Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus"

Transkript

1 Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von Online-Algorithmen benötigt man ein Optimalitätskriterium. Welche Entscheidungskriterien kann man überhaupt auf Online-Probleme anwenden? Was rechtfertigt die Wahl eines bestimmten Kriteriums? Ist der kompetitive Faktor ein vernünftiges Kriterium? Begriffe 1. Ein einfaches theoretisches Entscheidungsmodell: A = Menge von Aktionen/Entscheidungen S = Menge von Zuständen C : A S R Kostenfunktion Falls A und S endlich Kostenfunktion kann als Matrix C = (c i,j ) geschrieben werden (Zeilenindex i für die Aktionen, Spaltenindex j für die Zustände) d.h.: c i,j = C(a i, s j ) Ein Entscheidungsproblem P ist ein Triple P = (A, S, C). 2. Präferenzrelation: Sei X eine Menge. Gegeben sei eine Binärrelation über der Menge X. Definiere neue Binärrelationen mit x y, falls y x Die Binärrelation heißt Präferenzrelation, falls vollständig (d.h. x, y X gilt entweder x y oder y x, alle Alternativen können miteinander verglichen werden) und transitiv ist (manchmal auch die Reflexivität gefordert). Ein Entscheidungskriterium für eine Klasse P von Entscheidungsproblemen 1

2 wird als Abbildung definiert, die jedem Problem P = (A, S, C) P eine vollständige und transitive Ordnungsrelation p über A zuweist. Falls a p b, sagt man, dass a strikt b vorgezogen wird, falls a p b, sagt man, dass a und b indifferent sind, d.h. a und b sind gleich gut. 3. Sicherheit und Ungewissheit: Problem ist unter Sicherheit, wenn der Akteur den Zustand, der gewählt werden wird, schon vor seiner eigenen Aktionswahl kennt. Problem des einfachen theoretischen Entscheidungsmodells: so meist nicht existent! Problem unter Ungewissheit : hier hat der Akteur keine vollständige Information über die Wahl des Zustandes Unterscheidung zweier extremer Unterklassen: Probleme unter reinem Risiko : Probleme, für die die Eintrittswahrscheinlichkeiten der einzelnen Zustände vollständig bekannt sind Probleme unter strikter Ungewissheit : Probleme, bei denen man rein gar nichts über die relativen Eintrittswahrscheinlichkeiten der Zustände weiß 2 Anreize für die Studie von Entscheidungstheorien unter Ungewissheit: deskriptive und normative Theorie Entscheidungen unter strikter Ungewissheit Ziel: Vergleich des kompetitiven Faktors mit anderen Entscheidungskriterien für strikte Ungewissheit 1. Verschiedene Entscheidungstheorien: Zugrunde liegt: das einfache theoretische Entscheidungsmodell Kostenminimierungsproblem P = (A, S, C) jedes Kriterium weist jeder möglichen Aktion a A einen reellen Wert V (a) zu: a) falls V (a) < V (b) für a, b A a wird b strikt bevorzugt b) falls V (a) = V (b) a, b sind indifferent V : A R definiert eine Präferenzrelation über A 2

3 a) Kompetitiver Faktor: Minimiere V (a) = max s ( C(a,s) ) min xc(x,s) Gegenspieler wählt den Zustand, der sich auf die Entscheidung des Akteurs am negativsten auswirkt b) Minimax Cost: Minimiere V (a) = max s C(a, s) c) Pessimism-Optismism-Index: Minimiere V (a) = α max s C(a, s) + (1 α) min s C(a, s) α [0, 1] subjektiver Pessimism-Optimism-Index Falls α = 1 identisch zu Minimax Cost d) Minimax Regret: Minimiere V (a) = max s (C(a, s) min x C(x, s)) beachte: Ähnlichkeit zum kompetitiven Faktor andere Bezeichnung: Minimax additive regret ( Minimax multiplicative regret für kompetitiven Faktor) e) Principle of insufficient reason: Minimiere V (a) = C(a,s) S alle Zustände ereignen sich mit gleicher Wahrscheinlichkeit und der Akteur wählt die Aktion mit den niedrigsten Durchschnittskosten 2. Problembeispiele: Jedes Problem hat so seine Unvollkommenheiten! zu a): Kann keine negativen oder 0-Kosten berücksichtigen schließt viele interessante Probleme, z.b. aus dem Versicherungswesen aus. Am Bsp.: s 1 s 2 s 3 s 4 1 a a V (a 1 ) = max(70, 80, 90, 1) = 90 V (a 2 ) = max(1, 1, 1, 10000) =

4 zu b): Wenn man von einem Gegenspieler ausgeht, dessen Ziel es ist, das Bedauern des Akteurs zu maximieren, dann wird jener bei vielen nichttrivialen Entscheidungsproblemen schnell und leicht Erfolg haben. zu c): Lässt die Wahl von α offen (beachte: α ist subjektiv!) nicht klar, wie man es in der theoretischen Analyse von Algorithmen implementiert. zu d): Die gegebenen Kosten hängen vom Reichtum und von den Einstellungen der Individuen ab Prinzip des abnehmenden Grenznutzens. zu e): Extrem vage, die Ereignisse sind nicht gut definiert liefert mehrdeutige oder sinnlose Resultate. Frage: Ist ein Kriterium vernünftig oder zumindest besser als die anderen? Wie vergleicht man sie am besten? 3. Algorithmische Entscheidungsprobleme: Frage-Antwort-Spiel G = (R, (A i ), (cost i )) mit R= Menge der Anfragen (requests) A i = Folge von Antworten (einfachheitshalber: alle A i gleich, d.h. (A i ) = A) C : A S R, so dass für alle a A und s S gilt: C(a, s) = cost S (s, a[s]) mit a[s] A (Antwortsequenz bgzl. der Anfragensequenz s) Das Tripel P = (A, S, C) heißt algorithmisches Entscheidungsproblem (über G). Unter geeigneten Voraussetzungen (z.b. Endlichkeit) kann jedes Entscheidungsproblem innerhalb des algorithmischen Entscheidungsmodells definiert werden. Entscheidungen unter Risiko Obwohl die Konsequenzen von Entscheidungen unsicher sind, sind diese Unsicherheiten eindeutig durch Wahrscheinlichkeiten quantifizierbar. Es gibt 2 relevante, grundlegende Konzepte: Nutzenfunktionen und Risikoaversion 1. Nutzenfunktionen und Einstellungen gegenüber Risiken Lotterie : Wahrscheinlichkeitsverteilung über einer Menge von Gewinnen. In einer Lotterie L gibt es n geldwertige Gewinne z 1, z 2,..., z n (z.b. in Euro dotiert). Ein Lotteriespieler erhält z i Euro mit Wahrscheinlichkeit p i. Frage: Wie viel ist jemand bereit zu zahlen,um an so einer Lotterie teilzunehmen? 4

5 Wie gut kann er alle Wahrscheinlichkeitsverteilungen bezüglich ihrer Attraktivität bewerten? 2. St. Petersburg Paradoxon Eine ungezinkte Münze wird geworfen, bis zum ersten Mal Kopf fällt (entspricht dem n-ten Wurf). Der Glücksspieler erhält dann 2 n e. Teilnahmepreis? Betrachte Erwartungswert: E = i=1 2i 1 2 i = i=1 1 = erwartete Auszahlung ist 3. Ansätze zum Lösen des St. Petersburg Paradoxons 1) Daniel Bernoulli (1738 veröffentlicht) der wahre Wert von Geld wächst mit abnehmender Rate der wesentliche Wert von xe sei log x log x ist eine Nutzenfunktion (Basis frei wählbar) Sicherheitsäquivalent: x = 4e (Sicherheitsäquivalent einer Lotterie ist das sichere Einkommen, welches das Individuum indifferent macht zwischen dem sicheren Einkommen und der Lotterie) 2) Gabriel Cramer verwandte x, um den Nutzen von xe zu messen Sicherheitsäquivalent: x = 11.65e Problem: Lösungen von Bernoulli und Cramer sind eigens zum Zweck entstanden, dem Petersburg- Paradoxon entgegenzuwirken Gewinnbefriedigung nur subjektive Größe 4. Risiko vs. Versicherung Risikoaverse Entscheider: sind nicht bereit, die erwartete Auszahlung der Lotterie zu zahlen, und fordern einen Preisnachlass (eine sog. Risikoprämie) Sicherheitsäquivalent ist kleiner als der erwartete monetäre Wert der Lotterie 5

6 Beispiel Ein Spieler hat we. Nun hat er die Option, diese we zu versichern. Im Falle eines Desasters würde er ohne eine Versicherung die gesamten we verlieren. Für eine Prämie von be kann der Spieler seinen Reichtum versichern, so dass ihn im Falle eines Desasters die Versicherungsgesellschaft entschädigt und zwar in Höhe von we be (entspricht exakt dem Reichtum nach Zahlung der Prämie) Frage: Versichern oder nicht? Als Spielematrix: Versicherung Desaster w b Kein Desaster w b Keine Versicherung 0 w 5. Nutzentheorie nach Neumann-Morgenstern subjektive Nutzenfunktion, die die persönliche Einstellung bzgl. Risiko berücksichtigt eindeutig bis auf eine linear-affine Transformation Vollständigkeit: Rationale Entscheidungsträger sollten in der Lage sein, zwei Aktionen zu vergleichen Transitivität Unabhängigkeit: Eine Präferenz zwischen zwei Aktionen a und b soll sich nicht ändern, wenn beide Aktionen mit einer dritten Aktion verknüpft werden Stetigkeit: Für jede Aktion b, die zwischen den Aktionen a und c liegt, gibt es eine Kombination von a und c, die genauso gut wie b ist. Die Theorie sei schon richtig, aber ein Grossteil der Menschen handele einfach irrational. 6

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht?

Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Welche Gründe liefert die ökonomische Theorie für die Pflichtversicherung und die Versicherungspflicht? Christoph Ziems 1. Einleitung... 3 2. Versicherung und Versicherungsmarkt... 4 2.1. Definition Versicherung...

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter

III. Theorie und Politik der Öffentlichen Ausgaben. A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter III. Theorie und Politik der Öffentlichen Ausgaben A. Wohlfahrtsstaat B. Öffentlich angebotene private Güter 1 A. Wohlfahrtsstaat Der Ursprung des Wohlfahrtsstaats Wichtige Programme in Deutschland Finanzierung

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Betriebswirtschaftliche Entscheidungstheorie und Anwendung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung Betriebswirtschaftliche Entscheidungstheorie und Anwendung Kapitel 5: Entscheidungen unter Risiko Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

Betriebswirtschaft 1. 1. Entscheidungstheorie

Betriebswirtschaft 1. 1. Entscheidungstheorie Betriebswirtschaft 1 Betriebswirtschaft 1 1. Entscheidungstheorie Lars Schmidt-Thieme Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Institut für Betriebswirtschaft und Wirtschaftsinformatik & Institut

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/40 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 2 Kruschwitz/Husmann (2012) Finanzierung

Mehr

9. Asymmetrische Information

9. Asymmetrische Information 85 Definition Asymmetrische Information: Eine Marktseite (Käufer oder Verkäufer) weißmehr als die andere (Käufer oder Verkäufer). Betrifft 1) Qualität/Zustand eines Gutes oder 2) Handlungen, die nur eine

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Übungsaufgaben zur Vorlesung Risikotransformationstheorie

Übungsaufgaben zur Vorlesung Risikotransformationstheorie Übungsaufgaben zur Vorlesung Risikotransformationstheorie 2 Unsicherheit 2.1 Stochastische Größen (1) Berechnen Sie Erwartungswert und Varianz für folgende Zufallsvariable: X = 0 100 400 04, 05, 01,! (2)

Mehr

Übungen zur Versicherungsökonomik

Übungen zur Versicherungsökonomik J.-Matthias Graf von der Schulenburg Andy Zuchandke o» Übungen zur Versicherungsökonomik YJ Springer Teil I Aufgaben 1 Grundlagen der Versicherungstechnik. 3 1.1 Allgemeine Grundlagen 3.1.1 Versicherung

Mehr

Was ist Entscheidungstheorie?

Was ist Entscheidungstheorie? Was ist Entscheidungstheorie? Verschiedene Typen der Entscheidungstheorie Individualentscheidungen Normative Klassische Ökonomie Theorien Statistische Entsch.-th. Moralphilosophie Deskriptive Lerntheorie

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

Betriebswirtschaftliche Entscheidungstheorie

Betriebswirtschaftliche Entscheidungstheorie Prof. Dr. Günter Sieben Prof. Dr. Thomas Schildbach Betriebswirtschaftliche Entscheidungstheorie 3., überarbeitete und erweiterte Auflage 1990 Werner-Verlag Düsseldorf VII Inhaltsverzeichnis I. Begriffsbestimmung

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien:

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien: Ludwig-Maximilians-Universität Institut für Statistik Statistische Herausforderungen sozialwissenschaftlicher Studien: Framing Effekt (Vorbereitungsmaterial) Khac Phuoc Le Betreuer: Prof. Dr. Thomas Augustin

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Value Based Management

Value Based Management Value Based Management Vorlesung 2 Shareholder-Bewertung von Cashflows PD. Dr. Louis Velthuis 4.11.2005 Wirtschaftswissenschaften PD. Dr. Louis Velthuis Seite 1 1 Einführung Value Based Management beinhaltet

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Ökonomische Analyse des Unternehmensverhaltens

Ökonomische Analyse des Unternehmensverhaltens Ökonomische Analyse des Unternehmensverhaltens M. Sc. Kernfeld Modul fld d l Unternehmensstrategie und Markterfolg Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie und Wettbewerbspolitik

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Abhängigkeiten zwischen Großschäden

Abhängigkeiten zwischen Großschäden Abhängigkeiten zwischen Großschäden Holger Drees, Universität Hamburg I. Typen von Abhängigkeiten II. Modelle für abhängige Großschäden III. Fallstudie: Dänische Feuerversicherung I. Typen von Abhängigkeiten

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

3.3. Aufgaben zur Binomialverteilung

3.3. Aufgaben zur Binomialverteilung .. Aufgaben zur Binomialverteilung Aufgabe 1: Ziehen mit Zurücklegen und Binomialverteilung Ein sechsseitiger Würfel wird zehnmal geworfen. a) Wie groß ist die Wahrscheinlichkeit, nur beim ersten Mal die

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3.

Kapitel 9. Unsicherheit und Information. Einleitung. Teil 3: Einige generelle Klassen von Spielen und Strategien. Teil 3. Teil 3 Teil 3: Einige generelle Klassen von Spielen und Strategien : Unsicherheit und Information Kapitel 10: Strategische Aktionen Kapitel 11: Wiederholte Spiele Kapitel 12: Kollektive Wahl Kapitel 13:

Mehr

k-server-algorithmen Alexander Leider 4. Februar 2007

k-server-algorithmen Alexander Leider 4. Februar 2007 k-server-algorithmen Alexander Leider 4. Februar 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 1.1 Online-Algorithmen....................... 3 1.2 Kompetitive Algorithmen....................

Mehr

Risiko-Management I. Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA)

Risiko-Management I. Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA) Risiko-Management I Dozent Dietmar Braun, Heilbronn Versicherungsbetriebswirt (DVA) Gliederung 0.0 Kurz-Einführung Risiko-Management 1.0 Versicherung und Risiken 2.0 Gefahren erkennen 3.0 Risikoanalyse

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Materialien zur Vorlesung "Finanzmanagement" Einführung/Grundlagen

Materialien zur Vorlesung Finanzmanagement Einführung/Grundlagen Materialien zur Vorlesung "Finanzmanagement" Einführung/Grundlagen Burkhard Erke Quellen: Brewley/Myers Kapitel 1,2 und 3 März 2007 Lernziele Was ist "corporate finance"? Grundlegende Prinzipien von "modern

Mehr

Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh

Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh Workshop des BfR Berlin, 27.-28-10-2005 Ortwin Renn Universität Stuttgart und DIALOGIK ggmbh Einleitung: Was ist Risiko und Nutzen Verfahren - Eindimensionale Verfahren Kosteneffizienz Risk-Risk Tradeoffs

Mehr

Methoden zur Analyse von Marktdaten

Methoden zur Analyse von Marktdaten Methoden zur Analyse von Marktdaten Prof. Dr. Waldemar Toporowski PD Dr. Stephan Zielke Anne Wiese, M. Sc. Dipl.-Kfm. Julian Kellner Wintersemester 2009/2010 Georg-August-Universität Göttingen Tel: 0551

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen )

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) Carl Friedrich Gethmann Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) 1 Gefahrenwahrnehmung und Risikobeurteilung 2 Risikovergleiche und pragmatische

Mehr

Gefördert durch: dynaklim-kompakt

Gefördert durch: dynaklim-kompakt Gefördert durch: dynaklim-kompakt Risiko & Co. - Begriffe und Abgrenzungen 1 Problemstellung Ein Basisproblem, das immer auftritt, wenn es um Risiko geht, ist die Existenz unterschiedlicher Risikodefinitionen

Mehr

Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit)

Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit) 1 - wipo060215.doc Condorcet-Paradox (der sozialen Entscheidung mit einfacher Mehrheit) Problem: Wenn mindestens drei Personen unter mindestens drei Optionen auszuwählen haben, dann ist es möglich, daß

Mehr

Mikroökonomik B 2. Entscheidung bei Unsicherheit

Mikroökonomik B 2. Entscheidung bei Unsicherheit Mikroökonomik B 2. Entscheidung bei Unsicherheit Dennis L. Gärtner 14. April 2011 Entscheidung bei Unsicherheit Literaturangaben: Varian (2007), Kapitel 12, 13 Jehle und Reny (2001), Kapitel 2.4 Kreps

Mehr

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie

Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21,04,2009. Nutzentheorie Seminar Versicherungsrisiko und Ruin Prof. Hanspeter Schmidli 21042009 Xin Wang Nutzentheorie 2.1 Einführung Die Nutzentheorie hat viele Anwendungen inbesondere in den Wirtschaftswissenschaften.In diesem

Mehr

Grundlegendes. Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985):

Grundlegendes. Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985): Grundlegendes Definition Principal-Agent-Modell nach Pratt/Zeckhauser(1985): "Whenever one individual depends on the action of another, an agency relationship arises. The individual taking the action is

Mehr

Farbdarstellung. aber mit einem ausgeprägten Empfindlichkeitsmaximum im roten, grünen bzw. blauen Bereich.

Farbdarstellung. aber mit einem ausgeprägten Empfindlichkeitsmaximum im roten, grünen bzw. blauen Bereich. Erinnerung aus dem Biologieunterricht: Das menschliche Auge hat Stäbchen zur Unterscheidung von Helligkeiten drei verschiedene Arten von Zäpfchen, die für rot, grün und blau empfindlich sind. Genauer:

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

3.8 Wahrscheinlichkeitsrechnung III

3.8 Wahrscheinlichkeitsrechnung III 3.8 Wahrscheinlichkeitsrechnung III Inhaltsverzeichnis ufallsgrössen Der Erwartungswert 3 3 Die Binomialverteilung 6 4 Die kumulierte Binomialverteilung 8 4. Die Tabelle im Fundamentum (oder Formeln und

Mehr

Risikomanagement. 1 Gründe, warum Projekte fehlschlagen. 2 Risiken

Risikomanagement. 1 Gründe, warum Projekte fehlschlagen. 2 Risiken Risikomanagement 1 Gründe, warum Projekte fehlschlagen Projektergebnis wird nicht mehr benötigt Zeitrahmen des Projektes wurde überschritten Projektkosten übersteigen die Planung Nicht vorhersehbare technische

Mehr

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups

Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Born to be sold: Predator Geschäftsmodelle von Internet Start-Ups Prof. Dr. Michel Clement Universität Hamburg Prof. Dr. Jan Becker KLU Prof. Dr. Markus Nöth Universität Hamburg Prof. Dr. Michel Clement

Mehr

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe

Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe Aufgabe 1 Betrachten Sie im folgenden einen Monopolmarkt. Die Preis-Absatz-Funktion verlaufe fallend. Wahr Falsch a) Die notwendige Bedingung für ein Gewinnmaximum des Monopolisten lautet Grenzerlös=Grenzkosten.

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Übersicht. 1 Unsicherheit und Klimawandel. 2 Umgang mit Unsicherheit in IAMs. 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem

Übersicht. 1 Unsicherheit und Klimawandel. 2 Umgang mit Unsicherheit in IAMs. 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem Vorlesung 8: Bewertung III 1/15 Übersicht 1 Unsicherheit und Klimawandel 2 Umgang mit Unsicherheit in IAMs 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem Vorlesung 8: Bewertung III 2/15 Unsicherheit

Mehr

Eine Einführung in Online-Algorithmen

Eine Einführung in Online-Algorithmen Eine Einführung in Online-Algorithmen Dennis Komm Skript zur Vorlesung Approximations- und Online-Algorithmen Frühlingssemester 2015, ETH Zürich Stand: 21. Juli 2015 Kontakt: dennis.komm@inf.ethz.ch Nehmen

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Seminar Operations Management (MW10.4) Anmerkungen folgen

Seminar Operations Management (MW10.4) Anmerkungen folgen Seminar Operations Management (MW10.4) Anmerkungen folgen Seminar Finance, Capital Markets & Risk (MW 12.5) Professor Dr. W. Kürsten Rationale Entscheidungen unter Risiko: Traditionelle Ansätze und moderne

Mehr

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition.

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Asymmetrische Informationen Musterlösung Aufgabe 7.3 und 7.5

Asymmetrische Informationen Musterlösung Aufgabe 7.3 und 7.5 1 A 7.3 Erläutern Sie mögliche Probleme asymmetrischer Informationsverteilung auf a) einem Kreditmarkt. b) einem Versicherungsmarkt. c) dem Arbeitsmarkt. Lösungsskizze (ACHTUNG: Mit Hilfe der Stichpunkte

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading. FinanzBuch Verlag

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading. FinanzBuch Verlag Professionell handeln mit CFDs Instrumente und Strategien für das Trading FinanzBuch Verlag Inhaltsverzeichnis Vorwort... 9 Grundlagen und Allgemeines zu CFDs... 13 Der CFD-Handel im Überblick... 13 Historie

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau

Wirtschaftsphilologentagung am 27./28.09.2012 in Passau Workshop2 Experimentelle Ökonomie, Verhaltensökonomie und angewandte Spieltheorie Zu Beginn ihres Vortrages gibt Dr. Glätzle-Rützler eine Einführung in die Begriffe Verhaltensökonomie, Spieltheorie und

Mehr

7. Unvollständige Information

7. Unvollständige Information 7. Unvollständige Information Erster Hauptsatz der Wohlfahrtstheorie: In einer Ökonomie mit bestimmten Voraussetzungen ist jedes Marktgleichgewicht bei vollkommener Konkurrenz eine Paretoeffiziente llokation.

Mehr

betriebliche Entscheidungslehre

betriebliche Entscheidungslehre Verwaltungs- und Wirtschafts-Akademie betriebliche Entscheidungslehre Dr. Martens 1 Bedeutung der Entscheidungstheorie 2 Grundmodell der Entscheidungstheorie 2.1 Entscheidungsfeld 2.1.1 Handlungsalternativen

Mehr

BUGH Wuppertal SS 2003. Seminar: Sozialpsychologie II Dozent: Dr. Andreas Zick Datum: 07.05.03 Referent: Hedde Baumann. Thema: Sozialer Vergleich

BUGH Wuppertal SS 2003. Seminar: Sozialpsychologie II Dozent: Dr. Andreas Zick Datum: 07.05.03 Referent: Hedde Baumann. Thema: Sozialer Vergleich BUGH Wuppertal SS 2003 Seminar: Sozialpsychologie II Dozent: Dr. Andreas Zick Datum: 07.05.03 Referent: Hedde Baumann Thema: Sozialer Vergleich Sozialer Vergleich Gliederung 1 Einleitung 2 Vorläufer der

Mehr

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet.

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. Übungsblatt 5 Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. 1. Ein Unternehmen ist A. ein Betrieb, der nach dem

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 10

Grundlagen der Volkswirtschaftslehre Übungsblatt 10 Grundlagen der Volkswirtschaftslehre Übungsblatt 10 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 19. November 2010 Überblick 1 Asymmetrische Information Verborgene Aktion Moralisches

Mehr

Mein Geld ist weg, aber ich bin noch da

Mein Geld ist weg, aber ich bin noch da Schwein gehabt? Mein Geld ist weg, aber ich bin noch da Lieber gleich zur lebenslangen Altersversorgung Maßstäbe in Vorsorge seit 1871 rente.lv1871.de Langlebigkeit wird unterschätzt Die Lebenserwartung

Mehr

Versicherungsnachfrage

Versicherungsnachfrage 1 Versicherungsnachfrage Modelle der Versicherungsnachfrage Modelle der Versicherungsnachfrage In der Literatur werden drei rten von Modellen bzw. Diagramme der Versicherungsnachfrage unterschieden: 2

Mehr

2.3 Ableitung optimaler Portfolien unter simultaner Berücksichtigung aller Szenarien

2.3 Ableitung optimaler Portfolien unter simultaner Berücksichtigung aller Szenarien Agenda 1. Traditionelle Asset Allocation nach Markowitz 2. Szenario-basierte Asset Allocation 2.1 Definition zukünftiger Entwicklungsszenarien 2.2 Ableitung optimaler Portfolien für einzelne Szenarien

Mehr

Thema Nr. 5: Versicherungsentscheidungen. Sicht der Prospect Theorie

Thema Nr. 5: Versicherungsentscheidungen. Sicht der Prospect Theorie Thema Nr. 5: Versicherungsentscheidungen der Nachfrager aus Sicht der Prospect Theorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

Finanzwissenschaft I Finanz- und Wirtschaftspolitik

Finanzwissenschaft I Finanz- und Wirtschaftspolitik PD Dr. Siegfried Gelbhaar Fachbereich IV: Wirtschafts- und Sozialwissenschaften / Mathematik, Informatik U N IV E R S IT Ä T TRIE R Vorlesung im Hauptstudium Finanzwissenschaft I Finanz- und Wirtschaftspolitik

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / PD Achim Wambach, D.Phil. Versicherungsmärkte WS 2000 / 2001 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

RISIKO- UND KRISENMANAGEMENT

RISIKO- UND KRISENMANAGEMENT RISIKO- UND KRISENMANAGEMENT INHALTSVERZEICHNIS Risikomanagement...1...3 GOLD - Das Handbuch für Gruppenleiter und Gruppenleiterinnen Risikomanagement No Risk no fun ist wohl ein bekannter Ausspruch in

Mehr

Übungen in Betriebswirtschaftslehre

Übungen in Betriebswirtschaftslehre Vahlens Übungsbücher der Wirtschafts- und Sozialwissenschaften Übungen in Betriebswirtschaftslehre Prüfungsaufgaben und -klausuren von Bitz, Prof. Dr. Michael Bitz 6., verbesserte Auflage Übungen in Betriebswirtschaftslehre

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

8. Optimale Krankenversicherungsverträge

8. Optimale Krankenversicherungsverträge Ausgewählte Bereiche der Wirtschaftspolitik 8-1 Prof. Andreas Haufler (WS 2009/10) 8. Optimale Krankenversicherungsverträge (vgl. Breyer/Zweifel/Kifmann, Kap. 6) Problem jeder (staatlichen und privaten)

Mehr

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN

I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN I. DIE ROLLE DES ÖFFENTLICHEN SEKTORS IN EINER MARKTWIRTSCHAFT: ANALYTISCHE GRUNDLAGEN 1. Die Effizienz von Märkten a) Partialanalytische Betrachtung Effizienz = genau das wird produziert, was es wert

Mehr

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 1 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 1 20. März 2008 1 / 123 Einführung Die Spieltheorie ist eine mathematische

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 22.07.2014 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr