LW7. Wechselstrom Version vom 16. November 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LW7. Wechselstrom Version vom 16. November 2015"

Transkript

1 Wechselstrom Version vom 16. November 2015

2 Inhaltsverzeichnis Grundlagen Begriffe Wechselspannung und Wechselstrom Effektivwerte von Wechselspannung und Wechselstrom Wechselstromwiderstände Leistung im Wechselstromkreis mit komplexen Widerständen Aufgabenstellung Versuchsaufbau und Durchführung Messungen mit dem Multimeter Messungen mit dem Oszilloskop Hinweise zu Protokollierung und Fehlerrechnung

3 Inhaltsverzeichnis Lehr/Lernziele Unterschiede von Gleich- und Wechselstrom im praktischen Umgang erfahren. Die Auswirkungen von komplexen Widerständen (Impedanzen) in Wechselstromkreisen besser verstehen lernen. Die mathematischen Werkzeuge der Wechselstromtechnik besser verstehen und anwenden lernen. Kenntnisse zu Funktionsweise und Anwendungmöglichkeiten von Oszilloskopen festigen. Oszilloskope für einfache Messungen im Wechselstromkreis einsetzen können. Mögliche Vorbehalte und Unsicherheiten gegenüber Wechselstromtechnik abbauen

4 1.1 Grundlagen Begriffe Wechselstrom, Wechselspannung, Phasenverschiebung, komplexe Widerstände, Kapazität, Induktivität, Impedanz, Wirkleistung, Scheinleistung, Blindleistung, Schwingung, Periodendauer, Frequenz Wechselspannung und Wechselstrom Bei Wechselströmen hängt der Momentanwert der Spannung bzw. der Stromstärke von der Zeit ab. Es gibt verschiedenste Formen von Wechselstrom. Die öffentliche Elektrizitätsversorgung liefert an Haushalte und Industrie Wechselstrom mit einem periodischen sinusförmigen zeitlichen Verlauf. U(t) = U 0 sin(ωt + ϕ U ) I(t) = I 0 sin(ωt + ϕ I ) (1) worin U 0 und I 0 die Amplituden(maxima) von Spannung und Strom(stärke) sind und ω als Kreisfrequenz bezeichnet wird. Diese Darstellung basiert auf der Idee, die Winkelfunktion Sinus in eine Funktion der Zeit zu verwandeln, indem ihr Argument als ein in der Zeit gleichmäßig veränderlicher Winkel ϕ(t) = ωt (die Phase) 1 angesetzt wird. ϕ U, ϕ I sind die Phasenkonstanten, d.h. die Werte der Phase zum Zeitpunkt t = 0. Sie sind i.a. verschieden, d.h. es besteht eine Phasendifferenz ϕ zwischen Spannung und Strom. Definitionsgemäß gilt: ϕ = ϕ U ϕ I (2) Oft werden die Gleichungen 1 vereinfacht, indem durch geeignete Wahl des Nullpunktes der Zeit ϕ U = 0 wird. Beachten Sie bitte, dass in diesem Fall ϕ = ϕ I gilt. Formelzeichen Einheit Bezeichnung U V Spannung U 0 V Amplitude der Spannung od. Scheitelspannung I A Stromstärke I 0 A Amplitude des Stromes od. Scheitelstrom ω s 1 Winkelgeschwindigkeit ϕ U, ϕ I 1 (rad) Phasenkonstanten ϕ 1 (rad) Phasendifferenz zwischen U und I 1 ω ist die Winkelgeschwindigkeit, mit der sich die Phase ändert; deswegen werden Kreisfrequenz und Winkelgeschwindigkeit oft synonym verwendet, obwohl sie das streng genommen nicht sind

5 Als Wechselspannungsquellen dienen z.b. Generatoren diverser Elektrizitätswerke, Windkraftanlagen aber auch Solarpaneele (mit nachgeschaltetem Wechselrichter 2 ). Solche Wechselströme sind in zweifacher Hinsicht von Bedeutung: Die Höhe von Wechselspannungen kann ohne Schwierigkeiten und ohne große Verluste mit Transformatoren in weiten Bereichen verändert und so den technischen Anforderungen leicht angepasst werden. Diese leichte Transformierbarkeit ist auch der Grund dafür, dass der Transport elektrischer Energie mittels Wechselspannungen (Hochspannungstransport) viel einfacher und verlustärmer durchzuführen als mit Gleichspannungen. Außerdem ist die Erzeugung von Wechselspannung (mittels Drehstromgeneratoren) technisch einfacher und effizienter zu realisieren. Jede beliebige andere, zeitlich veränderliche Spannung kann in eine Fourierreihe von einfachen sinus- und cosinusförmigen Spannungen zerlegt werden. Die Frequenz des Haushaltsstromnetzes beträgt 50 Hz, also f = 50 s 1, das entspricht einer Kreisfrequenz von ω = 2 π f = 314 s 1 und einer Periodendauer T = 20 ms Effektivwerte von Wechselspannung und Wechselstrom Eine Wechselspannung U(t) = U 0 sin ωt, die an einem ohmschen Widerstand anliegt, erzeugt einen Wechselstrom I(t) = I 0 sin ωt mit I 0 = U 0 (siehe Abb. 1) R Abbildung 1: Wechselstrom und Wechselspannung an einem ohmschen Widerstand Damit ist die elektrische Leistung P (t) = U(t) I(t) = U 0 I 0 sin 2 ωt ebenfalls eine zeitlich periodische Funktion (siehe Abb. 2). 2 Solarzellen sind Gleichstromquellen, sie müssen erst technisch zu Wechselstromquellen gemacht werden - 3 -

6 Abbildung 2: Wechselstrom, Wechselspannung und Leistung an einem ohmschen Widerstand Die vom ohmschen Widerstand während einer Periode verbrauchte Energie (umgesetzte Wärme) ist dabei: W T = T 0 U 0 I 0 sin 2 ωt dt (3) Für das zeitliche Mittel der elektrischen Leistung (Arbeit pro Zeiteinheit) erhält man damit: P = 1 T T 0 U 0 I 0 sin 2 ωt dt = 1 2 I 0 U 0 (4) Unter dem Effektivwert U eff einer Wechselspannung bzw. I eff eines Wechselstroms versteht man den Wert einer Gleichspannung bzw. eines Gleichstroms, der an einem ohmschen Widerstand R die gleiche Leistung erbringt wie die betrachtete Wechselspannung U(t): 1 2 U 0 I 0 = 1 U0 2 2 R = U eff 2 R U eff = U 0 2 (5) bzw. 1 2 U 0 I 0 = 1 2 I2 0 R = I 2 eff R I eff = I 0 2 (6) In Abbildung 3 wird der Zusammenhang noch einmal veranschaulicht. Das Rechteck U eff, I eff, T hat die gleiche Fläche wie T 0 U 0 I 0 sin 2 ωt dt

7 Abbildung 3: Zusammenhang der Effektivwerte mit der Leistung von Wechselstrom Die obige Herleitung gilt nur für Sinusspannungen. Eine allgemeinere Definition der Effektivwerte, die für periodische Wechselspannungen beliebiger Form gilt, selbst wenn sie noch von einem Gleichspannungsanteil U DC überlagert sind, lautet: U eff = 1 T T 0 (U(t) + U DC ) 2 dt = 1 nt nt 0 (U(t) + U DC ) 2 dt (n = 1, 2, 3,...). Es werden also die momentanen Spannungswerte quadriert, diese Quadrate über die Periodendauer (bzw. einem ganzzahligen Vielfachen davon) gemittelt und hinterher die Wurzel aus diesem Mittelwert der Quadrate gezogen. Diese Operation heißt im Englischen root mean square (RMS) und ein Messgerät, das nach diesem Prinzip arbeitet heißt folglich RMS-Meter. Weil aber ein solches Messgerät im allgemeinen keine Information über die Periodendauer hat, wird in der Regel eine fest eingestellte Zeit T I für die Mittelwertbildung verwendet. Der so erhaltene Wert wird dann als True-RMS-Wert U RMS bezeichnet. Im Spezialfall sinusförmiger Wechselspannungen (ohne Gleichspannungsanteil) erhält man aus dieser Formel wieder den oben hergeleiteten Effektivwert. Messgeräte für Wechselspannung und Wechselstrom zeigen stets die Effektivwerte an und auch in den technischen Daten elektrischer Geräte werden sie stets angegeben. Bei unserem einphasigen Wechselstromnetz liegt zwischen den Polen der Steckdose 3 eine Effektivspannung U eff = 230 V, das entspricht einer Scheitelspannung U 0 = V 325 V. Wie lässt sich somit die zeitliche Funktion dieser Wechselspannung angeben? 3 Die Pole der 230 V - Steckdose sind Phase und Nullleiter. Bei Starkstromsteckdosen erlangt man eine Effektivspannung von 400 V indem man beide Pole mit einer Phase belegt. Jeder Haushalt verfügt über einen Anschluss mit 3 unterschiedlichen Phasen. Das sind sinusförmige Spannungssignale mit 325 V Scheitelspannung, die um je 120 phasenverschoben sind. Sie werden im Kraftwerk mit Drehstromgeneratoren gewonnen

8 1.1.4 Wechselstromwiderstände Bei Wechselstrom kann ein Verbraucher zusätzlich zum ohmschen Widerstand noch einen kapazitiven oder induktiven Widerstand besitzen. Ein kapazitiver Widerstand entsteht z.b. durch das elektrische Feld zwischen den Platten eines Kondensators, ein induktiver durch das magnetische Feld einer Spule. Für kapazitive und induktive Widerstände gilt: Es hängen die Widerstände von der Frequenz des Wechselstroms ab. Es kommt an induktiven und kapazitiven Widerständen zu einer Phasenverschiebung ϕ zwischen Strom und Spannung, d.h. die Funktionen von Strom und Spannung durchlaufen nicht gleichzeitig ihre Maxima und Minima (vgl. Abb. 4). Am ohmschen Widerstand entsteht keine Phasenverschiebung; am Kondensator eilt der Strom um 90 bzw. π/2 voraus, an der Spule hinkt er um 90 bzw. π/2 hinterher. Also ist auch die Beziehung U/I nicht zeitunabhängig, was eine unmittelbare Darstellung dieses Zusammenhanges mit Hilfe eines zeitunabhängigen Faktors analog des ohmschen Gesetzes im Allgemeinen unmöglich macht. Abb. 4 zeigt schematisch die Verläufe von Strom und Spannung an den drei Typen von Wechselstromwiderständen. Abbildung 4: Verlauf von Strom und Spannung als Funktion der Phase a)am Ohm schen Widerstand, b)am Kondensator und c)an der Spule. Nur (ideale) ohmsche Widerstände verhalten sich im Wechselstromkreis genauso wie im Gleichstromkreis. Die Berechnung von Wechselstromschaltungen ist deswegen schwieriger als die von Gleichstromschaltungen. Eine Vereinfachung wird erzielt, wenn man sämtliche Wechselstromgrößen mittels komplexer Zahlen darstellt. Das wird durch die Euler sche Relation e iωt = cos ωt + i sin ωt möglich. Größen wie Spannung, Strom, Widerstand werden durch komplexe Zahlen beschrieben: Û = U 0 e i(ωt+ϕ U ), Î = I 0 e i(ωt+ϕ I) und Z (7) Der Vorteil dieser Methode: die bekannten Gesetze und Regeln für Gleichstromschaltungen (Ohm sches Gesetz, Kirchhoff sche Regeln) gelten vollkommen analog für diese komplexen Größen. Dazu zwei Beispiele: - 6 -

9 Das ohmsche Gesetz für einen beliebigen Wechselstromwiderstand Z (einzelner Bauteil, Gesamtwiderstand einer Schaltung ) lautet in komplexer Schreibweise: wobei Z ein zeitunabhängiger Faktor ist: Û(t) = Z Î(t). (8) Z = U 0 I 0 e i ϕ = Re(Z) + iim(z) (9) Die Serienschaltung der komplexen Widerstände Z 1, Z 2 hat den Gesamtwiderstand Z ges : Z ges = Z 1 + Z 2. Alle komplexen Wechselstromgrößen können in einem Zeigerdiagramm in der Gauß schen Zahlenebene (=komplexe Zahlenebene) dargestellt werden. Komplexe Wechselstromwiderstände werden auch als (komplexe) Impedanzen bezeichnet. Die drei Grundtypen von Wechselstromwiderständen sind: Ohm scher Widerstand R, Kondensator mit Kapazität C und Spule mit Induktivität L). Eine einfache Rechnung, die in einführenden Lehrbüchern zur Physik vorgeführt wird 4, ergibt für den Quotienten der Amplituden von Spannung (U 0 ) und Stromstärke (I 0 ), gemessen am jeweiligen Wechselstromwiderstand: U 0 I 0 = R (ohmscher Widerstand) (10) U 0 I 0 = X C = 1/ωC (Kondensator) (11) U 0 I 0 = X L = ωl (Spule) (12) welche als reelle Wechselstromwiderstände bezeichnet werden können. Der Wechselstromwiderstand des Ohm schen Widerstandes ist gleich seinem Gleichstromwiderstand (die Bezeichnung X R ist somit überflüssig) und frequenzunabhängig, während Kondensator und Spule frequenzabhängige Wechselstromwiderstände haben. Ihre komplexen Größen (Impedanzen) sind: Û C = Z C Î C = ix C = i/ωc (Kondensator) (13) Û L = Z L Î L = ix L = iωl (Spule) (14) 4 z.b. D. Halliday, R. Resnik, J. Walker, Physik, Wiley-VCH 2003, S. 941f. (15) - 7 -

10 Der reelle Wechselstromwiderstand wird mit i oder i multipliziert, um die entsprechende komplexe Impedanz zu erhalten. Das unterschiedliche Vorzeichen ist notwendig, um die entgegengesetzte Phasenverschiebung an Spule und Kondensator zu beschreiben. Offensichtlich gilt: Die reellen Wechselstromwiderstände sind die Beträge der komplexen Impedanzen. Mit konventionellen Messgeräten sind daher nur die Beträge von Spannung und Strom messbar 5. Frequenzen und Phasen können z.b. mit einem Oszilloskop gemessen werden. Der Quotient aus gemessener Spannung und gemessenem Strom ist somit der Betrag des komplexen Wechselstromwiderstandes. Wurden z.b. an einem Kondensator die Spannung U C und der Strom I C gemessen, dann ergibt der Quotient U C /I C nach Gleichung 8 den Betrag der Impedanz des Kondensators: U C = Z C = 1 I C ωc X C. X C hat, wie oben beschrieben, die Dimension eines Widerstandes und ist als reeller Wechselstromwiderstand des Kondensators bezeichnet worden. Wir wollen den Fall der Serienschaltung in Abb. 5 näher betrachten, weil er für das aktuelle Praktikumsbeispiel wichtig ist. (Achtung: im Folgenden sind alle Ströme und Spannungen als Effektivwerte, also messbare Werte zu betrachten!) Die Gesamt-Impedanz Z ges dieser Schaltung ist: Z ges = Z R + Z C = R i ωc = R ix C. (16) Abbildung 5: Serienschaltung eines Kondensators und eines ohmschen Widerstandes. Misst man die Gesamtspannung U ges und den Gesamtstrom I, so ist der Quotient nach obigen Ausführungen gleich dem Absolutbetrag der Gesamtimpedanz Z ges. I fließt durch 5 Das ist ein bisschen ungenau. Messgeräte messen eigentlich den sog. Effektivwert, der mit dem Betrag der komplexen Größe durch einen konstanten Faktor verknüpft ist. Bei der Berechnung von Widerständen kürzt sich der Faktor weg, ist also in diesem Zusammenhang irrelevant

11 R und durch C. Für die Teilspannungen an den beiden Elementen gilt daher: U R = I R U C = I X C. Aus diesen Gleichungen folgt sofort X C, falls R bekannt ist! Beachten Sie: die Spannung an R hat keine Phasenverschiebung gegenüber dem Strom, die Spannung an C jedoch schon! Also sind die beiden Spannungen gegeneinander phasenverschoben. Konsequenz: die Teilspannungen können nicht einfach zur Gesamtspannung addiert werden: U R + U C U ges. Warum das so ist, zeigt am einfachsten eine grafische Auftragung der komplexen Impedanzen. Beachten Sie außerdem: Die in Gleichung 16 dargestellte (einfache) Beziehung gilt ausnahmslos für die RC-Serienschaltung (bzw. analog für die RL-Serienschaltung bei Vernachlässigung des ohmschen Widerstands der Spule)). In keiner anderen Schaltung ist der ohmsche Widerstand alleine der Realteil des komplexen Widerstandes Re(Z) = R bzw. der kapazitive Widerstand alleine der Imaginärteil Im(Z) = X C Sie finden ein Beispiel für komplexe Widerstände von einfachen Schaltungen auf der elearning-seite des Anfängerpraktikums. Bekanntlich kann jede komplexe Zahl als Vektor in der Gauß schen Zahlenebene dargestellt werden. Für die Gesamtimpedanz Z ges (Gleichung 16) ist dies in Abb. 6 (schematisch) gezeigt, wo jeder Vektor mit seiner Länge beschriftet ist. Die Längen entsprechen den Beträgen der komlexen Widerstände, also den gemessenen Widerständen. Z ges ist offenbar die Vektorsumme von Z R und Z C. Die Anwendung des Pythagoräischen Lehrsatzes ergibt: Z ges = R 2 + XC 2. Die messbaren Teilwiderstände addieren sich also nicht linear, sondern quadratisch zum gemessenen Gesamtwiderstand. Das ist eine Folge der Phasenverschiebung der beiden Teilspannungen an diesen Widerständen. Denken Sie sich jetzt jeden Vektor in Abb. 6 mit der gemessenen Stromstärke I multipliziert und Sie erhalten ein völlig analoges Bild für die Spannungen U ges, U C, U R. Daraus folgt: die quadratische Addition gilt auch für die Gesamtund Teilspannungen

12 Abbildung 6: Die Gesamtimpedanz Z ges der Schaltung in Abb. 5 in der Gaußschen Zahlenebene. Manchmal wird der Betrag der Gesamtimpedanz Z ges als Scheinwiderstand, der Realteil Re(Z) als Wirkwiderstand und der Imaginärteil Im(Z) als Blindwiderstand bezeichnet. (Achtung: nur in dem in Abb. 6 behandelten Beispiel der RC-Serienschaltung gilt der direkte und einfache Zusammenhang Re(Z) = R und Im(Z) = X C ). Aus Abb. 6 ist auch die Phasenverschiebung ϕ abzulesen: tan ϕ = X C R ϕ = arctan X C R (17) Das negative Vorzeichen vor X C kommt daher, dass Z C negativ ist. Der Strom eilt am Kondensator der Spannung voraus, daher ist hier die Phasenkonstante ϕ I positiv (siehe Gleichung 1) und damit die Phasenverschiebung (nach Konvention!) negativ. Bei einer Spule würde die Verhältnisse umgekehrt liegen. Ebenso kann aus Abb. 6 leicht abgeleitet werden, wie sich eine Serienschaltung aus 2 ohmschen Widerständen R 1, R 2 verhält (versuchen Sie es!). Beachten Sie hierzu die Simulation von Wechselstromwiderständen im Stromkreis auf der elearning Seite des Anfängerpraktikums. Anmerkung: Kondensatoren und Spulen im Gleichstromkreis Für Gleichstrom wirkt der (ideale) Kondensator wie eine Unterbrechung. Sein Widerstand ist nahezu unendlich. Die (ideale) Spule wirkt wie ein Kurzschluss. Ihr Widerstand ist nahezu Null. In Gleichspannungsschaltungen beeinflussen Spulen und Kondensatoren nur während der Einschalt- und Ausschaltphase den Strom- und Spannungsverlauf

13 1.1.5 Leistung im Wechselstromkreis mit komplexen Widerständen Befinden sich in einem Wechselstromkreis komplexe Widerstände, so kommt es (wie bereits erwähnt) zu Phasenverschiebungen zwischen Spannung und Strom. Ist das der Fall, so muss es bei der Berechnung der Leistung berücksichtigt werden. Zieht man für die Berechnung der Leistung die komplexen Größen von Spannung Û und Strom Î heran und bildet das zeitliche Mittel, so erhält man als Realteil der Leistung die Wirkleistung P und als Imaginärteil die Blindleistung Q. Ihr Betrag ist (analog zur Bezeichnung der Wecheslstromwiderstände) die Scheinleistung S. Wirkleistung P = U eff I eff cos ϕ Die Wirkleistung entspricht dem Realteil der komplexen Wechselstromleistung. cos ϕ wird auch Leistungsfaktor genannt. Er ist ein Maß dafür, wieviel aufgenommene elektrische Leistung tatsächlich umgesetzt werden kann und dient daher etwa bei Elektromotoren als Gütekriterium. An einem ohmschen Widerstand beträgt die Phasenverschiebung bekanntlich ϕ = 0, daher ist cos ϕ = 1 und P = U eff I eff Blindleistung Q = U eff I eff sin ϕ Die Blindleistung entspricht dem Imaginärteil der komplexen Wechselstromleistung. sin ϕ wird auch Blindfaktor genannt. An einem induktiven oder kapazitiven Widerstand beträgt die Phasenverschiebung bekanntlich ϕ = ±π/2, daher ist sin ϕ = 1 und Q = U eff I eff (die Wirkleistung hingegen wird 0). Scheinleistung S = U eff I eff Es gilt (analog zum Betrag der Gesamtimpedanz (=Scheinwiderstand)): Scheinleistung = Wirkleistung 2 + Blindleistung 2 S = P 2 + Q 2 (18) Die Scheinleistung S bezeichnet für sinusförmige Ströme das Produkt der Effektivwerte für Strom und Spannung ohne Berücksichtigung der Phasenverschiebung. Die Abb. 7 veranschaulicht grafisch den Zusammenhang von Leistung und Phasenverschiebung (Phasenwinkel) zwischen Spannung und Strom

14 Abbildung 7: Funktionen von Strom, Spannung und Leistung bei unterschiedlichen Phasenwinkeln

15 1.2 Aufgabenstellung 1. Messungen mit dem Multimeter a) Bauen Sie eine Spannungsteilerschaltung (Serienschaltung) aus einem bekannten und einem unbekannten ohmschen Widerstand R, R x auf, legen Sie Wechselspannung an die Schaltung an und bestimmen Sie den unbekannten Widerstand und seine Messunsicherheit mittels Spannungsmessungen mit dem Digitalmultimeter. b) Bauen Sie eine Spannungsteilerschaltung (Serienschaltung) aus einem bekannten ohmschen Widerstand R und einer unbekannten Kapazität X C auf, legen Sie Wechselspannung an die Schaltung an und bestimmen Sie die unbekannte Kapazität und ihre Messunsicherheit mittels Spannungsmessungen mit dem Digitalmultimeter. c) Stellen Sie den Zusammenhang zwischen der Gesamtspannung und den Teilspannungen dar und vergleichen Sie diesen für die ersten zwei Schaltungen. d) Stellen Sie die Gesamt-Impedanz Z Ges in der Gauß schen Zahlenebene dar. e) Bestimmen Sie den Scheinwiderstand Z Ges der Serienschaltung aus R und X C durch gleichzeitige Messung von Gesamtstrom und Gesamtspannung und überprüfen Sie Ihr Ergebnis durch Nachrechnen und grafisch durch nachmessen in der Gauß schen Zahlenebene. 2. Messungen mit dem Oszilloskop a) Bauen Sie aus einem bekannten Widerstand R 0 und einem unbekannten Widerstand R x eine Spannungsteilerschaltung (Serienschaltung) auf und messen Sie mit dem digitalen Speicher-Oszilloskop (DSO) gleichzeitig die Gesamtspannung und die Teilspannung an R 0. Bestimmen Sie den Wert von R x, sowie die Phasenverschiebung ϕ zwischen Strom und Spannung (falls vorhanden). Abschließend stellen Sie den funktionalen Zusammenhang zwischen den beiden Spannungen auf dem DSO dar (XY-Betrieb). b) Ersetzen Sie in der Schaltung R x durch einen Kondensator mit der Kapazität C und führen Sie die gleichen Messungen durch wie in der vorigen Aufgabe. Bestimmen Sie den Wechselstromwiderstand X C des Kondensators und daraus C, sowie ϕ. Überprüfen Sie ϕ mittels Rechnung nach Gl. 17. Sehen Sie sich die Spannungen wieder im XY-Betrieb an. c) Ersetzen Sie den Kondensator durch eine Spule und führen Sie wieder die gleichen Messungen und Auswertungen durch, inklusive XY-Betrieb. Als Ergebnis sind anzugeben: X L, L und ϕ. Überprüfen Sie ϕ mit Gl

16 1.3 Versuchsaufbau und Durchführung Messungen mit dem Multimeter Bauen Sie eine Spannungsteilerschaltung (Serienschaltung) aus einem bekannten und einem unbekannten ohmschen Widerstand auf und bestimmen Sie den unbekannten Widerstand und Messunsicherheit mit Hilfe von Spannungsmessungen mit dem Digitalmultimeter. Die Spannungsteilerschaltung wurde bereits für Gleichstrom durchgeführt (LS11). Der einzige Unterschied besteht in der verwendeten Spannung: Sie verwenden Wechselspannung mit einer Frequenz von 50 Hz, bereitgestellt durch einen Funktionsgenerator (siehe Abb. 8, Bedienungserklärung weiter unten im Text). Wählen Sie die größtmögliche Amplitude. Danach tauschen Sie einfach den unbekannten ohmschen Widerstand gegen eine unbekannte Kapzität. Der reelle Wechselstromwiderstand X C der Kapazität hat den Betrag 1. Kennt man den Spannungsabfall an der Kapazität, so lässt sich C aus X ωc C bestimmen. Nun können Sie die Gesamtimpedanz Z Ges der Serienschaltung in komplexer Schreibweise angeben und in der Gauß schen Zahlenebene abbilden. Stellen Sie den Zusammenhang zwischen den Teilspannungen bei den beiden untersuchten Spannungsteilern dar. Diskutieren Sie Unterschiede und Gemeinsamkeiten. Ermitteln Sie im nächsten Schritt die Gesamtimpedanz Z Ges der RC-Schaltung durch gleichzeitiges Messen von Strom und Spannung (Wählen Sie dabei selbst die Schaltungsart und den Einsatz der Messgeräte). Vergleichen Sie Ihr Ergebnis und dessen Unsicherheit mit einer Berechnung des Scheinwiderstandes aus der Gesamtimpedanz. Lassen Sie jede Schaltung vor Inbetriebnahme durch eine Betreuungsperson kontrollieren. Bedienung des Funktionsgenerators Abbildung 8: Funktionsgenerator der Firma HAMEG. Die Bedienungselemente mit den Nummern werden im Text beschrieben

17 Die für Sie wichtigen Bedienungselemente sind in Abbildung 8 mit einer Nummer versehen - außer dem Einschaltknopf (der rote Knopf in der Mitte). Mit dem Drehschalter 1 kann die Amplitude der Wechselspannung geändert werden. Sie wird auf dem Gerät nicht angezeigt, sondern muss durch Messung bestimmt werden (wie in Abbildung 8 gezeigt). Die Buchse 2 gibt die eingestellte Wechselspannung an die Schaltung ab. Zum Anschluss muss ein Koaxialkabel mit einem BNC-Stecker verwendet werden, das am anderen Ende zwei 4-mm-Stecker besitzt. Die Schalter 3 und 4 dienen zur Einstellung der Frequenz der Wechselspannung. 4 ist eine Grobverstellung, 3 eine Feinverstellung. Mit dem Schalter 5 wird die Form der Wechselspannung eingestellt. Es stehen Sinusspannung, Dreiecksspannung, Rechteckspannung und Impulsspannung zur Verfügung. Für die Messungen wählen Sie die Sinusspannung, durch mehrmaliges Drücken des Schalters (bis der Sinus aufleuchtet). Die anderen Schalter des Gerätes werden Sie nicht benötigen. Achten Sie darauf, dass keiner dieser Schalter gedrückt ist! Sie können dieses Experiment mit dem Applet LRC-Kreis auf der elearning-seite des Anfängerpraktikums exakt nachsimulieren Messungen mit dem Oszilloskop Bauen Sie eine Serienschaltung aus 2 ohmschen Widerständen auf. Achten Sie dabei darauf, dass die Außenleiter des Koaxialkabels auf Masse angeschlossen sind, das heißt auf gleichem Spannungspotential liegen. Mit Hilfe des DSO werden die Teilspannung am bekannten Widerstand R 0 und die Gesamtspannung aus einem ohmschen Spannungsteiler (ein bekannter, ein unbekannter Widerstand R x ) gleichzeitig dargestellt (siehe Abb. 9). Gemäß der Kirchhoff schen Regeln bestimmen Sie R x aus dem Verhältnis U 1 U 2 = R 0+R x R 0. Im Anschluss betrachten und protokollieren Sie U 2 (t) als Funktion von U 1 (t). Dazu muss das Oszilloskop in xy-betrieb geschaltet werden. Interpretieren Sie das Ergebnis

18 Abbildung 9: Messschaltung zum Ohm schen Spannungsteiler Statt des unbekannten ohmschen Widerstandes aus der vorigen Aufgabe, verwenden Sie im Anschluss eine Kapazität C bei einer Frequenz zwischen 150 und 300 Hz und danach eine Induktivität L bei einer Frequenz zwischen 35 und 50 khz (siehe Abb 10). Gehen Sie analog zur ersten Messaufgabe mit dem DSO vor und bestimmen Sie C bzw. L sowie die Phasenverschiebung ϕ und den funktionalen Zusammenhang zwischen der Teilspannung U 2 (t) am bekannten Widerstand R 0 und der Gesamtspannung U 1 (t). Interpretieren Sie das Ergebnis. Abbildung 10: Messschaltung zum Spannungsteiler mit unbekannter Impedanz

19 Bedienung des digitalen Speicher-Oszilloskops Die Bedienung des Oszilloskops wurde in LS12 erarbeitet. In diesem Anleitungstext finden Sie auch detaillierte Erklärungen zur Bedienung des Gerätes und zum Aufbau und zur Verwendung von Koaxial-Kabeln. 1.4 Hinweise zu Protokollierung und Fehlerrechnung Machen Sie sich zu jedem Experiment eine Schaltskizze und achten Sie auf eindeutige Variablenbenennung um Verwechslungen zu vermeiden. Für Messungen mit dem Oszilloskop gilt näherungsweise eine Messunsicherheit von 2% für direkt abgelesene Messwerte und 5% für daraus berechnete zusammengesetzte Messunsicherheiten

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Wechselstrom, Oszilloskop Version vom 18. September 2013

Wechselstrom, Oszilloskop Version vom 18. September 2013 Wechselstrom, Oszilloskop Version vom 18. September 2013 Inhaltsverzeichnis 1 Komplexe Widerstände 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe.................................

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1.

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1. Wechselstromkreise Christopher Bronner, Frank Essenberger Freie Universität Berlin 29. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 5 3 Messprotokoll 5 3.1 Geräte.................................

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

LS11. Grundlegen elektrischer Messtechnik 1 Gleichspannungsmessungen Version vom 8. März 2016

LS11. Grundlegen elektrischer Messtechnik 1 Gleichspannungsmessungen Version vom 8. März 2016 Grundlegen elektrischer Messtechnik 1 Gleichspannungsmessungen Version vom 8. März 2016 Inhaltsverzeichnis 2 1.1 Begriffe..................................... 2 1.2 Das Ohm sche Gesetz..............................

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

MP 2. Einführung in elektrische Messungen. Version vom 8. März 2016

MP 2. Einführung in elektrische Messungen. Version vom 8. März 2016 Einführung in elektrische Messungen Version vom 8. März 2016 Inhaltsverzeichnis 4 1.1 Ohm sches Gesetz und elektrische Leistung.................. 4 1.2 Die Kirchhoff schen Regeln...........................

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

Versuch V03: Passive Netzwerke

Versuch V03: Passive Netzwerke Versuch V3: Passive Netzwerke Henri Menke und Jan Trautwein Gruppe 1 11 Platz k (Betreuer: Torsten endler) (Datum: 4. November 13) Im Versuch soll in erster Linie der Frequenzgang eines Tiefpasses aufgenommen

Mehr

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand E9 Brückenschaltungen Die Verwendung von Brückenschaltungen ist von praktischer Bedeutung, da hierbei im Gegensat u anderen Messmethoden die Messgröße selbst durch die Messung unbeeinflusst bleibt. Mit

Mehr

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen nstitut für Elektrotechnik Übungen zu Elektrotechnik Version 3.0, 02/2002 2 Wechselstromkreise 2. Einführung komplexer eiger 2.. Komplexe Spannung, komplexer Strom ur Vereinfachung der mathematischen Behandlung

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Versuch E5 Frequenzverhalten von RC-Gliedern. I. Zielsetzung des Versuchs. Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL. a) allgemeine Vorkenntnisse

Versuch E5 Frequenzverhalten von RC-Gliedern. I. Zielsetzung des Versuchs. Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL. a) allgemeine Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL Versuch E5 Frequenzverhalten von RC-Gliedern I. Zielsetzung des Versuchs 6.06/9.08/9.09 Das RC-Glied, das Sie bereits in E4 kennengelernt haben, soll in diesem Versuch als

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

E6 WECHSELSPANNUNGSMESSUNGEN

E6 WECHSELSPANNUNGSMESSUNGEN E6 WECHSELSPANNNGSMESSNGEN PHYSIKALISCHE GRNDLAGEN Wichtige physikalische Grundbegriffe: elektrische Spannung, Gleichspannung, Wechselspannung, Frequenz, Amplitude, Phase, Effektivwert, Spitzenwert, Oszilloskop,

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik)

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lössungen Serie 3 Komplexe Zahlen in der Elektrotechnik) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

LS12. Grundlegen elektrischer Messtechnik 2 Wechselspannungsmessungen / Oszilloskop Version vom 4. Mai 2015

LS12. Grundlegen elektrischer Messtechnik 2 Wechselspannungsmessungen / Oszilloskop Version vom 4. Mai 2015 Grundlegen elektrischer Messtechnik 2 Wechselspannungsmessungen / Oszilloskop Version vom 4. Mai 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe.................................

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I. Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung Lehrplan Elektrotechnik Höhere Berufsfachschule für Automatisierungstechnik Ministerium für Bildung Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2010 Hinweis:

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Das Frequenzverhalten von RC-Gliedern (E17)

Das Frequenzverhalten von RC-Gliedern (E17) Das Frequenzverhalten von RC-Gliedern (E17) Ziel des Versuches Die Hintereinanderschaltung von ohmschem Widerstand und Kondensator wirkt als Filter für Signale unterschiedlicher Frequenz. In diesem Versuch

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators

Mehr

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren.

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren. E 3a Messungen mit dem Oszilloskop Toshiki Ishii (Matrikel 3266690) 29.04.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Bestimmung der Ablenkempfindlichkeiten s des Oszilloskops durch

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe:

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe: Abteilung Maschinenbau im WS / SS Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz Gruppe: Name Vorname Matr.-Nr. Semester Verfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r):

Mehr

E 1 - Grundversuche Elektrizitätslehre

E 1 - Grundversuche Elektrizitätslehre Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKIKUM FÜR ANFÄNGER Versuch: E 1 - Grundversuche Elektrizitätslehre Mit diesem Versuch sollen Sie in die Messung elektrischer Grundgrößen

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom 4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor Praktikumsaufgabe Pk 2: R, L, C bei Wechselstrom Versuchsziel:.- - Festigung und Vertiefung der Kenntnisse zum Wechselstromverhalten von R,L,C-Schaltungen - Erwerb von Fertigkeiten bei der meßtechnischen

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich.

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich. Theorie Das Oszilloskop: Das Oszilloskop ist ein Messgerät welches Spannungen als Funktion der Zeit erfasst und graphisch darstellen kann. Besonderer Vorteil ist das eine Spannung als Funktion einer zweiten

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände)

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände) Praktikum Technische Grundlagen ersuch 3 ers. 3: Elektrizität (Strom, Spannung, Leistung, Widerstände) orbereitung Literatur zu den Stichworten Ohmsches Gesetz, Strom, Spannung, Leistung, Widerstandsschaltungen,

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

M316 Spannung und Strom messen und interpretieren

M316 Spannung und Strom messen und interpretieren M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer

Mehr

Elektrotechnik 2. Semester

Elektrotechnik 2. Semester Elektrotechnik 2. Semester Wechselstrom- und Drehstromsysteme Wechselstromtechnik 1) Definition: Wechselstrom ist jene Stromart, bei der die Stromstärke sich periodisch nach Größe und Richtung ändert.

Mehr

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 18. Der Transformator. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 18 Der Transformator Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten

Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

7. Wechselspannung und Wechselstrom

7. Wechselspannung und Wechselstrom Bisher wurden nur Gleichspannungen und Gleichströme und die zugehörigen Ein- und Ausschaltvorgänge behandelt. In diesem Kapitel werden Spannungen und Ströme eingeführt, die ihre Richtung zyklisch ändern.

Mehr

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s. Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Das Oszilloskop als Messinstrument Versuch P1-32,33,34

Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Vorbereitung Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Iris Conradi Gruppe Mo-02 23. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 3 2 Messung im Zweikanalbetrieb

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr