Angewandte Physik II: Elektronik

Größe: px
Ab Seite anzeigen:

Download "Angewandte Physik II: Elektronik"

Transkript

1 Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik Prof. Karl Brunner: Raum E99, Tel. 5898, 7. Digitaltechnik. Logische Grundfunktionen 2. Realisierung von logischen Grundfunktionen 3. Logik-Familien

2 Elektronik für Physiker Prof. Brunner SS 26 Digitaltechnik Nur 2 mögliche Systemzustände /, off/on, aus/an, low/high, V/5V Vorteil: Eindeutige Information, kein Informationsverlust mit gewissen Toleranzen: 4.5V on Dualcodierung mit Stellen-/Bitanzahl N: X N N N 2 i N N 2 + N i 2 i Binär:, Headezimal:,,2,3,4,5,6,7,8,9,A,B,C,D,E,F Dezimal:,,2,3,4,5,6,7,8,9 z.b.: (binär) 5B (headezimal) 9 (dezimal)

3 Elektronik für Physiker Prof. Brunner SS 26 Digitale Datentechnik Digitale Datenspeicherung: (a) elektronisch: Bits Kondensatorladungen (RAM) (b) magnetisch: Bits magnetische Domänen (Festplatte) (c) optisch: Bits Refleionsbereiche (CD-ROM) Digitale Datenübertragung: (a) elektrisch: Spannungspuls in Kupferkabel (Coa, Twisted Pair) (b) elektromagnetisch: Funktechnik (z.b. Mobilfunk, Richtfunk) (c) optisch: Lichtleitfaser (Plastik, Glas, > Gbit/s) Digitale Datenverarbeitung: (a) Digitale Daten: (b) Analoge Daten: (c) Optische Kommunikation: Mikroprozessoren (elektrisch) Signalprozessoren (elektrisch) Adressen-Dekodierer (optisch) Datenwandler zur Erfassung analoger und Darstellung digitaler Daten (a) Analog Digital (ADC Analog-Digital-Konverter) Datenerfassung (b) Digital Analog (DAC Digital-Analog-Konverter) Datendarstellung

4 Elektronik für Physiker Prof. Brunner SS 26 Boolesche Algebra, Schaltalgebra: zweiwertige Variable / mit 3 Grundfunktionen AND, OR, NOT (UND, ODER, NICHT) Konjunktion: (AND) y Disjunktion: (OR) y Negation: (NOT) y 7. Logische Grundfamilien AND OR NOT 2 y 2 y y Darstellung durch Schalter (offen): Reihenschaltung Parallelschaltung Pin-Wechsel 2 y 2 y y

5 Elektronik für Physiker Prof. Brunner SS 26 Schaltsymbole AND OR NOT (neu) 2 & y (alt)

6 Elektronik für Physiker Prof. Brunner SS 26 Theoreme der Rechenoperationen Konjunktion (AND) 2 2 ( 2 3 ) ( 2 ) 3 ( ) ( + 2 ) ( ) Disjunktion (OR) ( ) ( + 2 ) ( + 2 )( + 3 ) Gesetz Kommutativ- Assoziativ- Distributiv- Absorptions- Tautologie- Negations- Doppeltes Negations- De Morgans Operationen mit /

7 Elektronik für Physiker Prof. Brunner SS 26 Beispielschaltungen für Theoreme Absorptionsgesetz: ( + 2 ) 2 Tautologiegesetz: y

8 Elektronik für Physiker Prof. Brunner SS 26 NOR (invertiertes OR) (Gatterbaustein Nr. 742) NOR NAND (invertiertes AND) (Nr. 74, TTL) + NAND Abgeleitete Verknüpfungen 2 y 2 y & EXOR (Antivalenz, ) (Nr. 7486) + ANTIV EXNOR (Äquivalenz, ) (Nr ) + ÄQUIV y 2 y

9 Elektronik für Physiker Prof. Brunner SS 26 Abgeleitete Verknüpfungen und Grundfunktionen Jede abgeleitete Verknüpfung (NAND, NOR, ) kann durch Grundfunktionen AND, OR, und NOT dargestellt werden Grundfunktionen AND, OR, NOT und jede abgel. Verknüpfung können durch abgeleitete Verknüpfung (z.b. NAND) dargestellt werden Konjunktion: 2 NAND 2 Disjunktion: + 2 NAND 2 Negation: NAND

10 Elektronik für Physiker Prof. Brunner SS 26 Bestimmung logischer Funktionen Aufstellung der Wahrheitstafel/Funktionstabelle i.a. (wenn mehr Zeilen mit y als mit y) ist günstig: Darstellung in disjunktiver Normalform (mit ODER): Methode in 3 Schritten: () Bilde für jede Zeile mit y die UND-Verknüpfung der i falls i, und falls i i (2) Verknüpfe alle so ermittelten Zeilenfunktionen mit ODER (3) Vereinfache die Gesamtfunktion mit Hilfe der Verknüpfungstheoreme (analog für andere Ausgänge y k )

11 Elektronik für Physiker Prof. Brunner SS 26 Beispiel: Wahrheitstafel und logische Funktion () UND-Verknüpfung der Zeilen mit y 2 3 y K 3 23 K 5 23 K 7 23

12 Elektronik für Physiker Prof. Brunner SS 26 Beispiel: Wahrheitstafel und logische Funktion (2) ODER-Verknüpfung der Konjunktionen (3) Vereinfachung der Verknüpfung mit Theoremen: ) ( ) )( ( ) ( )) ( ( y y + + & & 2 3 y

13 Elektronik für Physiker Prof. Brunner SS Logik-Familien Unterscheidung der Familien nach elektronischen Bausteinen:. RTL Resistor-Transistor-Logic DTL Diode-Transistor-Logic TTL Transistor-Transistor-Logic I2L Integrated-Injection-Logic ECL Emitter-Coupled-Logic NMOS N-type Metal Oide Semiconductor Logic CMOS Complementary MOS-Logic Auswahlkriterien: Betriebsspannung High- und Low-Pegelwerte Leistungsaufnahme P Gatterlaufzeit τ, d.h. ma. Schaltfrequenz Ausgangsbelastbarkeit fan out (Anzahl der ansteuerbaren Norm-Eingänge) Eingangslast fan in ECL Bed. Σ(fan in) der Folgeschaltung < (fan out) des Ausgangs ν (Hz)

14 Elektronik für Physiker Prof. Brunner SS 26 Physikalische Realisierungen logischer Grundfunktionen: Logikpegel und Pegeltoleranzen i. A. wird verwendet: Logikpegel für positive Logik H, L z.b. RTL-Logik: Bipolartransistor als logischer Schalter U + U a Inverter: U e R B R E R C U a Inverter U H U L S H S L verboten H L U L U H U e U e L: Tr. sperrt, I C, U a U + S H H-Störabstand U e H: Tr. leitet, I C >, U a U + -I C R C S L L-Störabstand Grenzspannungen: U H <.5U + (falls Last R V R C ), z.b. U H.5V bei U + 5V U L <U BE.6V (Si), z.b. U L.4V Dimensionierung: möglichst geringe Verlustleistung (R groß), aber kleines τrc Möglich ist Übergang zu negativer Logik: H, L und: NOR NAND, OR AND, NOT NOT

15 Elektronik für Physiker Prof. Brunner SS 26 Widerstand-Transistor-Logik (RTL) Integrierte, relativ niederohmige Vorwiderstände an Basis-Eingängen: Vorteil: Einfache Schaltung, auch mit Transistoren mit geringer Stromverst. Aber: Fan out < 5 Gatterlaufzeit >25 ns Bsp.-Funktion: U H oder U 2 H: U a L U U 2 L: U a H NOR-Gatter (bei positiver Logik)

16 Elektronik für Physiker Prof. Brunner SS 26 Transistor-Transistor-Logik (TTL) Transistor mit mehreren (2) Emittern, und Gegentaktendstufe U L oder U 2 L EB leitet, Strom fließt über R in Emitter E (oder E 2 ) T 2 sperrt, da kein Basisstrom T 3 sperrt T 4 leitet (liefert Strom an Ausgang) U a H U H, U 2 H (+5V) BC leitet, Strom fließt über R in Kollektor T 2 leitet T 3 leitet (den Rückstrom aus Folgegatter) T 4 sperrt U a L NAND-Gatter Standard TTL-NAND-Gatter Vorteil: hohe Ausgangsströme möglich Nachteil: Hohe Verlustleistung, langsam wg. Tr.-Sättigung Abhilfe: Low-Power Schottky TTL (Spannungsgegenkopplung mit integrierter Schottkydiode)

17 Elektronik für Physiker Prof. Brunner SS 26 TTL Open-Collector-Ausgänge: Wired-AND-Verknüpfung Viele npn-transistoren mit Emitter auf Masse (statt Gegentaktendstufe) Kollektoren parallel verdrahtet ( wired ) Gemeinsamer Ausgang U a mit R C : Alle Ausgänge U ai H: U a H Sonst (mind. U ai L): U a L Reduzierte Zahl der Ausgänge Weniger Verdrahtung

18 Elektronik für Physiker Prof. Brunner SS 26 TTL Tristate Ausgänge Ziel: Ein ausgewähltes Gatter soll Ausgangszustand definieren (Bussystem) Mögliche Lösung: Open-Collector mit N- hochohmigen Gattern (langsam) Bessere Lösung: Gegentaktstufe mit Steuerkanal EN EN: Inverter y Zustand : low Zustand 2:high EN: Zustand 3: Z-State T,T 2, und Ausgang hochohmig (belastet Bus nicht) Inverter mit Tristate-Ausgang Schaltsymbol:

19 Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik 8. Schaltnetze. Zahlendarstellung 2. Kombinatorische Anwendungsschaltungen 9. Schaltwerke. Monostabile Kippschaltung 2. Astabile Kippschaltung 3. Bistabile Kippschaltung

20 Elektronik für Physiker Prof. Brunner SS 26 Schaltnetze - Schaltwerke Schaltnetze: logische Netzwerke, bei denen Ausgänge y i f( i ) eindeutig und direkt durch die aktuellen Eingänge i bestimmt sind z. B.: Decoder, (De-)Multipleer y i n..... Schaltnetz..... y y j y m X Schaltnetz n m Vektorielle Darstellung Y Schaltwerke: logische Netzwerke, bei denen Ausgänge y i f( i ) durch aktuelle Eingänge i, interne Zustände a i oder frühere Eingangszustände i (t j ) bestimmt sind z. B.: Kippschaltungen, Microcontroller, Mikroprozessor, PC Beide können nur binäre Werte i verarbeiten

21 Elektronik für Physiker Prof. Brunner SS 26 Schaltnetze (Kombinatorische Logik) Logische Variable i (bzw. y i ) sind voneinander unabhängige binäre Werte (/) oder Dualzahlen mit definierter Stellenwertigkeit Logikfunktionen haben Regeln, die von Wertigkeit der Variablen abhängt: Additionsbefehl im Dezimalsystem: + 2 dezimal ( 2 ) Additionsbefehl im Dualsystem: + dual ( ) Disjunktion von logischen Variablen: + logik

22 Elektronik für Physiker Prof. Brunner SS Zahlendarstellung Positive ganze Zahlen: Bsp: 5253 dez Dualcode Dual Stellenw. Headezimalcode Dual 3 B 9 5 He Stellenwert Binary Coded Digit Kodierung (BCD-Code) positiver ganzer Zahlen Dezimal BCD Stellenw. Nur, 9 der Headezimalzahlen wird genutzt für Displays und im Finanzwesen

23 Elektronik für Physiker Prof. Brunner SS 26 Zahlendarstellung: ganze Zahlen mit Vorzeichen Vorzeichen wird durch zusätzliches Bit (-) s dargestellt Nachteil: Addition/Subtraktion schwierig Zur einfachen Subtraktion/Addition von Zahlen ist eine feste Wortbreite notwendig Dualzahl in Zweierkomplement-Darstellung B N (2) Bsp. Wortbreite 8 Bit: (,,255) (-28,.,27) +8 dez s B N -8 dez s X Stellenw.

24 Elektronik für Physiker Prof. Brunner SS 26 Zweierkomplement-Darstellung dualer Zahlen Komplement-Bildung (Negation) einer Binärzahl B N : Einerkomplement: Negation jeder Stelle B N () - B N 2 N -B N Zweierkomplement: Negation jeder Stelle und Addition von : B N (2) B N () + 2 N +- B N Es gilt für Dualzahlen in Zweierkomplement-Darstellung: -B N B N (2) (Die höchste Überlaufstelle des Vorzeichenbits bleibt unbeachtet) B 45 dez B () Einerkompl. B (2) Zweierkompl -45 dez

25 Elektronik für Physiker Zahlenformate für Gleitkomma-Zahlen nach IEEE-P754-Standard: Prof. Brunner SS 26 Gleitkomma-Dualzahlen Wie im Dezimalsystem Z M E ist im Dualsystem: Z 2 M 2 E IEEE-P754-Standard: Z (-) S M 2 E-Offset Normierung: m, E im Offset-Dualzahl-Code M m N 2 i + m 2 + m mi 2 i Bsp: 225,825,, E Zahlenformat: Einfach: S e 7... e m... m 23 (m verborgen, m Stellenwert ½) Doppelt: S e... e m... m 52 Intern: S e 4... e m... m 63 Format Wortbreite Breite Eponent Bereich Breite Mantisse Bereich Einfach 32 bit 8 bit 2 ±27 ±38 23 bit 7 Dez. Stellen Doppelt 64 bit bit 2 ±23 ±38 52 bit 6 Dez. Stellen Intern 8 bit 5 bit 2 ±6383 ± bit 9 Dez. Stellen

26 Elektronik für Physiker Prof. Brunner SS Kombinatorische Anwendungsschaltungen Multipleer/Demultipleer sollen logische Eingangs- auf Ausgangskanäle durchschalten Speziell: ein Eingang oder Ausgang soll selektiert werden Notwendig zur Kanal-Auswahl: Decoder, der mit Dualzahl (a, a ) vorgegebene Steuerleitung auswählt und auf HIGH setzt Dualzahl Steuerleitungen Steuerleitungen Dualzahl a a -aus-4 Decoder y y y 2 y y y 2 Prioritäts- Encoder a a y 3 y 3

27 Elektronik für Physiker Prof. Brunner SS 26 Realisierung eines -aus-4-decoders A a,a bezeichnet Kanal y A auf High/ Wahrheitstafel Aufbau aus AND und NOT-Gatter 3 2 y y y 2 y 3 a a A 3 2,,, a a y a a y a a y a a y

28 Elektronik für Physiker Prof. Brunner SS Kombinatorische Anwendungsschaltungen Multipleer schaltet einen von mehreren logischen Eingängen auf einen Ausgang y y a a d + a a d + a a d + a a d 2 3 Demultipleer schaltet einen Eingang d auf einen von mehreren Ausgängen

29 Elektronik für Physiker Prof. Brunner SS 26 Anzeige-Decoder BCD-Zahl (4Bit A, A,A 2,A 3 ) wird in 7 Segment-Bits a g decodiert : b, c

30 Elektronik für Physiker Prof. Brunner SS 26 Komparatoren Einfacher Vergleich: Ist ab? y a ÄQUIV b a EXNOR b Für -Bit-Zahlen a, b genügt ein EXNOR-Gatter Für N-Bit-Zahlen a, b: N EXNOR-Gatter mit UND-verknüpften Ausgängen Universeller -Bit-Vergleich: ab, y ab a EXNOR b a>b, y a>b a AND NOT(b) a<b, y a<b NOT(a) AND b Vergleich von Dualzahlen mit seriell/ parallel kaskadierten -Bit-Komparatoren a b y a>b y ab y a<b

31 Elektronik für Physiker Prof. Brunner SS 26 Addierer Addition zweier Binärzahlen mit Halbaddierer: 2 Eingänge a, b 2 Ausgänge s (. Stelle) und c (Übertrag) Volladdierer berücksichtigt Übertrag von niedrigerer Stelle: 3 Eingänge a i, b i, c i 2 Ausgänge s i (i. Stelle) und c i+ (Übertrag) Aufbau aus 2 Halbadd.: EXOR c a b c s c a b c s

32 Elektronik für Physiker Prof. Brunner SS 26 Addierer für mehrstellige Dualzahlen Serielle Kaskadierung ergibt 4-Bit-Addierer (mit sequentiellem Übertrag, wie beim schriftlichen Addieren) Parallele Addition mit Übertrag-Berechnung in separatem PCL Übertrags-Variable: g generate / not gen. p propagate/ absorbed

33 Elektronik für Physiker Prof. Brunner SS 26 Subtrahierer D A B A + (-B) A + B N (2) bei Zweierkomplement-Darstellung der Dualzahlen Addierer haben Steuereingang zur Komplementierung B (2) N B () N + (realisiert mit c )

34 Elektronik für Physiker Prof. Brunner SS 26 Multiplizierer (3 ) ( 43) 3 z y Multiplikation von N-Bitzahlen mit N steuerbaren Addierern y z 43

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Grundlagen der Digitaltechnik

Grundlagen der Digitaltechnik Grundlagen der Digitaltechnik Eine systematische Einführung von Prof. Dipl.-Ing. Erich Leonhardt 3., bearbeitete Auflage Mit 326 Bildern, 128 Tabellen, zahlreichen Beispielen und Übungsaufgaben mit Lösungen

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Angewandte Physik II: Elektronik

Angewandte Physik II: Elektronik Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik 9. Schaltwerke. Monostabile Kippschaltung: Univibrator 2. Astabile Kippschaltung: Multivibrator 3. Bistabile Kippschaltung:

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

PC & Elektronik. Herbert Bernstein. PC Digital. Labor. Pnaxisnahes Lernen mit TTL- und CMOS- Bausteinen. Mit 317 Abbildungen FRANZIS

PC & Elektronik. Herbert Bernstein. PC Digital. Labor. Pnaxisnahes Lernen mit TTL- und CMOS- Bausteinen. Mit 317 Abbildungen FRANZIS PC & Elektronik Herbert Bernstein PC Digital Pnaxisnahes Lernen mit TTL- und CMOS- Bausteinen Labor Mit 317 Abbildungen FRANZIS Inhalt 1 Boolesche Algebra 13 1.1 Mengenalgebra 14 1.1.1 Festlegung und Darstellung

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Benutzte Quellen. Benutzte Bezeichnungen. Logik. Logik

Benutzte Quellen. Benutzte Bezeichnungen. Logik. Logik Benutzte uellen Benutzte Bezeichnungen Vorlesungen von r.-ing. Vogelmann, Universität Karlsruhe Vorlesungen von r.-ing. Klos, Universität Karlsruhe Vorlesungen von r.-ing. Crokol, Universität Karlsruhe

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum

Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 11 Digitalschaltungen Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 25.06.1997 Protokoll

Mehr

Inhaltsverzeichnis. Inhalt. 1 Einleitung

Inhaltsverzeichnis. Inhalt. 1 Einleitung Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...

Mehr

Digitaltechnik. TI-Tutorium. 29. November 2011

Digitaltechnik. TI-Tutorium. 29. November 2011 Digitaltechnik TI-Tutorium 29. November 2011 Themen Schaltsymbole Transistoren CMOS nächstes Übungsblatt 2 Aufgaben Schaltsymbole Widerstand npn-transistor Widerstand pnp-transistor Glühlampe pmos Transistor

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Protokoll zu Grundelemente der Digitaltechnik

Protokoll zu Grundelemente der Digitaltechnik Protokoll zu Grundelemente der Digitaltechnik Ronn Harbich 22. uli 2005 Ronn Harbich Protokoll zu Grundelemente der Digitaltechnik 2 Vorwort Das hier vorliegende Protokoll wurde natürlich mit größter Sorgfalt

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Labor Grundlagen der Elektrotechnik

Labor Grundlagen der Elektrotechnik Gruppe: S4 Versuch I2-5 Hendrik Schwarz, Edgar Nanninga 19.10.2000 1/ 8 Digitale integrierte Schaltungen 1.0 Aufgaben zur Vorbereitung 1.1 0 0 0 0 1 1 1 0 1 1 1 0 Funktionstabelle 1.2 Inverter SN7404 Pegel

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Übungen zu Informatik 1

Übungen zu Informatik 1 Communication Systems Group (CSG) Prof. Dr. Burkhard Stiller, Universität Zürich, Binzmühlestrasse 14, CH-8050 Zürich Telefon: +41 44 635 6710, Fax: +41 44 635 6809, stiller@ifi.uzh.ch Fabio Hecht, Telefon:

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 11/12 FB ET/IT Binäre Rechenoperationen WS /2 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Grundlagen der Datenverarbeitung

Grundlagen der Datenverarbeitung Grundlagen der Datenverarbeitung Bauelemente Mag. Christian Gürtler 5. Oktober 2014 Mag. Christian Gürtler Grundlagen der Datenverarbeitung 5. Oktober 2014 1 / 34 Inhaltsverzeichnis I 1 Einleitung 2 Halbleiter

Mehr

4 DIGITALE SCHALTUNGSTECHNIK

4 DIGITALE SCHALTUNGSTECHNIK Digitale Schaltungstechnik 59 4 DIGITALE SCHALTUNGSTECHNIK Um Daten zu verarbeiten, verwenden Computer als grundlegende Größen logische Variablen, die genau zwei Zustände annehmen können, nämlich den Wert

Mehr

Binär Codierte Dezimalzahlen (BCD-Code)

Binär Codierte Dezimalzahlen (BCD-Code) http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

KLAUSUR DIGITALTECHNIK SS 00

KLAUSUR DIGITALTECHNIK SS 00 Aufgabe 1 (20P) KLAUSUR DIGITALTECHNIK SS 00 Entwerfen Sie ein Flipflop unter ausschließlicher Verwendung eines Dreifach-UND und dreier Zweifach-ODER. Beschreiben Sie das Verhalten ( Zustandsdiagramm,

Mehr

Markus Kühne www.itu9-1.de Seite 1 30.06.2003. Digitaltechnik

Markus Kühne www.itu9-1.de Seite 1 30.06.2003. Digitaltechnik Markus Kühne www.itu9-1.de Seite 1 30.06.2003 Digitaltechnik Markus Kühne www.itu9-1.de Seite 2 30.06.2003 Inhaltsverzeichnis Zustände...3 UND austein ; UND Gatter...4 ODER austein ; ODER Gatter...5 NICHT

Mehr

Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik

Kapitel 4A: Einschub - Binärcodierung elementarer Datentypen. Einschub: Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Einschub: Binärcodierung elementarer Datentypen Teile aus Kapitel 2 in Küchlin/Weber: Einführung in die Informatik Unterscheide Zahl-Wert Zahl-Bezeichner Zu ein- und demselben Zahl-Wert kann es verschiedene

Mehr

Achtung: Bei der Inbetriebnahme von TTL-Bausteinen ist zu beachten, daß der Anschluß

Achtung: Bei der Inbetriebnahme von TTL-Bausteinen ist zu beachten, daß der Anschluß Fakultät für Physik Prof. Dr. M. Weber, Dr.. abbertz B. iebenborn, P. ung, P. kwierawski, C. hiele 7. Dezember Übung Nr. 8 Inhaltsverzeichnis 8. L-Gatter............................................ 8.

Mehr

183.580, WS2012 Übungsgruppen: Mo., 22.10.

183.580, WS2012 Übungsgruppen: Mo., 22.10. VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A

Mehr

Übung RA, Kapitel 1.2

Übung RA, Kapitel 1.2 Übung RA, Kapitel 1.2 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 Immer durch 2 teilen, der Rest ergibt das Bit. Jeweils mit

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Spannungen und Ströme

Spannungen und Ströme niversität Koblenz Landau Name:..... Institut für Physik orname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... Spannungen und Ströme ersuch Nr. 1 orkenntnisse: Stromkreis, Knotenregel, Maschenregel,

Mehr

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation Übungsaufgaben Anmerkung Allen Beispielen soll noch hinzugefügt sein, dass wertvolle Hinweise, also die Tipps und Tricks die der schnellen maschinellen Multiplikation zu Grunde liegen, neben dem toff zur

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 5. Digitale Speicherbausteine Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Digitale Elektronik, Schaltlogik

Digitale Elektronik, Schaltlogik Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-64 Digitale Elektronik, Schaltlogik - Vorbereitung - Die Grundlage unserer modernen Welt

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430 Elektronikpraktikum - SS 24 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 2-43 (Anfängerpraktikum). Stock, Raum 43 Serie 7: Digitale Schaltungen./.7.24 I. Ziel der Versuche Verständnis für Entwurf

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Schalten mittels Transistor

Schalten mittels Transistor Manfred Kämmerer Technische Informatik Seite 1 Schalten mittels Transistor Der Transistor, der in Abbildung 1 gezeigten Schaltung (BC 237), arbeitet als elektronischer Schalter in Emitterschaltung. Die

Mehr

Digitalelektronik: Einführung

Digitalelektronik: Einführung Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PI-Regler Sensorik

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik b J K Q Q Praktikum igitaltechnik Q Q achelor-studium KoSI Praktikumsunterlagen Versuch GT Grundlagen der kombinatorischen Logik.Praxisnahes Kenne nlernen eines Is. Gegeben sind die PIN-elegungen von 4

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

Grundtypen Flip-Flops

Grundtypen Flip-Flops FLIP-FLOPs, sequentielle Logik Bei den bislang behandelten Logikschaltungen (chaltnetzen) waren die Ausgangsgrößen X, Y... zu jeder Zeit in eindeutiger Weise durch die Kombination der Eingangsvariablen

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 2. Vorlesung Klaus Kasper Inhalt Schaltnetz vs. Schaltwerk NAND SR-Flip-Flop NOR SR-Flip-Flop Master-Slave Flip-Flop Zustandsdiagramm Flip-Flop Zoo Schaltnetze vs. Schaltwerke Schaltnetz:

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Grundtypen Flip-Flops

Grundtypen Flip-Flops FLIP-FLOPs, sequentielle Logik Bei den bislang behandelten Logikschaltungen (Schaltnetzen) waren die Ausgangsgrößen X, Y... zu jeder Zeit in eindeutiger Weise durch die Kombination der Eingangsvariablen

Mehr

P1-63,64,65: Schaltlogik

P1-63,64,65: Schaltlogik Physikalisches Anfängerpraktikum (P1) P1-63,64,65: Schaltlogik Matthias Ernst (Gruppe Mo-24) Karlsruhe, 14.12.2009 Ziel des Versuchs ist ein erster Kontakt mit nichtprogrammierbaren Schaltungen, deren

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Digitalelektronik 4 Vom Transistor zum Bit. Stefan Rothe

Digitalelektronik 4 Vom Transistor zum Bit. Stefan Rothe Digitalelektronik 4 Vom Transistor zum Bit Stefan Rothe 2015 04 21 Rechtliche Hinweise Dieses Werk von Thomas Jampen und Stefan Rothe steht unter einer Creative Commons Attribution-Non- Commercial-ShareAlike-Lizenz.

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

.Universelles Demonstrationssystem für Grundlagen der Digitaltechnik /

.Universelles Demonstrationssystem für Grundlagen der Digitaltechnik / / Mikrocomputertechnik Eingabetastatur Hexadezimal Schalter Addierer 7Segment Anzeige 47 / 13 V.03 Technische Änderungen vorbehalten!.universelles Demonstrationssystem für Grundlagen der / Mikrocomputertechnik.Anzeigen

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 MikroControllerPass Lernsysteme MC 805 Seite: (Selbststudium) Inhaltsverzeichnis Vorwort Seite 2 Addition Seite 3 Subtraktion Seite 4 Subtraktion durch Addition der Komplemente Dezimales Zahlensystem:Neunerkomplement

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

7 Grundlagen der Digitaltechnik

7 Grundlagen der Digitaltechnik 7 Grundlagen der Digitaltechnik 7.1 Die logischen Grundfunktionen Logik-Zustände, 0 oder 1, beschreiben mathematisches Verhalten einer digitalen Schaltung. Logik-Pegel, H oder L, beschreiben physikalisches

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Institut für Informatik. Aufgaben zu Übung Grundlagen der Technischen Informatik 1. 4. Aufgabenkomplex Technologie logischer Schaltungen

Institut für Informatik. Aufgaben zu Übung Grundlagen der Technischen Informatik 1. 4. Aufgabenkomplex Technologie logischer Schaltungen UNIVRSITÄT LIPZIG Institut für Informatik Studentenmitteilung. Semester - WS 22 Abt. Technische Informatik Gerätebeauftragter Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-34-97 3223 Zimmer: HG 2-37 e-mail:

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

13 Programmierbare Speicher- und Logikbausteine

13 Programmierbare Speicher- und Logikbausteine 13 Programmierbare Speicher- und Logikbausteine Speicherung einer Tabelle (Programm) Read Only Memory (ROM) Festwertspeicher Nichtflüchtig Nichtlöschbar: ROM PROM bzw. OTP-ROM Anwender programmierbares

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

1. Speicherbausteine. 1.1. JK-RS-Master-Slave-Flip-Flop

1. Speicherbausteine. 1.1. JK-RS-Master-Slave-Flip-Flop 1. Speicherbausteine 1.1. JK-RS-Master-Slave-Flip-Flop Dieser Speicherbaustein (Kurz JK-RS) hat 5 Eingänge (J,K,R,S und Clk) und zwei Ausgänge ( und ). Funktion Werden die Eingänge J,K und Clock auf 0

Mehr

Einteilung der Kippschaltungen (Schaltwerke) (=Flipflops)

Einteilung der Kippschaltungen (Schaltwerke) (=Flipflops) 6. Sequentielle Schaltungen: 6.1. Grundsätzliche Aussage zu Flipflop Unterschiede zwischen kombinatorischen und sequentiellen Schaltungen: Kombinatorische Schaltungen: - Ausgänge sind nur vom Zustand der

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Michael Walz Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorwort 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1 Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum Versuch 24: Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen 1 Allgemeines Alle in diesem

Mehr

Physik in der Praxis: Elektronik

Physik in der Praxis: Elektronik MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Physik in der Praxis: Elektronik Bonus-Versuch: Feldeffekt-Transistoren und Einführung in die CMOS-Logik Abgabe am 20.02.2011 Übungsgruppe

Mehr