Wie man Flügel endlicher Länge berechnet

Größe: px
Ab Seite anzeigen:

Download "Wie man Flügel endlicher Länge berechnet"

Transkript

1 3. Flügel endlicher Länge Reduzierte Frequenz: Beim Flügel endlicher Länge wird als Referenzlänge c ref zur Definition der reduzierten Frequenz in der Regel die Profiltiefe an der Flügelwurzel gewählt. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-1

2 3. Flügel endlicher Länge 3.1 Instationäres Wirbelgitterverfahren Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-2

3 3.1 Instationäres Wirbelgitterverfahren Methode: Wie im stationären Fall lässt sich die Methode der diskreten Wirbel zu einem Wirbelgitterverfahren für die Berechnung von Flügeln endlicher Länge erweitern. Zusätzlich zu den gebundenen Hufeisenwirbeln müssen im Nachlauf Hufeisenwirbel angeordnet werden. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-3

4 3.1 Instationäres Wirbelgitterverfahren n Wirbelreihe y A m C B ξ m x Hufeisenwirbel im Nachlauf Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-4

5 3.1 Instationäres Wirbelgitterverfahren Für die Stärke der Wirbel im Nachlauf gilt: M ^Γ Wmn = 2 i k ^Γ n e 2 i k ξ m/c ref Δ ξm /c ref, ^Γ n = m=1 ^Γ mn Der erste Index der Zirkulation läuft in x-richtung und der zweite in y-richtung. M ist die Anzahl der gebundenen Wirbel in einer Wirbelreihe. ξ m ist der Abstand des m-ten Hufeisenwirbels im Nachlauf von der Flügelhinterkante. Für den Druckbeiwert gilt: Δ ^c Pmn = 2 v ( 1 ^Γ x m+1 x mn + 2 i k m c ref m 1 ^Γ l=1 ln), 1 m M Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-5

6 3.1 Instationäres Wirbelgitterverfahren Beispiel: Drehschwingung eines Rechteckflügels Der Flügel führt eine Drehschwingung um die Viertelpunktlinie durch. Daten: Spannweite: 15 m Wirbel in x-richtung: 20 Wirbel in y-richtung: 45 Der Druckbeiwert in der Mitte des Flügels sollte gut mit dem des unendlichen Flügels übereinstimmen. Flügeltiefe: 1 m Reduzierte Frequenz: 0,6 Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-6

7 3.1 Instationäres Wirbelgitterverfahren Druckverteilung in der Mitte: Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-7

8 3.1 Instationäres Wirbelgitterverfahren Druckverteilung über den Flügel: Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-8

9 Beim instationären Wirbelgitterverfahren muss über den gesamten Nachlauf integriert werden. Dadurch kann die Berechnung recht aufwändig werden. Günstiger ist das Dipolgitterverfahren, das auf einer Integralgleichung für die Druckdifferenz beruht. Da die Druckdifferenz außerhalb der tragenden Fläche null ist, erstreckt sich die Integration nur über die tragende Fläche. Im Englischen wird diese Methode als Doublet-Lattice Method bezeichnet. Sie gilt als Standard-Methode der klassischen instationären Aeroelastik. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik 6.3-9

10 Die Doublet-Lattice Method wurde von Albano und Rodden (1969) für kompressible Strömungen entwickelt. Im Folgenden wird das Grundprinzip der Methode anhand einer inkompressiblen Strömung um eine tragende Fläche in der xy-ebene erläutert. Differenzialgleichung für den Druck: Aus der Kelvin-Gleichung folgt: p p ρ = Φ t (v2 v 2 ) Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

11 Für eine kleine Störung einer stationären Parallelströmung folgt daraus durch Linearisierung: p p ρ = ϕ t +v ϕ x Anwenden des Laplace-Operators auf beide Seiten der Gleichung ergibt 1 ρ 2 ( p p )= 2 ( ϕ t +v ϕ ) x = ( t +v ) x 2 ϕ=0 d. h. der Druck erfüllt die Potentialgleichung 2 ( p p )=0 Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

12 Lösung der Potentialgleichung: Die gesuchte Lösung muss auf der tragenden Fläche eine Unstetigkeit Δp = p u - p o haben. Die Ableitung in Richtung der Flächennormalen muss stetig sein. In der Potentialtheorie wird gezeigt, dass das Doppelschichtpotential p p ( x, y, z, t )= 1 4 π S Δ p ( x 1, y 1, t ) z 1 ( 1 r 1 ) dx 1 dy 1 mit r 1 = (x x 1 ) 2 +(y y 1 ) 2 +(z z 1 ) 2 diese Bedingungen erfüllt. Die Integration erstreckt sich über die tragende Fläche. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

13 Für eine harmonische Schwingung gilt: p p ( x, y, z, t )=R ( ^p ( x, y, z)e i ω t ) Δ p( x 1, y 1, t )=R (Δ ^p (x 1, y 1 )e i ω t ) ^p (x, y, z)= 1 4 π S Δ ^p ( x 1, y 1 ) z 1 ( 1 r 1 ) dx 1 dy 1 Integralgleichung für die Druckdifferenz: Die Randbedingung für eine harmonische Schwingung lautet: 1 ^ϕ v z =W z =2 i k Z v c + Z x Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

14 Aus der linearisierten Kelvin-Gleichung ^p=ρ ( i ω ^ϕ+v ^ϕ x ) =ρv ( 2 i k ^ϕ c + ^ϕ x ) folgt mit der Methode der Variation der Konstanten: ^ϕ( x, y, z)= x ^p (λ, y, z) ρv e 2 i k (λ x )/ c d λ Einsetzen der Lösung für die Druckamplitude ergibt ^ϕ( x, y, z)= 1 4 π x ( e2 i k (λ x)/c S Δ ^p( x 1, y 1 ) ρv ( z 1 1 r (λ) ) dx 1 dy 1) d λ mit r (λ)= (λ x 1 ) 2 +(y y 1 ) 2 +(z z 1 ) 2. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

15 Ableiten nach z und Berücksichtigung der Randbedingung führt nach einiger Rechnung auf die Integralgleichung mit dem Kern W z v = S Δ ^p( x 1, y 1 ) K ( x x 1, y y 1 )= e 2 i k ( x x 1)/ c ρv 2 K (x x 1,y y 1 )dx 1 dy 1 Die Lösung dieser Integralgleichung wird eindeutig festgelegt durch die zusätzliche Forderung, dass der Druck unterschied an der Hinterkante null sein muss (Kutta-Bedingung). x x 1 4 π e 2 i k ξ /c d ξ (ξ 2 +(y y 1 ) 2 ) 3/ 2 Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

16 Berechnungsverfahren: Die tragende Fläche wird wie beim Wirbelgitterverfahren in Trapeze zerlegt, deren parallele Kanten parallel zur x-achse sind. Entlang der Viertelpunktlinie eines jeden Trapezes wird eine konstante Dipolverteilung unbekannter Stärke aufgebracht. x Kontrollpunkt y Dipol Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

17 Die Dipolstärken werden so bestimmt, dass die Randbedingung in den Kontrollpunkten erfüllt ist, die sich in den Dreiviertelpunkten in der Mitte jedes Trapezes befinden. Numerische Experimente zeigen, dass auf diese Weise auch die Kutta-Bedingung erfüllt ist. Prof. Dr. Wandinger 6. Instationäre Aerodynamik Aeroelastik

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0 Wirbelvektor: Der Wirbelvektor ist definiert durch ω= v Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung ( w )=0 folgt: ω=0 Wirbellinien sind Kurven, deren Tangente

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophsik Tutorübungen zu Elektromagnetische Feldtheorie (Prof. Wachutka. Aufgabe: Lösung Wintersemester 208/209 Lösung Blatt 6 a Laut der Spiegelladungsmethode

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart

1. Wirbelströmungen 1.2 Gesetz von Biot-Savart 1. Wirbelströmungen 1.2 Gesetz von Biot-Savart Das Biot-Savart-Gesetz ist formuliert für unbeschränkte Gebiete. Wie können Ränder beschrieben werden (z.b. feste Wände)? Randbedingung für eine reibungsfreie

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum des Flugzeugs 4. Versuch: Induzierter Abind hinter einem Tragflügel D. Fleischer C. Breitsamter Flügel unendlicher Spanneite (D): Auftrieb und Zirkulation z + z Translationsströmung Wirbelströmung

Mehr

Klausur Aerodynamik

Klausur Aerodynamik Aerodynamisches Institut Rheinisch - Westfälische Technische Hochschule Aachen Institutsleiter: Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik 0.0.007 ------------------------------------ Unterschrift

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

Aufgabe 37: Helmholtz Spulenpaar

Aufgabe 37: Helmholtz Spulenpaar Theoretisch-Physikalisches nstitut Friedrich-Schiller Universität Jena Elektrodynamik Sommersemester 8 Hausübung 9 Aufgabe 37: Helmholt Spulenpaar Berechne das Magnetfeld auf der Symmetrieachse eines Helmholt

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

6.2 Instationäre Profiltheorie. Lösungen

6.2 Instationäre Profiltheorie. Lösungen Aeroelastik 6.2-1 Prof. Dr. Wandinger 6.2 Instationäre Profiltheorie Lösungen Aufgabe 1 a) Einfluss der Anzahl der gebundenen Wirbel GNU Octave-Skript: Übungsblatt 6.2, Aufgabe 1: Drehschwingung a) Fehler

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Aufgaben zur. Klausur Aerodynamik II

Aufgaben zur. Klausur Aerodynamik II AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Klausur Aerodynamik II 3.. 16 Matr.-Nr. :... Name :... Unterschrift :...

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

3 Aufgabe: Traglinientheorie (15 Punkte)

3 Aufgabe: Traglinientheorie (15 Punkte) 3 Aufgabe: Traglinientheorie (5 Punkte Die Zirkulationverteilung um eine Tragflügel endlicher Spannweite soll mit Hilfe eines Fourier-Ansatzes beschrieben werden: Γ(ϕ = bu A n sin(nϕ. Nennen und beschreiben

Mehr

Instationäre Aerodynamik II

Instationäre Aerodynamik II PD Dr.-Ing. Christian Breitsamter SS 2011 1 Flugenveloppe Begrenzung durch instationäre Phänomene Höhe Dynamische aeroelastische Phänomene Trägheitskräfte Überziehbereich Buffeting Erfliegbarer Bereich

Mehr

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik I M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik I 7. 02. 205 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

Instationäre Aerodynamik II

Instationäre Aerodynamik II Christian Breitsamter Mode 1 Mode 2 Mode 3 Mode 4 SS 2014 1 Flugenveloppe Begrenzung durch instationäre Phänomene Höhe Dynamische aeroelastische Phänomene Trägheitskräfte Überziehbereich Buffeting Erfliegbarer

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen:

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen: Satz von Fubini Ein Integral einer stetigen Funktion über einem Elementarbereich V : a j (x 1,..., x j 1 ) x j b j (x 1,..., x j 1 ) lässt sich durch Hintereinanderausführung eindimensionaler Integrationen

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential

Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und Stromfunktion kann man ein komplexes Potential Komplexe Darstellung zweidimensionaler Potentialströmungen: Mittels Potentialfunktion und tromfunktion kann man ein komplexes Potential definieren, wobei φ ( ) ( ) i ( ) F z =φ x,y +ψ x,y (2.8) z = x+

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr.

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr. 5. Ebene Probleme 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand 1.5-1 Definition: Bei einem ebenen Spannungszustand ist eine Hauptspannung null. Das Koordinatensystem kann so gewählt werden,

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 2: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 004 Zentrum Mathematik 3.5.004 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 4 Implizite Funktionen Die Funktion f : R R, fx, y := e sinxy

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Aerodynamik des Flugzeuges

Aerodynamik des Flugzeuges H. Schlichting, E. Truckenbrodt Aerodynamik des Flugzeuges Zweiter Band: Aerodynamik des Tragflügels (Teil II), des Rumpfes, der Flügel-Rumpf-Anordnung und der Leitwerke 3. Auflage Mit 381 Abbildungen

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

Musterlösung Klausur Aerodynamik

Musterlösung Klausur Aerodynamik Aerodynamisches Institut Rheinisch - Westfälische Technische Hochschule Aachen Institutsleiter: Univ.-Prof. Dr.-Ing. W. Schröder Musterlösung Klausur Aerodynamik.08.006 ------------------------------------

Mehr

Seminar Gewöhnliche Dierentialgleichungen

Seminar Gewöhnliche Dierentialgleichungen Seminar Gewöhnliche Dierentialgleichungen Dynamische Systeme II Valentin Jonas 8. 6. 215 1 Einleitung In dem letzten Kapitel "Dynamische Systeme I" ging es vor allem um in t glatte, autonome, dynamische

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre

... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 16. 3. 006 1. Aufgabe (6 Punkte) Eine starre, mit Luft im Umgebungszustand gefüllte Boje hat die Form eines Kegels (Höhe h 0, Radius

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen

reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck nun: reibungsbehaftete Strömungen reibungsbehaftete Strömungen bisher: reibungsfreie Fluide und Strömungen nur Normalkräfte Druck 000000000000000 111111111111111 000000000000000 111111111111111 u 000000000000000 111111111111111 000000000000000

Mehr

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E

Klausur Aerodynamik II M U S T E R L Ö S U N G E I N S IC H T N A H M E AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Klausur Aerodynamik II 13.. 18 M U S T E R L Ö S U N G E I N S IC H T N A H M E Hinweis:

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

Aufgaben zur. Klausur Aerodynamik I

Aufgaben zur. Klausur Aerodynamik I AERODYNAMISCHES INSTITUT der Rheinisch - Westfälischen Technischen Hochschule Aachen Univ.-Prof. Dr.-Ing. W. Schröder Aufgaben zur Klausur Aerodynamik I 3. 8. 16 Matr.-Nr. :... Name :... Unterschrift :...

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 08. 08. 2014 1. Aufgabe (11 Punkte) Ein Fluid strömt über eine beheizte Platte. Die Temperatur des Fluids weit entfernt von der Platte

Mehr

Das Deuteronen Potential

Das Deuteronen Potential Das Deuteronen Potential N. Dorfinger, S. Gerber, G. Heinrich, O. Huber, N. Stevanecz, J. Weingrill 29. Mai 2004 Gesucht ist die Lösung des folgenden Potentials: 1 Aufgabenstellung Abbildung 1: Das Potential

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

2. Methode der Randelemente

2. Methode der Randelemente 2. Methode der Randelemente Bei allgemeinen Schall abstrahlenden Flächen lässt sich der Schalldruck an einem beliebigen Punkt im Raum aus einem Integral über auf der Fläche definierte Funktionen berechnen.

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt

x 2 y + xp(x)y + q(x)y = 0, (1) wobei p(x) = Satz: Falls ρ 1, ρ 2 R, mit ρ 1 ρ 2 so gibt es für 0 < x < R ein Fundamentalsystem von (1) der Gestalt Kurze Zusammenfassung der Vorlesung 6 Am Anfang werden wir einbisschen mehr den Potenzreihenansatz besprechen. Abgewandelter Potenzreihenansatz In Verallgemeinerung der Eulerschen Differentialgleichung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Elastizität und Bruchmechanik J-Integral auf ein dreidimensionales Kontinuum

Elastizität und Bruchmechanik J-Integral auf ein dreidimensionales Kontinuum Elastizität und Bruchmechanik 008 - J-Integral auf ein dreidimensionales Kontinuum Gruppe C Christian Schmiedel (30009) Markus Vöse (301004) Piotr Zakaszewski (30104) Jens Wintering (305609) 18. Juli 008

Mehr

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben

Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

Forschungsberichte Strömungslehre und Aerodynamik. Band 9. C. Tropea, S. Eder, M. Weismüller. Aerodynamik I. 2. überarb. u. erw.

Forschungsberichte Strömungslehre und Aerodynamik. Band 9. C. Tropea, S. Eder, M. Weismüller. Aerodynamik I. 2. überarb. u. erw. Forschungsberichte Strömungslehre und Aerodynamik Band 9 C. Tropea, S. Eder, M. Weismüller Aerodynamik I 2. überarb. u. erw. Auflage. Shaker Verlag Aachen 2006 Bibliografische Information der Deutschen

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld . a) E = grad ϕ = e r ϕ/ r = ϕ e r/ e r b) ρ = div D = D ( y 2y2 y 2 y ) = 2D y 2 y 3 y 2 y 3 c) J = rot H = H e z ( / )) = d) F = q v B = q v B 5 (3, 4,) e) U = = rb Ed l = r a [ ] E y2 2 r (,,) E y=

Mehr

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y))

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y)) Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 30./3.08.008 Kurseinheit 6: Die Potentialgleichung Aufgabe : Wir untersuchen, für welche λ R die

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Strömungslehre, Gasdynamik

Strömungslehre, Gasdynamik Egon Krause Strömungslehre, Gasdynamik und Aerodynamisches Laboratorium Mit 656 Abbildungen, 42 Tabellen, 208 Aufgaben mit Lösungen sowie 11 ausführlichen Versuchen im Aerodynamischen Laboratorium Teubner

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti:

Klausur Strömungsmechanik II u x + v. y = 0. ρ u u x + v u ) ρ c p. x + v T ) v ; ρ = ρ ; x = x u ρ L ; ȳ = y L ; u ; v = λ λ Konti: ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 05. 08. 011 1. Aufgabe a Konti: Impuls: Energie: u x + v = 0 ρ u u x + v u ρ c p u T x + v T = η u = λ T dimensionslose Größen: ū = u u

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 011/1 Übungsblatt 6 (7.01.01) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr 1:15-13:45

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

Klausur Strömungsmechanik II

Klausur Strömungsmechanik II ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 16. 08. 018 1. Aufgabe (14 Punkte) Das Kräftegleichgewicht in einer ausgebildeten, laminaren Rohrströmung unter Gravitationseinfluss wird

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0

Klausur Strömungsmechanik II inkompressibel: ϱ = konst = 0. x + v ρ ( u. y inkompressibel, stationär: u. y = 0 ...... Name, Matr.-Nr, Unterschrift Klausur Strömungsmechanik II 07. 03. 2012 1. Aufgabe a Vereinfachungen: stationär: t 0, inkompressibel: ϱ konst 2-dimensionales Problem: w 0, z 0, Druck in x-richtung

Mehr

Der Dynamische Zustandsindex (DSI)

Der Dynamische Zustandsindex (DSI) Der Dynamische Zustandsindex (DSI) Interpretation und Anwendung auf der synoptischen Skala Diplomarbeit Diplomand: Torsten Weber Übersicht 1. Motivation 2. Theorie 3. Daten 4. Synoptische Anwendung 5.

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr