Abb. 1: Schlinge um Kreis im Abstand 1

r 1 Abb. 1: Schlinge um Kreis im Abstand 1 Hans Walser, [20130119a] Schlinge um Kreis Anregung: R. S., Z. 1 Die Uralt-Aufgabe Um einen Kreis mit Radius r wird eine Schlinge im Abstand 1 gelegt (Abb. 1). Wie lang ist die Schlinge im Vergleich zum

Mehr

Lückentextübung - Der WÜRFEL Fülle nun den folgenden (Lücken-)Text aus und verwende ihn als Informationsblatt.

Lückentextübung - Der WÜRFEL Fülle nun den folgenden (Lücken-)Text aus und verwende ihn als Informationsblatt. Lückentextübung - Der WÜRFEL Der WÜRFEL kommt sehr oft vor. Schau dich um oder denke z. B. an eine Schachtel oder einen Pflasterstein. Auch eine Schatulle, ein Spielwürfel oder ein Gebäudeteil können die

Mehr