Stochastik und Statistik für Ingenieure Vorlesung 8

Größe: px
Ab Seite anzeigen:

Download "Stochastik und Statistik für Ingenieure Vorlesung 8"

Transkript

1 PD. Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 8 6. Dezember 2013

2 4. Deskriptive Statistik 4.1. Grundbegriffe der Statistik Der Begriff Statistik wurde Ende des 17. Jahrhunderts geprägt für die verbale oder numerische Beschreibung eines bestimmten Staates oder den Inbegriff der Staatsmerkwürdigkeiten eines Landes oder Volkes (er hat dieselbe Wortwurzel wie Staat oder Staatsmann ). Heute hat dieser Begriff viele verschiedene Bedeutungen, z.b. für eine tabellarische oder graphische Darstellung von zahlenmäßig erhobenen Daten; einen Fachausdruck für eine Stichprobenfunktion; eine methodische Hilfswissenschaft zur zahlenmäßigen Untersuchung von Massenerscheinungen. Hier soll mit dem Begriff Statistik eine Zusammenfassung von Methoden verstanden werden, die zur zahlenmäßigen oder graphischen Analyse von Daten dienen soll, insbesondere im Zusammenhang mit Massenerscheinungen und zufallsbehafteten Vorgängen. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 1

3 Teilgebiete der Statistik Die beschreibende oder deskriptive Statistik behandelt z.b. beschreibende Aussagen über statistische Daten, deren Veranschaulichung oder Möglichkeiten der Datenreduktion. Eng damit verwandt ist die explorative Datenanalyse, bei der z.b. Daten auf Unstimmigkeiten hin untersucht werden oder Modellvorstellungen über die den Daten zugrundeliegenden Gesetzmäßigkeiten entwickelt werden. Die Methoden der schließenden oder beurteilenden Statistik dienen z.b. zur Ableitung von statistisch gesicherten Aussagen über die den Daten zugrunde liegenden Sachverhalte, etwa die Schätzung von Kenngrößen oder die Durchführung von statistischen Tests. Insbesondere in der schließenden Statistik werden (auch zum Teil sehr anspruchsvolle) mathematische Methoden verwendet, deren (Weiter-)Entwicklung und Begründung durch die mathematische Statistik erfolgt. Insgesamt bestehen enge Beziehungen zwischen der Statistik und der Wahrscheinlichkeitsrechnung (Stochastik). PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 2

4 Vorgehen bei statistischen Untersuchungen 1 Studienplanung (Vorbereitung und Planung): u. a.mit der exakten Formulierung des Untersuchungsziels der Festlegung der Art der Untersuchung, der Bestimmung der Stichprobengröße der Klärung organisatorischer und technischer Fragen (z.b. über die Verwendung welcher Tests, Ein- bzw. Ausschlusskriterien) der Berücksichtigung der entstehenden Kosten Durchführung (Erhebung, Datenerfassung): Man unterscheidet Primärdaten (die Daten werden eigens für den Untersuchungszweck erhoben) bzw. Sekundärdaten (vorhandenes Datenmaterial) Bei einer Primärstatistik unterscheidet man Vollerhebungen und Teilerhebungen Erhebungsarten bei primärstatistischen Untersuchungen sind z.b. die schriftliche bzw. mündliche Befragung die Beobachtung das Experiment die automatische Erfassung PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 3

5 Vorgehen bei statistischen Untersuchungen 2 Datenmanagement (Datenkontrolle und -aufbereitung): Hier können z.b. die Verkodierung, die Vorgehensweise mit Ausreißern oder Prüfungen zur sachlichen Richtigkeit (Plausibilität), Vollzähligkeit oder Vollständigkeit eine Rolle spielen. Analyse (Datenauswertung und-analyse): z.b. Beschreibung der Stichprobe (deskriptive Statistik) Schluss auf die Grundgesamtheit (schließende, induktive, analytische, beurteilende Statistik) Präsentation, Interpretation und Diskussion der Ergebnisse: z.b. zur Ableitung von Kernaussagen aus der Analyse der Daten PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 4

6 Untersuchungseinheiten, Grundgesamtheit und Stichprobe Daten werden an gewissen Objekten (den Untersuchungseinheiten ) beobachtet, z.b. Wirksamkeit eines Medikaments an Patienten Lebensdauern an elektronischen Geräten Ankunftsraten an Bahnkunden Einschätzung der wirtschaftl. Lage an Personen aus der Bevölk. Untersuchungseinheit= Einzelobjekt einer statistischen Untersuchung Jede Untersuchungseinheit wird hinsichtlich des Untersuchungsziels durch sachliche, räumliche und zeitliche Kriterien abgegrenzt, bzw. identifiziert. Grundgesamtheit= Gesamtheit von Untersuchungseinheiten mit übereinstimmenden Identifikationskriterien Stichprobe= Teilmenge der Grundgesamtheit, die bei einer stat. Untersuchung erfasst wird PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 5

7 Merkmale und Merkmalsausprägungen eigentlich interessieren nicht die Untersuchungseinheiten selbst, sondern bestimmte Eigenschaften der Untersuchungseinheiten (sogen. Merkmale), z.b. interessiert nicht der Patient selbst, sondern ob oder wie das Medikament bei ihm wirkt; bei Umfragen interessiert nicht der Passant, sondern seine Meinung Merkmal = Größe oder Eigenschaft einer Untersuchungseinheit, die auf Grund der interessierenden Fragestellung erhoben bzw. gemessen wird Merkmalsausprägung = möglicher Wert, den ein Merkmal annehmen kann Merkmalsträger = Untersuchungseinheit PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 6

8 Beispiel Mietspiegel Nettomiete abhängig von Merkmalen wie Art: Altbau, Neubau Lage: Innenstadt, Stadtrand Größe: 40m 2, 95m 2,... Baujahr: } {{ } 1932, 1965, 1983, 1995,... } {{ } Merkmale Ausprägungen In der Regel werden mehrere Merkmale an einem Merkmalsträger beobachtet; z.b. Merkmalsträger: Wetter zu einem best. Zeitpunkt an einem bestimmten Ort Merkmale: Temperatur, Niederschlagsmenge, Luftdruck, Bewölkung, Luftfeuchtigkeit, Sicht,... Merkmalsausprägungen müssen keine Zahlen sein; z.b. Bewölkung: wolkenlos, heiter, leicht bewölkt, wolkig, bedeckt Autofarbe: rot, grün, schwarz,... PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 7

9 Bwzeichnungen und Klassifikation von Merkmalen Bezeichnungen: Grundgesamtheit: Ω Untersuchungseinheit: ω oder i Merkmale: X, Y, Z oder auch X 1, X 2, X 3 Menge der Merkmalsausprägungen: S Merkmalsausprägungen: x = X(ω) oder x i = X(i) Merkmal ist eine Funktion X : Ω S, die jeder Untersuchungseinheit die zugehörige Merkmalsausprägung zuordnet. Klassifikation von Merkmalen: Merkmale qualitatives M. Rangmerkmal quantitatives M. diskret stetig PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 8

10 Merkmalstypen qualitatives Merkmal: es gibt weder eine nat. Ordnung der Ausprägungen, noch ist es sinnvoll, Abstände oder Verhältnisse der Ausprägungen zu betrachten; Ausprägungen meist verbal beschrieben Rangmerkmal: es gibt eine nat. Ordnung der Ausprägungen, aber es ist nicht sinnvoll, Abstände oder Verhältnisse der Ausprägungen zu betrachten; Ausprägungen verbal oder durch nat. Zahlen beschrieben quantitatives Merkmal: es gibt nat. Ordnung, Abstände oder Verhältnisse sind interpretierbar diskretes Merkmal: Ausprägungen sind isolierte Zustände, Menge der möglichen Ausprägungen ist abzählbar stetiges Merkmal: Ausprägungen liegen dicht, zwischen je zwei Ausprägungen ist stets eine weitere möglich Beachte: Jede praktische Messung bei stetigen Merkmalen ist durch die jeweilige Grenze der Messgenauigkeit bedingt diskret. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 9

11 Merkmalstypen (Beispiele) Merkmal Ausprägungen Art Geschlecht m / w keine Ordnung qualitativ Automarke Fiat, Toyota,... keine Ordnung qualitativ Prüfungsnote 1, 2, 3, 4, 5 Ordnung, Rangmerkmal Abst. nicht interpr. Beliebtheit von sehr, mäßig, nicht Ordnung, Rangmerkmal Politikern Abst. nicht interpr. Anzahl Kinder 0, 1, 2, 3,... Ordnung, quantitativ, in einer Familie Abst. interpr., diskret keine Auspr. zw. 2 anderen mögl. Regenmenge 20mm, 50mm,... Ordnung, quantitativ, an einem Tag Abst. interpr., stetig Verhältn. interpr., zwischen 2 Auspr. immer weitere mögl. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 10

12 Das Problem der Repräsentativität Die Repräsentativität spielt für statistische Auswertungen und Aussagen eine sehr große Rolle. Dabei können u.a. zwei Probleme bei Teilerhebungen von Bedeutung sein. Das Auswahlverfahren der Individuen aus der Grundgesamtheit (das Ziehen der Stichprobe). Dieses sollte so organisiert sein, dass jedes Individuum die gleiche Chance hat, ausgewählt zu werden und dass die Individuen unabhängig voneinander ausgewählt werden. Zu beachten ist, dass zu jedem Individuum auch mehrere Merkmale beobachtet werden können. Die Erhebung einer Stichprobe aus Zufallsexperimenten. Dabei sollte gewährleistet sein, dass die Versuche unter gleichbleibenden Versuchsbedingungen durchgeführt werden und dass die Zufallsexperimente unabhängig voneinander durchgeführt werden. Auch in diesem Fall können mehrere Merkmale von Interesse sein. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 11

13 Nutzung von Statistik-Computerprogrammen Statistische Untersuchungen werden heutzutage im Allgemeinen unter Verwendung von Statistik-Computerprogrammen durchgeführt. Im Rahmen dieser Vorlesung werden entsprechende Vorgehensweisen mit Hilfe von 2 Programmen (von unterschiedlichem Typ) illustriert. Diese können nicht direkt in den Übungen geübt werden, deshalb sind hier selbstständige Bemühungen wünschenswert. Die Interpretation der Ausgabeinformationen der Computerprogramme und die prinzipielle Vorgehensweise (die Schritte, die nacheinander und in Abhängigkeit von bereits erzielten Ergebnissen durchzuführen sind) sind jedoch Bestandteil der Vorlesung und auch der Übung und gehören zum Prüfungsstoff. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 12

14 Statgraphics Statgraphics Centurion ist ein menübasiertes Statistik-Computerprogramm, für das an der TU Bergakademie Freiberg eine Campuslizenz existiert. Informationen über die Installation des Programms und eine Anleitung zur Nutzung finden Sie z.b. auf der Webseite (unten) Ein ähnliches (auch kommerzielles) menübasiertes Statistik-Computerprogramm ist SPSS. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 13

15 Das Programmpaket R R ist ein freies Statistik-Softwarepaket. Es kann unter kostenlos heruntergeladen werden. R ist ein kommandozeilenorientiertes Programm. Man gibt Befehle ein, die sofort ausgeführt werden und oft Ausgabeinformationen erzeugen. Mit Hilfe von Skripten können aufeinanderfolgende Befehlsketten zur Verarbeitungen vorbereitet und dann jedes Mal bei Bedarf ausgeführt werden. Durch die Mitarbeit vieler Personen wächst der Umfang der Programme und damit der Umfang der mit R bearbeitbaren Probleme ständig. Ein ähnliches kommandozeilenorientiertes Programm ist SPlus. Dieses ist allerdings ein kommerzielles Programm. PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 14

16 Beispieldatensatz Iris gehört als Beispieldatensatz zum Programmpaket R Datensatz enthält Werte von jeweils 50 Exemplaren von 3 Pflanzenarten Iris setosa (Borsten-Schwertlilie), Iris versicolor (Schwertlilie) und Iris virginica (Virginische oder Blaue Sumpfschwertlilie) zu jeder Blume wurden jeweils die folgenden Informationen erhoben: die Länge des Kelchblattes in cm ( Sepal.Length ) die Breite des Kelchblattes in cm ( Sepal.Width ) die Länge des Blütenblattes in cm ( Petal.Length ) die Breite des Blütenblattes in cm ( Petal.Width ) die Blumenart ( Species ) die Daten können in R wie folgt geladen werden: > data(iris) Informationen zum Datensatz erhält man in R durch > help(iris) PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 15

17 R Dokumentation zum Iris-Beispieldatensatz (> help(iris)) R: Edgar Anderson's Iris Data iris {datasets} R Documentation Edgar Anderson's Iris Data Description This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica. Usage iris iris3 Format iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species. iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as represented by S-PLUS. The first dimension gives the case number within the species subsample, the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W., and the third the species. Source Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, Part II, The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2 5. References Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole. (has iris3 as iris.) See Also matplot some examples of which use iris. Examples dni3 <- dimnames(iris3) ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4, dimnames = list(null, sub(" L.",".Length", sub(" W.",".Width", dni3[[2]])))), Species = gl(3, 50, labels=sub("s", "s", sub("v", "v", dni3[[3]])))) all.equal(ii, iris) # TRUE [Package datasets version Index] PD. Dr. Frank Heyde (TUBAF) Stochastik/Statistik für Ingenieure Vorlesung 8 16

Stochastik und Statistik für Ingenieure Vorlesung 9

Stochastik und Statistik für Ingenieure Vorlesung 9 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 9 4. Dezember 2012 Einige Grundbegriffe Merkmalsträger, statistische Einheit,

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik Vorlesung 1 K.Gerald van den Boogaart http://www.stat.boogaart.de/ds0809 Datenanalyse und Statistik p.1/48 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen

Mehr

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik Vorlesung 1 K.Gerald van den Boogaart http://www.stat.boogaart.de/ws0708/dn0708 Datenanalyse und Statistik p.1/42 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Untersuchungsdesign: 23.11.05

Untersuchungsdesign: 23.11.05 Untersuchungsdesign: 23.11.05 Seite 1! Ablauf Untersuchungsdesign! Beispiel! Kleine Übung! Diskussion zur Vorbereitung von Übung 2 Während Sie das Untersuchungsdesign festlegen, planen und bestimmen Sie:

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

BM-Datenanalyse eine Exploration

BM-Datenanalyse eine Exploration BM-Datenanalyse eine Exploration Marcello Robbiani ZHAW und EBMK www.zuguttenberg.de/dokumente/zuguttenberg_presseportrait.jpg Ein Web-basierter Bildervortrag Allgemeingut, Eigengewächs: Keine Quellenangabe

Mehr

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009 Tipps und Tricks bei Gästebefragungen Dr. Tobias Luthe Projektleiter ITF und Dozent für Nachhaltigkeit und Tourismus Tourismus Trend Forum Graubünden 2009 Seite 1 Struktur der Präsentation Bedeutung der

Mehr

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Foliensymbolik... Beginn eines neuen Kapitels (Folienkopf) Übung... Aufgaben für die Übungen R Programmcode 2 Einführung

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Datenerfassung und Datenmanagement

Datenerfassung und Datenmanagement Datenerfassung und Datenmanagement Statistische Auswertungssysteme sind heute eine aus der angewandten Statistik nicht mehr wegzudenkende Hilfe. Dies gilt insbesondere für folgende Aufgabenbereiche: -

Mehr

Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung. Prof. Dr. W. Laufner. Beschreibende Statistik. Wozu statistische Methoden

Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung. Prof. Dr. W. Laufner. Beschreibende Statistik. Wozu statistische Methoden Modul 02: Zum Ablauf einer statistischen (empirischen) Untersuchung 1 Modul 02: unübersichtliche, unstrukturierte große Datenmenge Wozu statistische Methoden Informationen, Erkenntnisse DV-gestützte Datenanalyse

Mehr

3 So gewinnen Sie statistische

3 So gewinnen Sie statistische 3 So gewinnen Sie statistische Daten Hier erfahren Sie woher Sie Daten bekommen. welche Techniken zur Datenerhebung es gibt. was eine Stichprobe ist, und auf welche Weise Sie sie ziehen können. Es gibt

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Marktforschung. Marketing für den KMU / J. Schoch

Marktforschung. Marketing für den KMU / J. Schoch Marktforschung 9. Unterrichtsblock Marketing für den KMU Die Marktforschung hat zum Ziel, Informationen sei es auf dem Feld oder mit Statistiken zu gewinnen, um Trends, Möglichkeiten, Alternativen, Sinn

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

John Dewey (Art as Experience, 1935, S.50)

John Dewey (Art as Experience, 1935, S.50) Wenn der Künstler in seinem Schaffensprozess keine neue Vision ausbildet, so arbeitet er mechanisch und wiederholt irgendein altes Modell, das wie eine Blaupause in seinem Geist haftet John Dewey (Art

Mehr

Software und Visualisierungen. Erich Schubert, Dr. Arthur Zimek. 2013-0X-XX KDD Übung

Software und Visualisierungen. Erich Schubert, Dr. Arthur Zimek. 2013-0X-XX KDD Übung Software und Visualisierungen Erich Schubert, Dr. Arthur Zimek Ludwig-Maximilians-Universität München 2013-0X-XX KDD Übung Ein recht einfacher Datensatz, online unter: http://aima.cs.berkeley.edu/data/iris.csv

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

TÜV Service tested Prüfgrundlagen

TÜV Service tested Prüfgrundlagen TÜV Service tested Prüfgrundlagen 60 Grundsätzliche Prüfgrundlagen Für die Auszeichnung TÜV Service tested müssen drei Voraussetzungen erfüllt sein: 1. Die Gesamtzufriedenheit muss von den Kunden des Unternehmens

Mehr

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern Projekt zur Entwicklung, Umsetzung und Evaluation von Leitlinien zum adaptiven Management von Datenqualität in Kohortenstudien und Registern gefördert durch die Indikatoren von Datenqualität Michael Nonnemacher

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE

14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE 14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE Marktforschung (Prüfungszeit: 1.5 Stunden schriftlich) ALLGEMEIN Sinnvolle Selektionskriterien für die Wahl eines geeigneten Marktforschungsinstitutsumschreiben

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Inhaltsverzeichnis Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung:

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Einführung in SPSS. 1. Die Datei Seegräser

Einführung in SPSS. 1. Die Datei Seegräser Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Inhaltliche Schwerpunkte der einzelnen Methodenmodule

Inhaltliche Schwerpunkte der einzelnen Methodenmodule Inhaltliche Schwerpunkte der einzelnen Methodenmodule PM 1: Ü: Erkundungen zur Forschungspraxis Die Übung zielt darauf ab, erste Einblicke in zentrale Fragen des sozialwissenschaftlichen Forschungsprozesses

Mehr

Einfaches Datenmanagement in R

Einfaches Datenmanagement in R Einfaches Datenmanagement in R Achim Zeileis 2009-02-20 1 Daten einlesen Datensätze werden in R typischerweise als Objekte der Klasse "data.frame" dargestellt. In diesen entsprechen die Zeilen den Beobachtungen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Gliederung der Vorlesung Wirtschaftsstatistik Seite im Buch

Gliederung der Vorlesung Wirtschaftsstatistik Seite im Buch Gliederung der Vorlesung Wirtschaftsstatistik Seite im Buch -1- -2- Zur Schließenden Statistik 1 (Kurzüberblick anhand von Beispielen) 1 Begriffe 1.1 Stichprobe/Grundgesamtheit 1.2 Wahrscheinlichkeitsbegriffe

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Sozialwissenschaftliche Methoden I

Sozialwissenschaftliche Methoden I Sozialwissenschaftliche Methoden I 4. Grundlagen der empirischen Sozialforschung Wintersemester 2008/09 Jr.-Prof. Dr. Thomas Behrends Internationales Institut für Management ABWL, insb. Personal und Organisation

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Ablauf einer statistischen Analyse

Ablauf einer statistischen Analyse 2 Ablauf einer statistischen Analyse Dieses Kapitel skizziert die Schritte, die vor bzw. nach der eigentlichen statistischen Auswertung notwendig sind. NewcomerInnen in der Statistik kennen zwar die Methoden

Mehr

Leitfaden zur Datenerfassung in Excel

Leitfaden zur Datenerfassung in Excel Leitfaden zur Datenerfassung in Excel Hinweise zur korrekten Dateneingabe Johannes Hain Studentische Statistische Beratung Universität Würzburg 1 / 21 Inhaltsverzeichnis 1 Allgemeines 2 Variableneingabe

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Statistik und Datenanalyse. eine praktische Einführung

Statistik und Datenanalyse. eine praktische Einführung Statistik und Datenanalyse eine praktische Einführung Antony Unwin Lehrstuhl für Rechnerorientierte Statistik und Datenanalyse Institut für Mathematik Universität Augsburg unwin@math.uni-augsburg.de Augsburger

Mehr

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler Zusatzmaterialien zum UTB-Band Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler bereitgestellt über www.utb-shop.de/9783825238612 Das Buch vermittelt

Mehr

Roland Bässler. Research & Consultinq

Roland Bässler. Research & Consultinq J 3 z = Roland Bässler Research & Consultinq Roland Bässler QUANTITATIVE FORSCHUNGSMETHODEN Ein Leitfaden zur Planung und Durchführung quantitativer empirischer Forschungsarbeiten (2. überarb. Auflage)

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten

Statistische Datenauswertung. Andreas Stoll Kantonsschule Olten Statistische Datenauswertung Andreas Stoll Beschreibende vs. schliessende Statistik Wir unterscheiden grundsätzlich zwischen beschreibender (deskriptiver) und schliessender (induktiver) Statistik. Bei

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Fortgeschrittene Statistik SPSS Einführung

Fortgeschrittene Statistik SPSS Einführung Fortgeschrittene Statistik SPSS Einführung Q U A N T I T A T I V E M E R K M A L E, Q U A L I T A T I V E M E R K M A L E, A U S P R Ä G U N G E N, C O D I E R U N G E N, S K A L E N N I V E A U, D A T

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Interconnection Technology

Interconnection Technology Interconnection Technology Register: 23 Date: 25.05.99 Measuring leads from Hirschmann Following measuring leads are replaced by the next generation. Additionally connectors and sockets in the same design

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

5. Untersuchungsdesigns

5. Untersuchungsdesigns Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 5. Untersuchungsdesigns Experimente als Instrument zur Prüfung von Kausalität Kohortenstudien, Fall-Kontroll-Studien,

Mehr

Statistik 1 für SoziologInnen

Statistik 1 für SoziologInnen Statistik 1 für SoziologInnen Allgemeine Einführung Univ.Prof. Dr. Marcus Hudec http://homepage.univie.ac.at/marcus.hudec Image der Statistik Mit Statistik kann man alles beweisen Traue keiner Statistik

Mehr

Quadt Kunststoffapparatebau GmbH

Quadt Kunststoffapparatebau GmbH Quadt Kunststoffapparatebau GmbH Industriestraße 4-6 D-53842 Troisdorf/Germany Tel.: +49(0)2241-95125-0 Fax.: +49(0)2241-95125-17 email: info@quadt-kunststoff.de Web: www.quadt-kunststoff.de Page 1 1.

Mehr

Ästhetik von Websites

Ästhetik von Websites Meinald T. Thielsch Ästhetik von Websites Wahrnehmung von Ästhetik und deren Beziehung zu Inhalt, Usability und Persönlichkeitsmerkmalen Inhaltsverzeichnis Vorwort xiii I Theoretische Grundlagen 1 1 Das

Mehr

Schneeballverfahren 25.02.2005 Autor: Daniel Dupart

Schneeballverfahren 25.02.2005 Autor: Daniel Dupart Inhaltsverzeichnis Schneeballverfahren 25.02.2005 Autor: Daniel Dupart Inhaltsverzeichnis... - 1 - Was ist das Schneeballverfahren... - 1 - Auswahlverfahren... - 1 - Befragung... - 2 - Quotenverfahren...

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter

Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter Verändern sich zwischenmenschliche Beziehungen im Handyzeitalter LV: 18.92 Empirische Forschungsmethoden in praktischer Anwendung Leiterin: Mag. Dr. Gunhild Sagmeister Inhaltsverzeichnis 1. Fragestellung/Erkenntnisinteresse

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Inhaltsverzeichnis Einfaktorielle Rangvarianzanalyse mit Messwiederholungen... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-3)... 3 Teil 1 -

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

8. Grundlagen der empirischen Sozialforschung

8. Grundlagen der empirischen Sozialforschung Einführung in das Studium der Management- und Wirtschaftswissenschaften WS 2013/14 8. Grundlagen der empirischen Sozialforschung Internationales Institut für Management und ökonomische Bildung Professur

Mehr

Gesundheitsmonitor Feld- und Methodenbericht - Welle 21 - Bevölkerungsbefragung. GfK Health Care Im Auftrag der Bertelsmann Stiftung

Gesundheitsmonitor Feld- und Methodenbericht - Welle 21 - Bevölkerungsbefragung. GfK Health Care Im Auftrag der Bertelsmann Stiftung Gesundheitsmonitor Feld- und Methodenbericht - Welle 21 - Bevölkerungsbefragung GfK Health Care Im Auftrag der Bertelsmann Stiftung Projektleitung: Holger Paulsen Telefon: +49 (0)911 395 4540 Telefax:

Mehr

Messsystemanalyse (MSA)

Messsystemanalyse (MSA) Messsystemanalyse (MSA) Inhaltsverzeichnis Ursachen & Auswirkungen von Messabweichungen Qualifikations- und Fähigkeitsnachweise Vorteile einer Fähigkeitsuntersuchung Anforderungen an das Messsystem Genauigkeit

Mehr

User Tasks for the Empirical Evaluation of SemTimeZoom and KNAVE

User Tasks for the Empirical Evaluation of SemTimeZoom and KNAVE User Tasks for the Empirical Evaluation of SemTimeZoom and KNAVE Stephan Hoffmann November 2011 i Contents 1 User Tasks 1 1.1 Training Tasks................................... 1 1.2 Tasks Dataset 1..................................

Mehr

Hauptseminar: Praxis der Umfrageforschung

Hauptseminar: Praxis der Umfrageforschung Hauptseminar: Praxis der Umfrageforschung Gliederung Vorbesprechung Thema und Gliederung der Veranstaltung Teilnahmevoraussetzungen Prüfungen und Scheine Organisatorisches Überblick: Problemstellungen

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

NETWORK PREMIUM POP UP DISPLAY

NETWORK PREMIUM POP UP DISPLAY Premium Pop Up System seamless graphic precision very compact and versatile pop-up system quick to set up at any location comes in a number of different shapes; straight, curved, wave-shaped, stair formations,

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Modul 14 (BA Bw) bzw. Modul 3 (BA IB) bzw. Modul 4 (BA IBM): Wirtschaftsstatistik Teil 1: Beschreibende Statistik

Modul 14 (BA Bw) bzw. Modul 3 (BA IB) bzw. Modul 4 (BA IBM): Wirtschaftsstatistik Teil 1: Beschreibende Statistik Fachhochschule Dortmund Wintersemester 12/13 Fachbereich Wirtschaft Prof. Dr. Laufner Studiengänge BA Betriebswirtschaft und BA International Business (Management) Übungsaufgaben zur Woche 7. + 8. 1. 13

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr