Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Größe: px
Ab Seite anzeigen:

Download "Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus"

Transkript

1 Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von Online-Algorithmen benötigt man ein Optimalitätskriterium. Welche Entscheidungskriterien kann man überhaupt auf Online-Probleme anwenden? Was rechtfertigt die Wahl eines bestimmten Kriteriums? Ist der kompetitive Faktor ein vernünftiges Kriterium? Begriffe 1. Ein einfaches theoretisches Entscheidungsmodell: A = Menge von Aktionen/Entscheidungen S = Menge von Zuständen C : A S R Kostenfunktion Falls A und S endlich Kostenfunktion kann als Matrix C = (c i,j ) geschrieben werden (Zeilenindex i für die Aktionen, Spaltenindex j für die Zustände) d.h.: c i,j = C(a i, s j ) Ein Entscheidungsproblem P ist ein Triple P = (A, S, C). 2. Präferenzrelation: Sei X eine Menge. Gegeben sei eine Binärrelation über der Menge X. Definiere neue Binärrelationen mit x y, falls y x Die Binärrelation heißt Präferenzrelation, falls vollständig (d.h. x, y X gilt entweder x y oder y x, alle Alternativen können miteinander verglichen werden) und transitiv ist (manchmal auch die Reflexivität gefordert). Ein Entscheidungskriterium für eine Klasse P von Entscheidungsproblemen 1

2 wird als Abbildung definiert, die jedem Problem P = (A, S, C) P eine vollständige und transitive Ordnungsrelation p über A zuweist. Falls a p b, sagt man, dass a strikt b vorgezogen wird, falls a p b, sagt man, dass a und b indifferent sind, d.h. a und b sind gleich gut. 3. Sicherheit und Ungewissheit: Problem ist unter Sicherheit, wenn der Akteur den Zustand, der gewählt werden wird, schon vor seiner eigenen Aktionswahl kennt. Problem des einfachen theoretischen Entscheidungsmodells: so meist nicht existent! Problem unter Ungewissheit : hier hat der Akteur keine vollständige Information über die Wahl des Zustandes Unterscheidung zweier extremer Unterklassen: Probleme unter reinem Risiko : Probleme, für die die Eintrittswahrscheinlichkeiten der einzelnen Zustände vollständig bekannt sind Probleme unter strikter Ungewissheit : Probleme, bei denen man rein gar nichts über die relativen Eintrittswahrscheinlichkeiten der Zustände weiß 2 Anreize für die Studie von Entscheidungstheorien unter Ungewissheit: deskriptive und normative Theorie Entscheidungen unter strikter Ungewissheit Ziel: Vergleich des kompetitiven Faktors mit anderen Entscheidungskriterien für strikte Ungewissheit 1. Verschiedene Entscheidungstheorien: Zugrunde liegt: das einfache theoretische Entscheidungsmodell Kostenminimierungsproblem P = (A, S, C) jedes Kriterium weist jeder möglichen Aktion a A einen reellen Wert V (a) zu: a) falls V (a) < V (b) für a, b A a wird b strikt bevorzugt b) falls V (a) = V (b) a, b sind indifferent V : A R definiert eine Präferenzrelation über A 2

3 a) Kompetitiver Faktor: Minimiere V (a) = max s ( C(a,s) ) min xc(x,s) Gegenspieler wählt den Zustand, der sich auf die Entscheidung des Akteurs am negativsten auswirkt b) Minimax Cost: Minimiere V (a) = max s C(a, s) c) Pessimism-Optismism-Index: Minimiere V (a) = α max s C(a, s) + (1 α) min s C(a, s) α [0, 1] subjektiver Pessimism-Optimism-Index Falls α = 1 identisch zu Minimax Cost d) Minimax Regret: Minimiere V (a) = max s (C(a, s) min x C(x, s)) beachte: Ähnlichkeit zum kompetitiven Faktor andere Bezeichnung: Minimax additive regret ( Minimax multiplicative regret für kompetitiven Faktor) e) Principle of insufficient reason: Minimiere V (a) = C(a,s) S alle Zustände ereignen sich mit gleicher Wahrscheinlichkeit und der Akteur wählt die Aktion mit den niedrigsten Durchschnittskosten 2. Problembeispiele: Jedes Problem hat so seine Unvollkommenheiten! zu a): Kann keine negativen oder 0-Kosten berücksichtigen schließt viele interessante Probleme, z.b. aus dem Versicherungswesen aus. Am Bsp.: s 1 s 2 s 3 s 4 1 a a V (a 1 ) = max(70, 80, 90, 1) = 90 V (a 2 ) = max(1, 1, 1, 10000) =

4 zu b): Wenn man von einem Gegenspieler ausgeht, dessen Ziel es ist, das Bedauern des Akteurs zu maximieren, dann wird jener bei vielen nichttrivialen Entscheidungsproblemen schnell und leicht Erfolg haben. zu c): Lässt die Wahl von α offen (beachte: α ist subjektiv!) nicht klar, wie man es in der theoretischen Analyse von Algorithmen implementiert. zu d): Die gegebenen Kosten hängen vom Reichtum und von den Einstellungen der Individuen ab Prinzip des abnehmenden Grenznutzens. zu e): Extrem vage, die Ereignisse sind nicht gut definiert liefert mehrdeutige oder sinnlose Resultate. Frage: Ist ein Kriterium vernünftig oder zumindest besser als die anderen? Wie vergleicht man sie am besten? 3. Algorithmische Entscheidungsprobleme: Frage-Antwort-Spiel G = (R, (A i ), (cost i )) mit R= Menge der Anfragen (requests) A i = Folge von Antworten (einfachheitshalber: alle A i gleich, d.h. (A i ) = A) C : A S R, so dass für alle a A und s S gilt: C(a, s) = cost S (s, a[s]) mit a[s] A (Antwortsequenz bgzl. der Anfragensequenz s) Das Tripel P = (A, S, C) heißt algorithmisches Entscheidungsproblem (über G). Unter geeigneten Voraussetzungen (z.b. Endlichkeit) kann jedes Entscheidungsproblem innerhalb des algorithmischen Entscheidungsmodells definiert werden. Entscheidungen unter Risiko Obwohl die Konsequenzen von Entscheidungen unsicher sind, sind diese Unsicherheiten eindeutig durch Wahrscheinlichkeiten quantifizierbar. Es gibt 2 relevante, grundlegende Konzepte: Nutzenfunktionen und Risikoaversion 1. Nutzenfunktionen und Einstellungen gegenüber Risiken Lotterie : Wahrscheinlichkeitsverteilung über einer Menge von Gewinnen. In einer Lotterie L gibt es n geldwertige Gewinne z 1, z 2,..., z n (z.b. in Euro dotiert). Ein Lotteriespieler erhält z i Euro mit Wahrscheinlichkeit p i. Frage: Wie viel ist jemand bereit zu zahlen,um an so einer Lotterie teilzunehmen? 4

5 Wie gut kann er alle Wahrscheinlichkeitsverteilungen bezüglich ihrer Attraktivität bewerten? 2. St. Petersburg Paradoxon Eine ungezinkte Münze wird geworfen, bis zum ersten Mal Kopf fällt (entspricht dem n-ten Wurf). Der Glücksspieler erhält dann 2 n e. Teilnahmepreis? Betrachte Erwartungswert: E = i=1 2i 1 2 i = i=1 1 = erwartete Auszahlung ist 3. Ansätze zum Lösen des St. Petersburg Paradoxons 1) Daniel Bernoulli (1738 veröffentlicht) der wahre Wert von Geld wächst mit abnehmender Rate der wesentliche Wert von xe sei log x log x ist eine Nutzenfunktion (Basis frei wählbar) Sicherheitsäquivalent: x = 4e (Sicherheitsäquivalent einer Lotterie ist das sichere Einkommen, welches das Individuum indifferent macht zwischen dem sicheren Einkommen und der Lotterie) 2) Gabriel Cramer verwandte x, um den Nutzen von xe zu messen Sicherheitsäquivalent: x = 11.65e Problem: Lösungen von Bernoulli und Cramer sind eigens zum Zweck entstanden, dem Petersburg- Paradoxon entgegenzuwirken Gewinnbefriedigung nur subjektive Größe 4. Risiko vs. Versicherung Risikoaverse Entscheider: sind nicht bereit, die erwartete Auszahlung der Lotterie zu zahlen, und fordern einen Preisnachlass (eine sog. Risikoprämie) Sicherheitsäquivalent ist kleiner als der erwartete monetäre Wert der Lotterie 5

6 Beispiel Ein Spieler hat we. Nun hat er die Option, diese we zu versichern. Im Falle eines Desasters würde er ohne eine Versicherung die gesamten we verlieren. Für eine Prämie von be kann der Spieler seinen Reichtum versichern, so dass ihn im Falle eines Desasters die Versicherungsgesellschaft entschädigt und zwar in Höhe von we be (entspricht exakt dem Reichtum nach Zahlung der Prämie) Frage: Versichern oder nicht? Als Spielematrix: Versicherung Desaster w b Kein Desaster w b Keine Versicherung 0 w 5. Nutzentheorie nach Neumann-Morgenstern subjektive Nutzenfunktion, die die persönliche Einstellung bzgl. Risiko berücksichtigt eindeutig bis auf eine linear-affine Transformation Vollständigkeit: Rationale Entscheidungsträger sollten in der Lage sein, zwei Aktionen zu vergleichen Transitivität Unabhängigkeit: Eine Präferenz zwischen zwei Aktionen a und b soll sich nicht ändern, wenn beide Aktionen mit einer dritten Aktion verknüpft werden Stetigkeit: Für jede Aktion b, die zwischen den Aktionen a und c liegt, gibt es eine Kombination von a und c, die genauso gut wie b ist. Die Theorie sei schon richtig, aber ein Grossteil der Menschen handele einfach irrational. 6

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht?

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Christoph Ziems 1. Einleitung... 3 2. Versicherung und Versicherungsmarkt... 4 2.1. Definition Versicherung...

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter III. Theorie und Politik der Öffentlichen Ausgaben A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter 1 A. Wohlfahrtsstaat Der Ursprung des Wohlfahrtsstaats Wichtige Programme in Deutschland Finanzierung

Mehr

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09 Mikroökonomie 1 Prof. Dr. Dennis A. V. Dittrich Universität Erfurt Wintersemester 08/09 Prof. Dittrich (Universität Erfurt) 1. Vorlesung 2008 Winter 1 / 41 Informationen zur Lehrveranstaltung Webseite

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/40 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 2 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Übungsaufgaben zur Vorlesung Risikotransformationstheorie

Übungsaufgaben zur Vorlesung Risikotransformationstheorie Übungsaufgaben zur Vorlesung Risikotransformationstheorie 2 Unsicherheit 2.1 Stochastische Größen (1) Berechnen Sie Erwartungswert und Varianz für folgende Zufallsvariable: X = 0 100 400 04, 05, 01,! (2)

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Betriebswirtschaftliche Entscheidungstheorie und Anwendung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung Betriebswirtschaftliche Entscheidungstheorie und Anwendung Kapitel 5: Entscheidungen unter Risiko Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Betriebswirtschaft 1. 1. Entscheidungstheorie

Betriebswirtschaft 1. 1. Entscheidungstheorie Betriebswirtschaft 1 Betriebswirtschaft 1 1. Entscheidungstheorie Lars Schmidt-Thieme Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Institut für Betriebswirtschaft und Wirtschaftsinformatik & Institut

Mehr

9. Asymmetrische Information

9. Asymmetrische Information 85 Definition Asymmetrische Information: Eine Marktseite (Käufer oder Verkäufer) weißmehr als die andere (Käufer oder Verkäufer). Betrifft 1) Qualität/Zustand eines Gutes oder 2) Handlungen, die nur eine

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Was ist Entscheidungstheorie?

Was ist Entscheidungstheorie? Was ist Entscheidungstheorie? Verschiedene Typen der Entscheidungstheorie Individualentscheidungen Normative Klassische Ökonomie Theorien Statistische Entsch.-th. Moralphilosophie Deskriptive Lerntheorie

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Übungen zur Versicherungsökonomik

Übungen zur Versicherungsökonomik J.-Matthias Graf von der Schulenburg Andy Zuchandke o» Übungen zur Versicherungsökonomik YJ Springer Teil I Aufgaben 1 Grundlagen der Versicherungstechnik. 3 1.1 Allgemeine Grundlagen 3.1.1 Versicherung

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Betriebswirtschaftliche Entscheidungstheorie

Betriebswirtschaftliche Entscheidungstheorie Prof. Dr. Günter Sieben Prof. Dr. Thomas Schildbach Betriebswirtschaftliche Entscheidungstheorie 3., überarbeitete und erweiterte Auflage 1990 Werner-Verlag Düsseldorf VII Inhaltsverzeichnis I. Begriffsbestimmung

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Value Based Management

Value Based Management Value Based Management Vorlesung 2 Shareholder-Bewertung von Cashflows PD. Dr. Louis Velthuis 4.11.2005 Wirtschaftswissenschaften PD. Dr. Louis Velthuis Seite 1 1 Einführung Value Based Management beinhaltet

Mehr

3.3. Aufgaben zur Binomialverteilung

3.3. Aufgaben zur Binomialverteilung .. Aufgaben zur Binomialverteilung Aufgabe 1: Ziehen mit Zurücklegen und Binomialverteilung Ein sechsseitiger Würfel wird zehnmal geworfen. a) Wie groß ist die Wahrscheinlichkeit, nur beim ersten Mal die

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Ökonomische Analyse des Unternehmensverhaltens

Ökonomische Analyse des Unternehmensverhaltens Ökonomische Analyse des Unternehmensverhaltens M. Sc. Kernfeld Modul fld d l Unternehmensstrategie und Markterfolg Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie und Wettbewerbspolitik

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

=ZÄHLENWENN Zählt die nichtleeren Zellen eines Bereiches, deren Inhalte mit den Suchkriterien übereinstimmen

=ZÄHLENWENN Zählt die nichtleeren Zellen eines Bereiches, deren Inhalte mit den Suchkriterien übereinstimmen Excel Formel-Handbuch T. Korn 2011 =SUMME Gibt das Ergebnis einer Addition aus =SUMME(A1:A4) =SUMME(A1;A2;A4) : (Doppelpunkt) bedeutet bis bei zusammenhängenden Zellen ; (Semikolon) bedeutet und bei nicht

Mehr

Gefördert durch: dynaklim-kompakt

Gefördert durch: dynaklim-kompakt Gefördert durch: dynaklim-kompakt Risiko & Co. - Begriffe und Abgrenzungen 1 Problemstellung Ein Basisproblem, das immer auftritt, wenn es um Risiko geht, ist die Existenz unterschiedlicher Risikodefinitionen

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen )

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) Carl Friedrich Gethmann Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) 1 Gefahrenwahrnehmung und Risikobeurteilung 2 Risikovergleiche und pragmatische

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Mikroökonomik B 2. Entscheidung bei Unsicherheit

Mikroökonomik B 2. Entscheidung bei Unsicherheit Mikroökonomik B 2. Entscheidung bei Unsicherheit Dennis L. Gärtner 14. April 2011 Entscheidung bei Unsicherheit Literaturangaben: Varian (2007), Kapitel 12, 13 Jehle und Reny (2001), Kapitel 2.4 Kreps

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh

Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh Einleitung: Was ist Risiko und Nutzen Verfahren - Eindimensionale Verfahren Kosteneffizienz Risk-Risk Tradeoffs

Mehr

Risiko-Management I. Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA)

Risiko-Management I. Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA) Risiko-Management I Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA) Gliederung 0.0 Kurz-Einführung Risiko-Management 1.0 Versicherung und Risiken 2.0 Gefahren erkennen 3.0 Risikoanalyse

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / PD Achim Wambach, D.Phil. Versicherungsmärkte WS 2000 / 2001 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien:

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien: Ludwig-Maximilians-Universität Institut für Statistik Statistische Herausforderungen sozialwissenschaftlicher Studien: Framing Effekt (Vorbereitungsmaterial) Khac Phuoc Le Betreuer: Prof. Dr. Thomas Augustin

Mehr

Abhängigkeiten zwischen Großschäden

Abhängigkeiten zwischen Großschäden Abhängigkeiten zwischen Großschäden Holger Drees, Universität Hamburg I. Typen von Abhängigkeiten II. Modelle für abhängige Großschäden III. Fallstudie: Dänische Feuerversicherung I. Typen von Abhängigkeiten

Mehr

k-server-algorithmen Alexander Leider 4. Februar 2007

k-server-algorithmen Alexander Leider 4. Februar 2007 k-server-algorithmen Alexander Leider 4. Februar 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 1.1 Online-Algorithmen....................... 3 1.2 Kompetitive Algorithmen....................

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Materialien zur Vorlesung "Finanzmanagement" Einführung/Grundlagen

Materialien zur Vorlesung Finanzmanagement Einführung/Grundlagen Materialien zur Vorlesung "Finanzmanagement" Einführung/Grundlagen Burkhard Erke Quellen: Brewley/Myers Kapitel 1,2 und 3 März 2007 Lernziele Was ist "corporate finance"? Grundlegende Prinzipien von "modern

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Kapitel 1: Präferenzen

Kapitel 1: Präferenzen Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve, Grenzrate der Substitution,

Mehr

Exkurs: Medizinische Tests und private Versicherungsmärkte

Exkurs: Medizinische Tests und private Versicherungsmärkte Kapitel 3 Exkurs: Medizinische Tests und private Versicherungsmärkte Aufgrund des medizinischen Fortschritts wird es immer mehr möglich, durch vergleichsweise billige frühzeitige Tests Informationen über

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Farbdarstellung. aber mit einem ausgeprägten Empfindlichkeitsmaximum im roten, grünen bzw. blauen Bereich.

Farbdarstellung. aber mit einem ausgeprägten Empfindlichkeitsmaximum im roten, grünen bzw. blauen Bereich. Erinnerung aus dem Biologieunterricht: Das menschliche Auge hat Stäbchen zur Unterscheidung von Helligkeiten drei verschiedene Arten von Zäpfchen, die für rot, grün und blau empfindlich sind. Genauer:

Mehr

Mein Geld ist weg, aber ich bin noch da

Mein Geld ist weg, aber ich bin noch da Schwein gehabt? Mein Geld ist weg, aber ich bin noch da Lieber gleich zur lebenslangen Altersversorgung Maßstäbe in Vorsorge seit 1871 rente.lv1871.de Langlebigkeit wird unterschätzt Die Lebenserwartung

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Entscheidungsbaum und Rollback-Verfahren

Entscheidungsbaum und Rollback-Verfahren Entscheidungen unter Unsicherheit 1 Sequentielle (Investitions-)Entscheidungen Normative Entscheidungstheorie und Rollback-Verfahren Entscheidungen unter Unsicherheit 2 Normative Entscheidungstheorie Ein

Mehr

Lookup Performanz von Verteilten Hashtabellen

Lookup Performanz von Verteilten Hashtabellen Lookup Performanz von Verteilten Hashtabellen Vortrag von Martin Christian 1.Verteilte Hashtabellen 2.Routing-Strategien 3.Lookup-Strategien 4.Replikationsstrategien 5.Zusammenfassung

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Risikomanagement. Lernziele des Kapitels Risikomanagement. Sie können

Risikomanagement. Lernziele des Kapitels Risikomanagement. Sie können management Lernziele des Kapitels management Sie können mindestens fünf Lieferobjekte aufführen, die eine Beziehung zum management aufweisen und diese Beziehung erläutern. die Entwicklung von potenziellen

Mehr

Eine Einführung in Online-Algorithmen

Eine Einführung in Online-Algorithmen Eine Einführung in Online-Algorithmen Dennis Komm Skript zur Vorlesung Approximations- und Online-Algorithmen Frühlingssemester 2015, ETH Zürich Stand: 21. Juli 2015 Kontakt: dennis.komm@inf.ethz.ch Nehmen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3.

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3. Teil 3 Teil 3: Einige generelle Klassen von Spielen und Strategien : Unsicherheit und Information Kapitel 10: Strategische Aktionen Kapitel 11: Wiederholte Spiele Kapitel 12: Kollektive Wahl Kapitel 13:

Mehr

Übungsaufgaben zum Lerntransfer Investition

Übungsaufgaben zum Lerntransfer Investition Übungsaufgaben zum Lerntransfer Investition Copyright by carriere & more, private Akademie, 2010 1 1. Erläutern Sie die Begriffe Investition und Finanzierung und gehen Sie hierbei auch auf den Einsatzzweck

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Methoden zur Analyse von Marktdaten

Methoden zur Analyse von Marktdaten Methoden zur Analyse von Marktdaten Prof. Dr. Waldemar Toporowski PD Dr. Stephan Zielke Anne Wiese, M. Sc. Dipl.-Kfm. Julian Kellner Wintersemester 2009/2010 Georg-August-Universität Göttingen Tel: 0551

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Investition und Finanzierung. Investition Teil 1

Investition und Finanzierung. Investition Teil 1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit)

Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit) 1 - wipo060215.doc Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit) Problem: Wenn mindestens drei Personen unter mindestens drei Optionen auszuwählen haben, dann ist es möglich, daß

Mehr

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21042009 Xin Wang Nutzentheorie 2.1 Einführung Die Nutzentheorie hat viele Anwendungen inbesondere in den Wirtschaftswissenschaften.In diesem

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Umverteilung als Versicherung

Umverteilung als Versicherung Umverteilung als Versicherung Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Sonderforschungsbereich 649: Ökonomisches Risiko

Sonderforschungsbereich 649: Ökonomisches Risiko Sonderforschungsbereich 649: Ökonomisches Risiko 1.1. Langfristige Forschungsziele Wir leben in einer von Unsicherheit geprägten Welt. Unwägbarkeiten der Zukunft beeinflussen Entscheidungen der Gegenwart.

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Risikomanagement. 1 Gründe, warum Projekte fehlschlagen. 2 Risiken

Risikomanagement. 1 Gründe, warum Projekte fehlschlagen. 2 Risiken Risikomanagement 1 Gründe, warum Projekte fehlschlagen Projektergebnis wird nicht mehr benötigt Zeitrahmen des Projektes wurde überschritten Projektkosten übersteigen die Planung Nicht vorhersehbare technische

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Naturgefahrenbeurteilungein integrativer Ansatz

Naturgefahrenbeurteilungein integrativer Ansatz : Naturgefahrenbeurteilungein integrativer Ansatz Ideen für ein modernes Risikomanagementkonzept Dr. Karl Kleemayr : Aktuelle Erkenntnisse FLOOD RISK ERKENNTNISSE 004 Grenzen des Schutzes und der Verantwortung

Mehr