Prüfungsklausur Mathematik I für Bauingenieure am

Größe: px
Ab Seite anzeigen:

Download "Prüfungsklausur Mathematik I für Bauingenieure am"

Transkript

1 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am A Name, Vorname Matr. Nr. Sem. gr. Aufgabe gesamt erreichbare P (6) (+6) erreichte P. Bemerkungen: Bitte für jede Aufgabe eine neue Seite anfangen und jeweils angeben zu welcher (Teil-)Aufgabe die Lösung gehört. Die Bedeutung von Symbolen und Bezeichnungen sowie verwendete Formeln und Gleichungen sind anzugeben. Zu jeder Lösung muss ein nachvollziehbarer Lösungsweg vorhanden sein. Fragen sind mit einem Satz zu beantworten. Aufgabe : Gegeben sind die Menge P : Menge aller Primzahlen die Aussageform u(x) : x ist ungerade. die Aussage A : : Alle Primzahlen sind ungerade. (a) Schreiben Sie die Aussage A als Allaussage (unter Verwendung eines Quantors) auf. (b) Negieren Sie die Allaussage A und formen Sie sie anschließend in eine Existenzaussage um. Geben Sie den Wortlaut dieser Existenzaussage an. Aufgabe 2 : Bei einer Umfrage eines Schlager-Radiosenders zur Beliebtheit der Sängerinnen Andrea Berg, Helene Fischer und Vanessa Mai kam es zu folgendem Ergebnis: Von den 500 Hörern, die an der Umfrage teilgenommen haben, mögen 280 Helene Fischer, 250 Andrea Berg, 230 Vanessa Mai, 60 mögen alle drei Sängerinnen und 35 keine von den dreien. 85 mögen nur ihre Schlager-Königin Andrea Berg, wohingegen 60 ihrer Fans auch Helene Fischer mögen, aber Vanessa Mai nicht. Wieviele Hörer mögen nur Helene Fischer? Wieviele Hörer mögen Helene Fischer und Vanessa Mai, jedoch Andrea Berg nicht? Wieviele Hörer mögen Andrea Berg oder Vanessa Mai? Lösen Sie die Aufgabe mit Hilfe eines Venn-Diagramms.

2 Aufgabe 3 : Stellen Sie die folgende Menge L als Vereinigung von Intervallen dar. { L = x R x } x 6 0. Geben Sie den Rechenweg einschließlich der zu behandelnden Fälle, sowie die zugehörigen Teillösungsmengen an. Aufgabe 4 : (a) Gegeben seien die komplexen Zahlen z = ( ) 2 3 i (, z 2 = 2 cos π 2 + 2i 4 i sin π ), z 3 = 5e π 6 i. 4 Überführen Sie (mit Angabe des Rechenweges) (i) z in die algebraische Darstellung, (ii) z 2 in die trigonometrische Darstellung, (iii) z 3 in die exponentielle Darstellung. (b) Bestimmen Sie alle Lösungen z C der Gleichung z 4 = i in exponentieller Form. Skizzieren Sie die Lage aller Lösungen in der Gaußschen Zahlenebene. Aufgabe 5 : Gegeben sei die Funktion f : D(f) R R mit f(x) = p(x) q(x) = x3 4x 2 5x x 4 + 3x 3 + 3x 2 + x. (a) Ermitteln Sie die reelle Faktorzerlegung des Nenners q(x). Berechnen Sie zunächst q( ). (b) Machen Sie den Ansatz für die Partialbruchzerlegung von f(x) und ermitteln Sie das Gleichungssystem für die Berechnung der unbekannten Koeffizienten. Die Berechnung ist nicht gefordert. (c) Bestimmen Sie alle Nullstellen, Polstellen und (stetig behebbare) Lücken von f(x). Weisen Sie bei jeder Polstelle/Lücke x 0 nach, dass es sich um eine ebensolche handelt, indem Sie den Grenzwert lim f(x) bzw. die einseitigen Grenzwerte lim f(x) berechnen. x x0 x x 0 ±0 (d) Handelt es sich bei f(x) um eine echt oder unecht gebrochenrationale Funktion? Geben Sie den Grenzwert lim x f(x) an.

3 Aufgabe 6 : Gegeben sei das lineare Gleichungssystem (LGS) (a) Für welche α, β R hat das LGS 4 x + 8 x 2 + 3α x 3 = β 2 x + α x 2 + x 3 = 6 x + 2 x 2 3 x 3 = 2 (i) genau eine Lösung (ii) unendlich viele Lösungen (iii) keine Lösung? (b) Bestimmen Sie alle Lösungen des LGS für α = 5 und β =, sowie für α = 4 und β = 8 in Parameterschreibweise bzw. Vektordarstellung. Aufgabe 7 : Gegeben seien a = 3, b = 2 2 5, c = R 3 und A = ( a b c) R (3,3). (a) Bestimmen Sie die Dimension des linearen Raumes W = [ a, b, c]. Ist { a, b, c} eine Basis des R 3? Begründen Sie Ihre Antwort. (b) Wieviele Elemente enthält die Menge M = { x R 3 A x = (, 2, 3) T }? Begründen Sie. Zusatzaufgabe 8 : ( ) ( ) Gegeben seien die Matrizen A =, B = R (2,2) Berechnen Sie die Matrix X, welche die Matrizengleichung XA B = 4X löst. Der Rechenweg ist ausführlich darzustellen. Aufgabe 9 : Mit den Vektoren a, b, c aus Aufgabe 7 sei eine Ebene Γ definiert, die den Vektor a als Stützvektor und die Vektoren b, c als Richtungsvektoren hat. 0 Weiterhin sei die Gerade Γ 2 = x R3 x = 2 + r 5, r R gegeben. 2 2 (a) Ermitteln Sie eine parameterfreie Darstellung der Ebene Γ. (b) Bestimmen Sie die Lagebeziehung zwischen Γ und Γ 2.

4 Aufgabe 0 : Gegeben sei f : R R : f(x) = x 2 x + 3. (a) Berechnen Sie den Differenzenquotienten f(x 0, h) = f(x 0+h) f(x 0 ) für x h 0 = in Abhängigkeit von h. (b) Berechnen Sie den Wert des Differentials df(x 0, dx) an der Stelle x 0 = für die Argumentdifferenz dx = x = 0.. (c) Berechnen Sie die Tangente T (x) an den Graphen von f im Punkt (x 0, f(x 0 )) = (, 3). Aufgabe : Gegeben ist die Funktion f : [, 6] R mit f(x) = { (x ) falls x < 3 x + A falls x 3. (a) Bestimmen Sie A, so dass die Funktion f(x) stetig ist für alle x D(f). Geben Sie den Rechenweg an. Skizzieren Sie die Funktion in ihrem Definitionsbereich. (b) Ist die Funktion f(x) im Punkt x 0 = 3 differenzierbar? Begründen Sie Ihre Antwort rechnerisch. Geben Sie gegebenenfalls f (3) an. (c) Geben Sie alle globalen Maximalstellen und alle globalen Minimalstellen von f(x) an (ohne Begründung). Tipp: Die Funktionen f : R R, f (x) = (x ) und f 2 : R R, f 2 (x) = x + A sind stetig und differenzierbar x R. Aufgabe 2 : Bestimmen Sie g = lim cos 2 x x 0 3x 2. Geben Sie den Lösungsweg an.

5 Ergebnisse, nicht vollständig : (a) x P : u(x), (b) ( x P : u(x)) x P : u(x) Es gibt eine Primzahl, die gerade ist. 2: F: Menge der Hörer, die Helene Fischer mögen, B: Menge der Hörer, die Andrea Berg mögen, M: Menge der Hörer, die Vanessa Mai mögen, 90 F B Hörer mögen nur Helene Fischer. 70 Hörer mögen Helene Fischer und Vanessa Mai, aber Andrea Berg nicht. 375 Hörer mögen Andrea Berg oder Vanessa Mai. M 35 3: L = (, 6] [0, 6) 4: (a) z = 3 i, z 4 2 = 2(cos( π) + i sin( π)), z = 5e i 5 6 π (b) z 0 = 8 2 e i π 24, z = 8 2 e i 3 24 π, z 2 = 8 23 i 2 e 24 π, z 3 = 8 i 2 e 24 π, 5: (a) q(x) = x(x + ) 3, (b) x3 4x 2 5x = A + B + C + D x(x+) 3 x x+ (x+) 2 (x+) 3 (c) x 3 : = A + B, x 2 : 4 = 3A + 2B + C, x : 5 = 3A + B + C + D, : A = 0 (d) f(x) = x(x 5)(x+) x 0 = 5 ist Nullstelle von f(x). x(x+) 3 (x 5)(x+) (x+) 3 lim f(x) = lim x 0 x 0 x 2 = ist Polstelle 2. Ordnung, = 5 x = 0 ist Lücke von f(x) lim x 0 x(x 5) x(x 5) x(x+) 2 = lim = x(x+) 2 x +0 (e) f(x) ist eine echt gebrochenrationale Funktion. (Zählergrad < Nennergrad), lim lim x x 3 ( 4 x 5 x 2 ) x f(x) = = 0 x 4 (+ 3 x + 3 x 2 + x 3 ) 6. (a) (i) Das LGS hat genau eine Lösung für α 4, β beliebig, (ii) Das LGS hat unendlich viele Lösungen für α = 4, β = 8, (iii) Das LGS hat keine Lösung für α = 4, β 8 (b) α = 5, β = : (x, x 2, x 3 ) T = (9, 5, ) T, α = 4, β = 8 : 7. (a) x x 2 x = t 2 0, t R dim(w ) = 3, { a, b, c} ist eine Basis des R 3, da jede Menge von 3 linear unabhängigen Vektoren des R 3 eine Basis des R 3 ist.

6 (b) M enthält Element (nämlich x = A 2 3, da A regulär ist. ( ) ( ) ( ) X = B(A 4E) = = (a) Γ = { x = (x, y, z) T R 3 5x 2y + 5z = } (b) Γ 2 eingesetzt in Γ ergibt =, wahre Aussage Γ 2 liegt in Γ. 0. (a) f(x 0, h) = + h, (b) df(, 0.) = 0., (c) T (x) = 3 + (x ). (a), A = 4, (b) f(x) ist nicht differenzierbar in x 0 = 3 weil f (3) = 4 f 2(3) = (c) globale Minimalstellen: x =, x 2 = 3, globale Maximalstelle x 3 = cos 2. g = lim 2 x 2 cos x sin x 2( sin = lim = lim 2 x+cos 2 x) = x 0 3x 2 x 0 6x x 0 6 3

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 8.02.206 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 0 gesamt erreichbare P. 4 7

Mehr

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 9.02.204 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 6 7 8 9 0 gesamt erreichbare P. 8 0 3

Mehr

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 6..7 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 6 7 8 9 gesamt erreichbare P. 9 8 8 8 (+) 7 (+)

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am

Prüfungsklausur Mathematik II für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure am 17.07.2017 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 06.07.2015 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 gesamt erreichbare

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 20.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 9.7.8 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 7 8 9 gesamt erreichbare P. 6 6 7 (5) (+5)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

MATHEMATIK I für Bauingenieure und Berufspädagogen

MATHEMATIK I für Bauingenieure und Berufspädagogen TU DRESDEN Dresden, 4. Februar 00 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Semesterbegleitende Klausur MATHEMATIK I für Bauingenieure und Berufspädagogen Immatrikulationsjahrgang

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 4.2.24 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am 0.0.07 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 4 5 6 gesamt erreichbare P. 5

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure und BWL am 10.0.017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 4 5 6 gesamt erreichbare

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 2.7.2013 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 5 6 gesamt erreichbare P. 17 7

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.2.2019 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 9 gesamt erreichbare P. 6 4 6 14 7+(3)

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 9.2.28 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 7 gesamt erreichbare P. 5 3 3+5

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik) Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:

Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 0.02.206 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P. 5

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Höhere Mathematik II. Variante B

Höhere Mathematik II. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 202 Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal 0 DinA4-Blättern.

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass.

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass. Technische Uniersität Berlin Fakultät II Institut für Mathematik SS 3 Doz.: Gündel-om Hofe, Hömberg, Ortgiese 5.7.3 Ass.: Böttle, Meiner Juli Klausur Analysis I für Ingenieure Name:... Vorname:... Matr.

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure.. 7, 3. - 6. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an.

b) Definieren Sie den Begriff Cauchy-Folge. c) Geben Sie zwei Beispiele für konvergente Folgen und deren jeweilige Grenzwerte an. Repetitorium zur Ingenieur-Mathematik I, WS 00/ Aufgabe : Bestimmen Sie das quadratische Polynom, auf dessen Graph die Punkte (, 4), (0, ), (, 7) liegen. Aufgabe : a) Wann ist eine Folge konvergent (Definition)?

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/2018 1.03.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems!

Aufgaben zur Prüfungsvorbereitung. 1.2) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen Gleichungssystems! Aufgaben zur Prüfungsvorbereitung Komplex 1 - Grundlagen der Mathematik 1.1.) Führen Sie die Polynomdivision aus! x 5 3 x x 3 x 19 x8 : x 5 x 3 1.) Lösen Sie die folgende Aufgabe mit Hilfe eines linearen

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Übungsaufgaben Serie 5: Folgen Funktionen Dierentialrechnung Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 206/207 Bestimmen Sie die Grenzwerte der nachstehenden

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Mathematik Tutorium. x 2

Mathematik Tutorium. x 2 Mathematik Tutorium Fakultät Grundlagen Termin Algebra Aufgabe : Vereinfachen Sie die folgenden Ausdrücke: a) 5 ) : ) 5 b) n+ n c) an+ a n a n+ + a n d) ) ) : ) ) e) 5 f) 5 z + z 5 Aufgabe : Berechnen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Σ / 100 P

Σ / 100 P 0. Klausur zur Vorlesung Mathematik für Naturwissenschaftler I Probeklausur Prof. Andreas Dreuw, Manuel Hodecker, Michael F. Herbst ungef. Beginn: ungef. Ende: Bitte beachten Sie die folgenden Hinweise

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser

Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser Technische Universität Berlin Fakultät II Institut für Mathematik WS 10/11 Böse, von Renesse, Stephan, Weiser 28.02.2011 Februar Klausur Analysis II für Ingenieure Name:...................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr