FLUORESZENZSPEKTROSKOPIE

Größe: px
Ab Seite anzeigen:

Download "FLUORESZENZSPEKTROSKOPIE"

Transkript

1 FLUORESZENZSPEKTROSKOPIE Literatur : Fluoreszenz Principles of Fluorescence Spectroscopy J.R. Lakowicz Kluwer Academic Press, 1999 Fluorescence Spectroscopy. New Methods and Applications O.S. Wolfbeis, Ed. 1993, Springer 57

2 Grundlagen Anregung Absorption Energieabgabe (Emission) Fluoreszenz 58

3 Jablonski Diagramm Energieterm-Schema A Anregung Lichtabsorption Energieniveauschema S 0 Grundzustand 2 e - mit entgegengesetztem Spin S 1 T 1 Singulett-Zustand angeregter Zustand mit entgegengesetztem Spin Triplett-Zustand angeregter Zustand mit paralleler Spin-Orientierung 59

4 Relaxationsprozesse IC IC internal conversion Energieabgabe durch Zusammenstoß mit Lösungsmittelmolekülen Stoßzahl mit H 2 O τ ~ s Schwingungsenergie an die Umgebung F Q Fluoreszenz Quencher auch zu höheren Wellenlängen - Rotshift τ ~ 10-8 s Energieübertragung auf Nachbarmoleküle ohne Aussendung von Licht X* + Q [XQ]* X* angeregter Fluorophor [XQ]* X + Q + hv 3 X=Q [XQ] Excimer [XQ]* X + Q + Wärme X#Q [XQ] Exciplex 60

5 Relaxationsprozesse ISC Chem ISC Interkombinationsübergang Intersystem Crossing durch Spinumkehr strahlungsloser Übrgang in Triplett-Zustand von dort langsamer Übergang in S 0 Phosphoreszenz P ( rotverschoben ) Chemische Reaktion z.b. Photosynthese oder Rhodopsin (Sehprozess - Isomerisierung von Retinal) 61

6 Messmethoden in der Fluoreszenzspektroskopie Fluoreszenzspektren Stoßprozesse Quenchen oder Excimerbildung Energietransfer Lösungsmittelrelaxation Chromophorrotation Statische Fluoreszenz Dynamische Fluoreszenz 62

7 Fluoreszenzparameter Emissionswellenlänge : λ em Fluoreszenzintensität : I Lebensdauer : τ [ns] Fluoreszenzanisotropie : r Quantenausbeute Q 63

8 Steady-State Messungen M1 Anregungsmonochromator M2 Emissionsmonochromator Emissionsspektren fix scanbar M1 M2 scanbar / variabel fix / konstant Anregungsspektren 64

9 Fluoreszierende Biomoleküle Aromatische Aminosäuren Phe, Tyr, Trp Proteine ( Absorption 280 nm, Emission nm) Pyridinnukleotide Flavine Vitamin A (Carotinoide) Porphyrine Chlorophyll Steroide (einige) Intrinsische Fluorophore NICHT - FLUORESZIERENDE BIOMOLEKÜLE Lipide, Phospholipide, Kohlenhydrate, Fettsäuren, Carbonsäuren, Nukleinsäuren, nicht aromatische Aminosäuren 65

10 Künstliche Fluorophore Extrinsische Fluoreszenzsonden 66

11 67

12 68

13 Fluoreszenzmarker Labelling Proteinlabelling Kovalent gebunden an SH- Gruppe (Thiolgruppe) von Cysteinen Kovalent gebunden an Amidgruppe von Lysinen Geringe Konzentrationen : 10-8 M sehr empfindliche Methode 69

14 Fluoreszenzmarker Membran DPH bis-pyrene PC C12-fluorescein 70

15 Fluoreszenzspektren Stokes Shift λ E ABS > E FLU λ ABS < λ FLU Stokes-Shift Rotverschiebung des Fluoreszenzlichtes 71

16 Tryptophan-Fluoreszenz λ Emission unpolares Lösungsmittel Wasser ~325 nm ~350 nm Rot-Verschiebung im polaren Lösungsmittel Peptid + Lipid λ 340 nm Trp-Rest in Peptid λ 350 nm in unpolarerer Lipidumgebung Blau-Shift 72

17 Dynamische Fluoreszenzmessungen "Lifetime" Zeitaufgelöste Fluoreszenzspektroskopie schnelle Reaktionen und dynamische Bewegungen µs-ps Bereich. I = I 0 e -t/τ Pulsmethode single photon counting, gepulste Lichtquelle, I o Synchrotron Strahlungsquelle I o /e τ 73

18 Heterogene Fluoreszenz - Bestimmung von Proteindomänen Trp-Fluoreszenz (ersichtlich in welcher Umgebung) Trp im Inneren (unpolar) - eher im blauen Bereich τ 1 Trp außen (polar) - eher im roten Bereich τ 2 I Steady State Spektrum τ 1 τ 2 λ [nm] Trp Lebensdauer im Bereich von 3-6 ns 74

19 Fluoreszenzlöschung "Quenching" Löschermoleküle Quencher in der Lösung diffundierende Fremdmoleküle O 2, I -, NO, BrO 4-, Schweratome, Olefine, halogenierte Kohlenwasserstoffe, Acrylamid hν F F* +Q +Q Dynamisches Quenchen [FQ] hν [FQ]* FQ + Wärme F + Q + Wärme Statisches Quenchen 75

20 Statisches Quenching : F + Q [FQ] im Grundzustand [FQ] hν [FQ]* fluoresziert nicht Intensität beeinflußt (da Konz. von F kleiner) FQ + Wärme Dynamisches Quenching : Löschung durch Stoß Kollisionslöschen F* + Q [FQ]* Wechselwirkung von Q mit angeregtem Fluorophor F + Q + Wärme Intensität und Lebensdauer beinflußt 76

21 Stern-Volmer Kinetik : τ 0 / τ = 1 + k Q τ 0 c Q τ 0 τ = Lebensdauer des angeregten Zustand ohne Quencher = Lebensdauer des angeregten Zustand mit Quencher k Q = Quenchkonstante c Q = Quencherkonzentration Löschung der Trp-Fluoreszenz: z.b. mit O 2 oder I -, Acrylamid Trp exponiert zugänglich für O 2 und I - Trp im Protein verborgen nur mehr für O 2 zugänglich Fluktuationen und Flexibilität von Protein Selbstquenchen : z.b. Calcein oder Carboxyfluorescin 77

22 Fluoreszenzanisotropie Fluoreszenzdepolarisation Absorption I II - I P = III + I linear polar. Licht Polarisation I II Polarisator I I II - I A = III + 2 I I F,ges = I II + 2 I Anisotropie Bestimmung der Rotationsbewegung von Chromophoren, Orientierung und Viskosität 78

23 Fluoreszenzdepolarisation Isotroper Rotator in Lösung τ F = Lebenszeit Fluorophor Perrin Gleichung : A(t) = A 0. e -t/τ rot = A 0. e -6D rot. t D rot = Rotationsdiffusionskoeffizient τ rot = 1/ 6 D rot Rotationskorrelationszeit Stoke sche Gesetz : D rot = RT/ η. V ~ r s 3 r s = Stoke scher Radius t = 0 A = A 0 t A 0 durch Rotation isotrop verteilt 79

24 Gehinderter Rotator in Lösung in Membranen - Rotationsbewegung in einem Kegel τ rot = A 0 - A / 6D w. A 0 D w = "wobbling" Diffusionskoeffizient A = statischer od struktureller Anisotropiebeitrag (Grenzanisotropie) A / A 0 Maß für die Orientierungsordnung des Fluorophors S = ( A / A 0 ) 1/2 Ordnungsparameter 0 < S < 1 Nanosekunden-Fluoreszenzpolarisation Laserpuls ( kleiner 10-9 s) Fluoreszenzanisotropie als Funktion der Zeit messen A(t). Dynamische Messung der Anisotropie 80

25 Fluoreszenzanisotropie kleine Anisotropie hohe Anisotropie A = 0.4 A = 1 max. Anisotropie Maß für die Beweglichkeit schnelle Bewegung langsame Bewegung zufallsorientierte Probe orientierte Probe, feste Phase Photoselektion : Bevorzung der Absorption in bestimmten Orientierungen Bestimmung der Fluidität und Viskosität von Membranen Protein schnelle Bewegung in Lösung geringe Anisotropie Protein aggregiert hohe Anisotropie Bindung von Protein an Membran hohe Anisotropie 81

26 Resonanzenergietransfer hν ENERGIEDONOR hν ENERGIEAKZEPTOR hν Anregung Energietransfer Fluoreszenz Donor - Akzeptor Å Distanz abhängig Intensität des Fluoreszenzsignals nimmt mit r 6 ab. Emissionsband vom Donor überlappt Anregungsband vom Akzeptor teilweise Dipolorientierung von Donor und Akzeptor ungefähr parallel Förster Energietransfer Fluoreszenz-Donor-Akzeptor fluorescence resonance energy transfer (FRET) 82

27 Fluoreszenzlicht rotverschoben α Naphtyl Dansyl Poly-L-Prolinkette n bestimmt den Abstand % Energietransfer = f(r 6 ) 83

28 E trans = 100% r E trans = 0% Anwendung : Lokalisation und Abstandsbestimmung von Bindungsstellen an Proteinen Nachweis lateraler Assoziationen von Membrankomponenten Beweglichkeit von Makromolekülen in Lösung Membranfusion 84

29 Excimerfluoreszenz Fluoreszenzverschiebung k E Pyren* + Pyren [ Pyren ] 2 * angeregt nicht angeregt Dimer = Excimer ("excited dimer") Reaktionen: Fluoreszenz [ Pyren ] 2 * k E 2Pyren + Strahlung Strahlungsloser Übergang [ Pyren ] 2 * 2Pyren + Wärme Dissoziation [ Pyren ] 2 * Pyren* + Pyren 85

30 Stern-Volmer Gleichung Q F,M max Q F,M = 1 + k E τ 0 c M Q F,M max maximale Fluoreszenzquantenausbeute des Monomers τ 0 k E c M Lebensdauer des angeregten Monomers Löschkonstante durch Excimerbildung Konzentration von Monomeren Anwendungen : Dynamik Laterale Diffusionskoeffizienten D Flip-Flop Mechanismen in Membranen 86

31 Fluoreszenz Photobleichverfahren Fluorescence revovery after photobleaching FRAP Spot oder Bereich im Layer beleuchten (Lichtpuls) Bleichen von Fluorophor Fluoreszenzintensität sinkt Diffusion von ungebleichten Fluorophoren Fluoreszentintensität steigt Bestimmung der lateralen Diffusion 87

32 Fluoreszenzmikroskopie Zellen, Proteine, Antikörper,DNA Molecular Probes Inc. 88

33 Schema: blau angeregt grün emittiert Fluoreszenz Images : grüne Fluoreszenz angeregt bei 488nm rote Fluoreszenz angeregt bei 586nm Lampen : Xenon, Xenon/Hg Laser : Ar, Kr, He-Ne... 89

34 Fluoreszenzmikroskop 90

35 Konvokale Laserscanning Mikroskopie 91

36 "Z-Serie" Vergleich: Für Präparate bis 50µm, 0.5-1µm dünne Schichten darstellbar 92

37 93

38 94

39 95

40 Dynamik in lebenden Zellen 96

41 97

42 Fluoreszenz-Korrelations Spektrosopie (FCS) Einzelmoleküle beobachten! Diffusionsvorgänge und molekulare Wechselwirkungen Interaktion mit Zellen 98

43 99

44 Diffusionskonstanten : proportional dem hydrodynamischen Radius und dem Molekulargewicht eines Moleküls 100

45 101

46 102

47 103

48 Fluoreszenz " Dyes" Proteinbindungsstelle (an SH oder NH 2 ) chemisch reaktive Gruppe Lokalisation von Proteinen Auflösung ~ 0.2 µm (200nm) 104

49 Green Fluorescent Protein (GFP) GFP absorbiert im UV (blau) und fluoresziert gelb-grün in der Zelle GFP in tobacco cells 105

50 Fluoreszenzfarbstoffe für Proteine Fluoreszenz Label Excitation Emission FITC PE APC PerCP Cascade Blue Coumerin-phalloidin Texas Red Tetramethylrhodamine-amines CY3 (indotrimethinecyanines) CY5 (indopentamethinecyanines)

51 Fluoreszenzfarbstoffe für Membranen oder Zellen Probe Site Excitation Emission BODIPY Golgi NBD Golgi DPH Lipid TMA-DPH Lipid Rhodamine 123 Mitochondria DiO Lipid dii-cn-(5) Lipid dio-cn-(3) Lipid BODIPY - borate-dipyrromethene complexes DPH diphenylhexatriene NBD - nitrobenzoxadiazole TMA - trimethylammonium 107

52 Zell-Fusion fluoreszenzmarkierte Antikörper an Membranproteine Fluorescein grün Rhodamin rot 108

53 Immunofluoreszenz Enzyme- linked immunosorbent assay (ELISA) Bestimmung von Proteinen (SDS-Elektrophorese) von Gel auf Polymerschicht übertragen (Blotting) Antikörper-Antigen Komplex 109

54 Auflösungsvermögen von Mikroskopen Menschliches Auge 10 mm Organismen 1 mm 100 µm Eukaryontische Zellen Lichtmikroskopie 0.2 µm 10 µm 1µm Bakterien Zellorganellen Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 100 nm 10 nm 1 nm 0.1 nm Viren Makromoleküle Organische Moleküle Atome 110

55 Rasterelektronenmikroskopie (REM) scanning electron microscopy (SEM) Vakuum Anode Magnetische Linsen Ablenkspulen (x, y) Objektiv* Kathode Wehnelt-Zylinder Kondensor* Bildschirm Probe Detektoren für: Sekundärelektronen (SE) Rückstreuelektronen (RE) Oberfläche mit Elektronenstrahl abrastern Ausbeute der Sekundärelektronen in Abhängigkeit zur Neigungsfläche der abgebildeten Probe 111

56 Rasterelektronenmikroskopie (REM) Relativ dicke Proben : Biologische Probe mit Metall bedampfen (haltbar und leitend machen) Plastische, dreidimensionale Darstellung von Oberflächen. Auflösung ca. 3 nm. Haar Fliegenauge 112

57 Rastersondenmikroskopien : Allgemein Bild nicht optisch oder elektronisch abgebildet - sondern Bild wird durch eine Sonde erzeugt Probenoberfläche wird mit der Sonde abgerastert Wechselwirkung zwischen Sonde und Probe wird detektiert und das Bild rekonstruiert. Wechselwirkung entspricht einer Kraft : elektrisch, mechanisch, magnetisch oder mit einer Lichtwelle Rastertunnelmikroskopie (RTM), scanning tunneling microscopy (STM) Rasterkraftmikroskopie (RKM), atomic force microscopy (AFM) Magnetkraftmikroskopie (MKM), magnetic force microscopy (MFM) Optische Rasterfeldmikroskopie, scannning near-field electron microscopy (SNOM) 113

58 Rastertunnel-Mikroskopie (RTM) scanning tunneling microscopy (STM) Abbildung der Oberfläche der Probe (nur für elektrisch leitende Oberflächen) Tunneleffekt Quantenmechanischer Effekt Elektronen haben Welleneigenschaften und können sich mit einer gewissen Wahrscheinlichkeit durch eine Potentialbarriere durchtunneln. < 1 V Leitende Oberflächen : Abstand zwischen Probe und Sonde verringern (1 nm) - Tunnelstrom kann fließen abhängig vom Abstand Probe-Spitze 114

59 Entwicklung des Rastertunnelmikroskops Ende 1981 zu sehen. Damit gelang es erstmals Atome abzubilden. Gerd Binning und Heinrich Rohrer vom IBM-Forschungslabor in Rüschlikon wurden dafür 1986 mit dem Nobelpreis für Physik ausgezeichnet. Gerd Binning Heinrich Rohrer Eisen auf Kupfer - Corral 115

60 Rastertunnel-Mikroskop 116

61 Rasterkraft-Mikroskopie (RKM) atomic force microscopy (AFM) Detektor Laser Hebelarm und atomare Spitze Probe auf Piezo-Steuerquarz (x, y, z) 117

62 AFM Cantilever Spitze Tip < 20 nm, Silizium Feder mit geringer Federkonstante : ~0.1N/m Signal ist die Auslenkung der Feder Probe muss nicht elektrisch leitend sein! 118

63 AFM : Methode 119

64 Der Laserstrahl wird auf die Rückseite des Cantilevers fokussiert und der reflektierte Strahl mit einem Photodetektor erfasst. Jeder Verbiegung des Cantilvevers wird am Bildschirm ein Helligkeitswert zugeordnet. Ein Höhenprofil - Topographiebild - wird erstellt. Gescannt wird mit konstanter Geschwindigkeit in der x,y Ebene. 120

65 AFM - Modus Kontaktmodus : Abrastern der Oberfläche Nicht-Kontaktmodus : Spitze im Abstand von 2-20 nm von der Probe Van der Waals Wechselwirkung Tapping Mode (MAC) Verformung der Probe durch permanente Krafteinwirkung möglich Oszillierendes Magnetfeld bewirkt Bewegung des magnetisierten Cantilever Oszillationsfrequenz : khz Durch van der Waals-Wechselwirkungskräfte mit der Probe kommt es zu einer Änderung der Oszillationsfrequenz und Amplitude. 121

66 AFM Oberflächen Graphit Mica Al-Silizium Mineral planare Oberflächen hydrophil neg. geladen in H 2 O Mica-Oberfläche 1µm 2. Rauhigkeit weniger 6Å 122

67 AFM Aufnahmen Proteinmoleküle auf Mica 123

68 AFM Bindung von Proteinen an Membranen Protein Lipid bilayer aminopropyltriethoxy silane Mica 124

69 AFM Aufnahmen 125

70 Moleküle bewegen - mit AFM Cantilever schreiben 126

71 Rastersondenmikroskope im Vergleich 127

72 Rastersondenmikroskope im Vergleich 128

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

FLUORESZENZSPEKTROSKOPIE

FLUORESZENZSPEKTROSKOPIE FLUORESZENZSPEKTROSKOPIE Literatur : Fluoreszenz Principles of Fluorescence Spectroscopy J.R. Lakowicz Kluwer Academic Press, 1999 Fluorescence Spectroscopy. New Methods and Applications O.S. Wolfbeis,

Mehr

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM)

RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) RASTER-KRAFT-MIKROSKOPIE (ATOMIC FORCE MICROSCOPY AFM) Inhaltsverzeichnis 1. Motivation 2. Entwickler des AFM 3. Aufbau des AFM 3.1 Spitze und Cantilever 3.2 Mechanische Rasterung 3.3 Optische Detektion

Mehr

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert 6.2.2 Streulicht- Nahfeldmikroskop Beleuchtung einer sub-wellenlängen grossen streuenden Struktur (Spitze) Streulicht hat Nahfeld-Komponenten Detektion im Fernfeld Vorteile: Ausdehnung des Nahfeldes nur

Mehr

Rastertunnelmikroskopie

Rastertunnelmikroskopie Rastertunnelmikroskopie Michael Goerz FU Berlin Fortgeschrittenenpraktikum A WiSe 2006/2007 20. November 2006 Gliederung 1 Einführung Historischer Überblick Konzept, Zielsetzung und Anwendung 2 Aufbau

Mehr

Fluoreszenz-Korrelations- Spektroskopie (FCS) Seminarvortrag Julia Jäger 17.01.2008

Fluoreszenz-Korrelations- Spektroskopie (FCS) Seminarvortrag Julia Jäger 17.01.2008 Fluoreszenz-Korrelations- Spektroskopie (FCS) Seminarvortrag Julia Jäger 17.01.2008 Gliederung Grundlagen der FCS Grundlagen der Fluoreszenz FCS Versuchsaufbau und Durchführung Auswertung FCCS Anwendungsbeispiele

Mehr

Biologie für Mediziner

Biologie für Mediziner Biologie für Mediziner Cytologische Technik Dipl.-Phys. Sebastian Tacke Institut für Medizinische Physik und Biophysik Arbeitsgruppe Prof. Dr. Reichelt Sommersemester 2010 Inhaltsangabe 1 Allgemeine Grundlagen

Mehr

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren

Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Verfahren der Mikrosystemtechnik zur Herstellung/Charakterisierung von Chemo- und Biosensoren Teil 8: Analysemethoden zur Charakterisierung der Mikrosysteme II Dr. rer. nat. Maryam Weil Fachhochschule

Mehr

Rastersonden-Mikroskopie (SPM)

Rastersonden-Mikroskopie (SPM) Rastersonden-Mikroskopie (SPM) Der Rastersonden-Mikroskopie (SPM) liegt eine geregelte rasternde Bewegung einer spitz zulaufenden Messsonde in unmittelbarer Nähe zur Probenoberfläche zugrunde. Die erhaltenen

Mehr

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristtiner Festkörper Steinkopf

Mehr

Scienion AG / Humboldt-Universität Berlin. weigel@chemie.hu-berlin.de, phone: 2093 5583. weigel@scienion.de, phone: 6392 1743

Scienion AG / Humboldt-Universität Berlin. weigel@chemie.hu-berlin.de, phone: 2093 5583. weigel@scienion.de, phone: 6392 1743 Wahlpflichtfach Vertiefung Physikalische Chemie Masterstudiengang Modul M11.4 Moderne Methoden der Spektroskopie Dr. Wilfried Weigel Scienion AG / Humboldt-Universität Berlin Dr. Wilfried Weigel Scienion

Mehr

5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie

5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie Dünnschichtanalytik Teil 2 5.3 Weitere Wechselwirkung mit Photonen: Spektroskopie [Schmidl] 1 5.3.1 Wechselwirkungen mit Photonen A - Elastische Wechselwirkung: - sekundäre Strahlung - Beugungsexperimente

Mehr

Grün fluoreszierendes Protein (GFP) Entwicklungen bei den Fluoreszenzmarkern

Grün fluoreszierendes Protein (GFP) Entwicklungen bei den Fluoreszenzmarkern Grün fluoreszierendes Protein (GFP) Entwicklungen bei den Fluoreszenzmarkern Tilman Kottke Physikalische und Biophysikalische Chemie Universität Bielefeld Folien im Internet auf der Homepage der Physikalischen

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristalliner Festkörper Steinkopf

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

Detaillierte Information mit Abbildungen. Auflösung jenseits der Beugungsgrenze

Detaillierte Information mit Abbildungen. Auflösung jenseits der Beugungsgrenze Detaillierte Information mit Abbildungen Auflösung jenseits der Beugungsgrenze Die Fluoreszenzmikroskopie spielt in den Lebenswissenschaften eine herausragende Rolle. Die Gründe dafür sind vielfach. Die

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung

Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung Versuchsprotokoll Optische Spektroskopie Teil 2 Fluoreszenz und Excimerenbildung Physikalisch-chemisches Fortgeschrittenenpraktikum WS 07/08 Johanna Seemann und Veronika Beer Gruppe B10 29. Januar 2008

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz.

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) http://www.analytik.ethz. Spektroskopie im IR- und UV/VIS-Bereich Optische Rotationsdispersion (ORD) und Circulardichroismus (CD) Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Enantiomere sind Stereoisomere,

Mehr

Rasterkraftmikroskopie

Rasterkraftmikroskopie Eine kleine Einführung in die Rasterkraftmikroskopie Ein Vortrag von Daniel C. Manocchio Ridnaun, Jan. 2001 Inhalt: Geschichte der Rastersondenmikroskopie Generelles Funktionsprinzip Topographie-Modi in

Mehr

Mikroskopie in der Biochemie

Mikroskopie in der Biochemie Mikroskopie in der Biochemie Dr.H.Schlichting hschlichting@viametrixx.de Konventionelles Lichtmikroskop Antonie van Leuuwenhoeck, 1660 275 fach, 1,3 um Konventionelles Lichtmikroskop Verbessertes Design,

Mehr

Atomic Force Microscopy

Atomic Force Microscopy 1 Gruppe Nummer 103 29.4.2009 Peter Jaschke Gerd Meisl Atomic Force Microscopy Inhaltsverzeichnis 1. Einleitung... 2 2. Theorie... 2 3. Ergebnisse und Fazit... 4 2 1. Einleitung Die Atomic Force Microscopy

Mehr

Transmissionselektronen mikroskopie (TEM)

Transmissionselektronen mikroskopie (TEM) Transmissionselektronen mikroskopie (TEM) im speziellen STEM Inhalt 1. Einleitung 2. Das Messprinzip 3. Der Aufbau 3.1 Unterschiede beim STEM 3.2 Bildgebung 3.3 Detektoren 3.4 Kontrast 3.5 Materialkontrast

Mehr

Rasterkraftmikroskopie

Rasterkraftmikroskopie Rasterkraftmikroskopie Rasterkraft- und Rastersondenmikroskopie als Werkzeug für nanostrukturierte Festkörper Manfred Smolik, Inst.f. Materialphysik, Univ. Wien Überblick Historischer Abriß Rastersondenmikroskopie

Mehr

Spektroskopische Methoden

Spektroskopische Methoden Spektroskopische Methoden OCIfolie367 MS - Massenspektroskopie (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption =

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie. Quantenphysik

Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie. Quantenphysik Brücke zwischen der modernen physikalischen Forschung und dem Unternehmertum im Bereich Nanotechnologie Quantenphysik Die Physik der sehr kleinen Teilchen mit grossartigen Anwendungsmöglichkeiten Teil

Mehr

Übungsaufgaben zur Optischen Spektroskopie. 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an!

Übungsaufgaben zur Optischen Spektroskopie. 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an! Übungsaufgaben zur Optischen Spektroskopie 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an! 2) Welche grundlegenden Arten der Wechselwirkung von Licht mit Materie

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

Anleitung zum Praktikum für Fortgeschrittene. Versuch: Scanning Tunneling Microscopy. Betreuer: B.Sc. Lienhard Wegewitz

Anleitung zum Praktikum für Fortgeschrittene. Versuch: Scanning Tunneling Microscopy. Betreuer: B.Sc. Lienhard Wegewitz Anleitung zum Praktikum für Fortgeschrittene Versuch: Scanning Tunneling Microscopy Betreuer: B.Sc. Lienhard Wegewitz Institut für Physik und Physikalische Technologien Technische Universität Clausthal

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

2 Grundlagen der Rasterkraftmikroskopie

2 Grundlagen der Rasterkraftmikroskopie 7 1 Einleitung Mit der Entwicklung des Rastertunnelmikroskops im Jahr 1982 durch Binnig und Rohrer [1], die 1986 mit dem Physik-Nobelpreis ausgezeichnet wurde, wurde eine neue Klasse von Mikroskopen zur

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind.

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind. Laser: light amplification by stimulated emission of radiation W ind.absorption = n 1 ρ B Laserbox 8πhν = B c A W ind.emission = n ρ B Besetzungs-Inversion notwendig Zwei-Niveau-System 1,0 Besetzung des

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Versuchsprotokoll - Michelson Interferometer

Versuchsprotokoll - Michelson Interferometer Versuchsprotokoll im Fach Physik LK Radkovsky August 2008 Versuchsprotokoll - Michelson Interferometer Sebastian Schutzbach Jörg Gruber Felix Cromm - 1/6 - Einleitung: Nachdem wir das Interferenzphänomen

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Praktikumsversuch Rastertunnelmikroskopie. Institut für Festkörperphysik Abteilung ATMOS

Praktikumsversuch Rastertunnelmikroskopie. Institut für Festkörperphysik Abteilung ATMOS Praktikumsversuch Rastertunnelmikroskopie Institut für Festkörperphysik Abteilung ATMOS Ansprechpartner E-Mail-Adresse: Christian Brand brand@fkp.uni-hannover.de Inhaltsverzeichnis 1 Theorie 1 1.1 Tunnelefekt..............................

Mehr

Fluorescence-Correlation-Spectroscopy (FCS)

Fluorescence-Correlation-Spectroscopy (FCS) Fluorescence-Correlation-Spectroscopy () 05.03.2012 Überblick 1 2 3 4 5 Fluoreszenz-Korrelations-Spektroskopie: Entwicklung in den 70er Jahren sehr empfindliche Methode ( sehr geringer Konzentrationen)

Mehr

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE

Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Der Freie-Elektronen-Laser an der Strahlungsquelle ELBE Dr. Martin Sczepan Forschungszentrum Rossendorf Inhalt Laser für das Infrarot Was macht den Bereich des IR interessant? Der Infrarot-FEL im Vergleich

Mehr

IMW - Institutsmitteilung Nr. 37 (2012) 79

IMW - Institutsmitteilung Nr. 37 (2012) 79 IMW - Institutsmitteilung Nr. 37 (2012) 79 Thermografie, IR-Kamera macht Wärmestrahlung bei Versuchen am Institut darstellbar Siemann, E.; Maatz, M Seit November 2012 kann zur Prüfstandsund Versuchsüberwachung

Mehr

2 Grundlagen der Photochemie

2 Grundlagen der Photochemie folie191 2 Grundlagen der Photochemie 2.1 UV-Vis-Absorptionsspektren in organischen Verbindungen; Jablonski-Diagramm, Franck-Condon-Prinzip, Emissionsspektren (Fluoreszens, Phosphoreszens, Stokes-Verschiebung)

Mehr

Laserzündung von Verbrennungsmotoren

Laserzündung von Verbrennungsmotoren Laserzündung von Verbrennungsmotoren Was geschah bisher? -Idee der Laserzündung -Mechanismus und Vorteile der Laserzündung -Plasmabildung und Einflussgrößen (Exkurs: Laserstrahlung) Wir unterscheiden grob:

Mehr

Versuch Fluoreszenz-Quenching

Versuch Fluoreszenz-Quenching Versuch Fluoreszenz-Quenching Zielstellung: 1.) Aufnahme des UV-Vis-Spektrums eines Fluoreszenzfarbstoffes 2.) Aufnahme der Kennlinie des verwendeten Photon-Counting-Moduls (PCM) im Bereich von 1,9 2,9

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut

Seminar zum Praktikumsversuch: Optische Spektroskopie. Tilman Zscheckel Otto-Schott-Institut Seminar zum Praktikumsversuch: Optische Spektroskopie Tilman Zscheckel Otto-Schott-Institut Optische Spektroskopie Definition: - qualitative oder quantitative Analyse, die auf der Wechselwirkung von Licht

Mehr

Sonderforschungsbereich 379

Sonderforschungsbereich 379 Sonderforschungsbereich 379 Mikromechanische Sensor- und Aktorarrays Elektrische Kraftmikroskopie Verfahren und Implementierung mit MEMS Prof. Dr. Michael Hietschold T Chemnitz, Institut für f r Physik

Mehr

Allg. u. Anorg. Chemie

Allg. u. Anorg. Chemie Allg. u. Anorg. Chemie Übungsaufgaben Atommodell SoSe 2014, Amadeu Daten: h=6,6 10-34 J.s, C=3 10 8 m/s. 1) Stellen Sie das klassische Modell für die elektromagnetische Strahlen graphisch dar. Erklären

Mehr

Vortrag 2: Kohärenz VON JANIK UND JONAS

Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz VON JANIK UND JONAS Vortrag 2: Kohärenz Inhalt: Kohärenz im Allgemeinen Kohärenzlänge Kohärenzbedingungen Zeitliche Kohärenz Räumliche Kohärenz MICHELSON Interferometer zum Nachweis

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Das Rastertunnelmikroskop

Das Rastertunnelmikroskop Das Rastertunnelmikroskop Die Nanostrukturforschung ist die Schlüsseltechnologie des 21. Jahrhunderts. Das Gebiet der Nanowissenschaften beinhaltet interessante Forschungsgebiete, die einen Teil ihrer

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1 Prinzip 9.1 Übersicht Prof. Dr. H. Baumgärtner C9-1 Um eine Probe analysieren zu können muss sie mit Licht oder Teilchen bestrahlt werden. Die Reaktion der Probe auf diese Anregung führt zur Abstrahlung

Mehr

Aufgabe 2: (Aminosäuren)

Aufgabe 2: (Aminosäuren) Aufgabe 2: (Aminosäuren) Aufgabenstellung Die 20 Aminosäuren (voller Name, 1- und 3-Buchstaben-Code) sollen identifiziert und mit RasMol grafisch dargestellt werden. Dann sollen die AS sinnvoll nach ihren

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1

Mehr

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum Experimentatoren: Thomas Kunze Sebastian Knitter Betreuer: Dr. Holzhüter Rostock, den 12.04.2005 Inhaltsverzeichnis 1 Ziel

Mehr

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert?

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert? Aufgabe 1: Verständnisfragen 1) Welche Eigenschaften eines Atomkerns führen zu einem starken NMR-Signal? (man sagt der Kern hat eine große Empfindlichkeit) Ein Isotop eines Elements wird empfindlich genannt,

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Gepulste Laser und ihre Anwendungen. Alexander Pönopp

Gepulste Laser und ihre Anwendungen. Alexander Pönopp Proseminar SS 2014 Gepulste Laser und ihre Anwendungen Alexander Pönopp Lasermaterialbearbeitung - wofür Bearbeitung von Material, was schwer zu bearbeiten ist (z.b. Metall) Modifikation von Material -

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Circulardichroismus (CD) und Fluoreszenz - Anwendungen in der Proteinchemie -

Circulardichroismus (CD) und Fluoreszenz - Anwendungen in der Proteinchemie - Circulardichroismus (CD) und Fluoreszenz - Anwendungen in der Proteinchemie - Circulardichroismus (CD) - Einführung Circulardichroismus (CD) - Prinzip Circulardichroismus (CD) - Formel Meßsignal beruht

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie Photochemie 1 PC 2 2016 Photochemie 2 PC 2 2016 1 Wichtige photophysikalische Prozesse 3 PC 2 2016 Der Grundzustand Boltzmann Verteilung: Alle Moleküle sind im elektronischen Grundzustand (0) chwingungsgrundzustand

Mehr

In situ Hybridisierung

In situ Hybridisierung In situ Hybridisierung eine Methode zum direkten und spezifischen Nachweis von Nukleinsäuren (DNA und RNA) in Gewebe, Zellen, Zellkompartimenten und Chromosomen Was kann damit erreicht werden? direkte

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Grundlagen der Elektronik

Grundlagen der Elektronik Grundlagen der Elektronik Wiederholung: Elektrische Größen Die elektrische Stromstärke I in A gibt an,... wie viele Elektronen sich pro Sekunde durch den Querschnitt eines Leiters bewegen. Die elektrische

Mehr

= äquivalente stat. Lagerbelastung = radial/axial Komponente der größten statischen Belastung = Radial.-/Axialfaktor des Lagers (!

= äquivalente stat. Lagerbelastung = radial/axial Komponente der größten statischen Belastung = Radial.-/Axialfaktor des Lagers (! Erstelldatum 17.02.01 17:48 Seite 1 von 7 8. Lagerauslegung 8.1 Statische Lagerbelastungen Wenn Wälzlager im Stillstand, bei langsamen Schwenkbewegungen oder sehr niedrigen Drehzahlen belastet werden,

Mehr

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Infrarot Thermometer Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Achtung Mit dem Laser nicht auf Augen zielen. Auch nicht indirekt über reflektierende Flächen. Bei einem Temperaturwechsel, z.b. wenn Sie

Mehr

Bedienungsanleitung. LED Tristar

Bedienungsanleitung. LED Tristar Bedienungsanleitung LED Tristar Inhaltsverzeichnis 1. Sicherheitshinweise... 3 1.1. Hinweise für den sicheren und einwandfreien Gebrauch... 3 2. Einführung... 4 2.1. Features... 4 3. Dipswitch Einstellungen

Mehr

1 Grundlagen der optischen Spektroskopie

1 Grundlagen der optischen Spektroskopie Vorbemerkungen 1 Grundlagen der optischen Spektroskopie Gegenstand: Wechselwirkung von Licht mit Materie Licht im engeren Sinn: Licht im infraroten bis ultravioletten Spektralbereich Wir werden uns meist

Mehr

UV/VIS-Spektroskopie

UV/VIS-Spektroskopie UV/VIS-Spektroskopie Dies ist die älteste spektroskopische Methode, die aber wegen begrenzter Aussagekraft heute in der Praxis keine allzu große Rolle mehr spielt. Es werden elektronische Übergänge angeregt,

Mehr

22. Chemische Bindungen

22. Chemische Bindungen .05.03. Chemische Bindungen Molekül: System aus zwei oder mehr Atomen Kleinste Einheit einer Substanz, die deren chemische Eigenschaften ausweist Quantenmechanisches Vielteilchensystem: Exakte explizite

Mehr

Lasertechnik Praktikum. Nd:YAG Laser

Lasertechnik Praktikum. Nd:YAG Laser Lasertechnik Praktikum Nd:YAG Laser SS 2013 Gruppe B1 Arthur Halama Xiaomei Xu 1. Theorie 2. Messung und Auswertung 2.1 Justierung und Beobachtung des Pulssignals am Oszilloskop 2.2 Einfluss der Verstärkerspannung

Mehr

Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie

Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie Ringvorlesung B Fluoreszenz und Anwendung in Molekularer Biotechnologie Inhalt: Physikalische Grundlagen Eigenschaften von Fluorophoren Ruprecht-Karls-Universität Heidelberg Institut für Pharmazie and

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

Wasserchemie Modul 7

Wasserchemie Modul 7 Wasserchemie Modul 7 Prinzip eines heterogenen Enzyme ELISA Enzyme Linked Immuno Sorbent Assay Was sind Antikörper Antikörper (Immunoglobuline) sind Eiweißstoffe stoffe,, die Tiere und Menschen zur Abwehr

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Akusto-Optische Effekte

Akusto-Optische Effekte Begrüßung Uwe Peterson - GAMPT mbh Akusto-Optische Effekte Experimente zur Wechselwirkung von Laserlicht mit mechanischen Wellen im MHz-Bereich Berlin, 2. Juni 2015 6. DPG-Workshop "Innovative Lehrmittel..."

Mehr

Atomic Force Microscopy: Grundlagen Methoden - Anwendung

Atomic Force Microscopy: Grundlagen Methoden - Anwendung AFM - Inhalt Grundlagen Grundprinzip Komponenten Spitzenwahl Methoden Contact-mode Tapping-mode Spezielle Modi Artefakte Beispielhafte Anwendung Langmuir-Blodgett Schichten Verwendungshinweis: Die verwendeten

Mehr

Spektrale Farbtrennung in der konfokalen Laser Scanning Mikroskopie

Spektrale Farbtrennung in der konfokalen Laser Scanning Mikroskopie 1. Jenaer Workshop Spektralsensorik Spektrale Farbtrennung in der konfokalen Laser Scanning Mikroskopie Dr. Monika Marx Training, Application and Support Center TASC, Carl Zeiss MicroImaging GmbH Carl

Mehr

FP III für Biophysiker FLUORESZENZMIKROSKOPIE

FP III für Biophysiker FLUORESZENZMIKROSKOPIE Physikalisches Institut der Universität Bayreuth -LS für Experimentalphysik IV- FP III für Biophysiker FLUORESZENZMIKROSKOPIE 1. Einleitung und Aufgabenstellung 2. Grundlagen 3. Versuchsanordnung 4. Versuchsdurchführung

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

POLARISATION. Von Carla, Pascal & Max

POLARISATION. Von Carla, Pascal & Max POLARISATION Von Carla, Pascal & Max Die Entdeckung durch MALUS 1808 durch ÉTIENNE LOUIS MALUS entdeckt Blick durch einen Kalkspat auf die an einem Fenster reflektierten Sonnenstrahlen, durch Drehen wurde

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Einführung in die Labormethoden (Mineralogie u. Petrologie)

Einführung in die Labormethoden (Mineralogie u. Petrologie) Einführung in die Labormethoden (Mineralogie u. Petrologie) Kurt Krenn 14. Dezember 2010 Einführung in die Labormethoden 1 Struktur der LV: 2 bis 3 Einheiten zur theoretischen Vorbildung Teil I: Schliffherstellung

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Analytische Chemie (für Biol. / Pharm. Wiss.)

Analytische Chemie (für Biol. / Pharm. Wiss.) Analytische Chemie (für Biol. / Pharm. Wiss.) Teil: Trenntechniken (Chromatographie, Elektrophorese) Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch/ Elektrophorese 2 Elektrophorese

Mehr