Anleitung zu Blatt 6, Analysis II

Größe: px
Ab Seite anzeigen:

Download "Anleitung zu Blatt 6, Analysis II"

Transkript

1 Department Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt 6, Analysis II SoSe Rotationskörper, Kurvenintegrale. Teil Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen zusätzlichen Erläuterungen sind diese Unterlagen unvollständig (z. Bsp. fehlen oft wesentliche Voraussetzungen). Tipp oder Schreibfehler, die rechtzeitig auffallen, werden nur mündlich während der Veranstaltung angesagt. Eine Korrektur im Netz erfolgt NICHT! Eine Veröffentlichung dieser Unterlagen an anderer Stelle ist untersagt! Klasusurberatungstermine: Analysis I: ************ Freitag 6.7., -4. Uhr, Audimax II TUHH Weiterer Termin im September wird noch bekannt gegeben. Analysis II: ************ Donnerstag 5.7., 3-5 Uhr, Audimax I TUHH Dienstag 7.8., 4-6. Uhr, Audimax I TUHH

2 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 Rotationskörper Betrachte Körper K der durch Rotation des Graphen einer Funktion f : [a,b] R + {}, f(x) = y um die x-achse entsteht. Schneide den Körper mit Ebenen parallel zur (y,z) Ebene. Es entstehen Kreisscheiben mit den Flächeninhalten π(f(x i )) Abbildung : Rotation: xsin(x) um die x-achse, Wurzel y um die y-achse Ist f integrierbar, so gilt für das Volumen des Rotationskörpers V rot,x = π b a (f(x)) dx Rotation um y-achse Volumen des Körpers der zwischen der Mantelfläche und der y-achse entsteht: Sei y = f(x). Forme (wenn möglich) um : x = g(y) und rotiere wie oben V rot,y = π f(b) f(a) (g(y)) dy = π b a x f (x) dx Mantelflächen von Rotationskörpern Approximiere durch Mantelflächen von Kegelstümpfen. M = b a πf(x) +(f (x)) dx

3 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 3 Beipiel : Gegeben sei die Funktion y = f(x) := x mit x. Skizzieren Sie die durch Rotation des Funktionsgraphen um die x bzw. y Achse entstehenden Rotationskörper und berechnen Sie deren Volumen. V rot,x = π ( ) x x 5 dx = π 5 = π 3 5. Rotation um y Achse: y [,4], x = g(y) = y oder V rot,y = π V rot,y = π 4 ( y) dy = π y x (x) dx = π x4 4 = π 6 = 8π. = π 6 = 8π. Beipiel : Gegeben sei die Funktion y = f(x) := xsin(x) mit x π. Berechnen Sie das Volumen des Rotationskörpers, der durch Rotation des Funktionsgraphen um die y Achse entsteht. Hier hilft der Ansatz x = g(y) aus mehreren Gründen nicht weiter. Wir rechnen also: V rot,y = π π x (xsinx) dx = π π = π [ π x cosx+x 3 sinx ]π π = π4 = π4 x (sinx+xcosx) dx xcosx+3x sinx dx 8 +π [ π xsinx+3x cosx ]π π sinx 6xcosxdx π 8 +π +π[cosx+6xsinx] π π 6sinxdx = π4 8 π 8π.

4 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 4 Beispiel 3: Berechnen Sie die Mantelfläche des Rotationskörpers, der bei der Rotation von y = f(x) = x, x [,] um die x Achse entsteht. M = b a πf(x) +(f (x)) dx = πx +4x dx Mit der Substitution x = sinh(u) dx, du = cosh(u), dx = cosh(u)du, u = arsinh(x) und β := arsinh (4).947 folgt β M = = = β β π sinh u +sinh u coshudu 4 π sinh (u)cosh (u) β ( π e u e u ) du = du π 64 (e4u +e 4u )du β π 3 (cosh(4u) )du = π 3 (sinh(4β) 4 β) Bemerkung: Das war kein besonders doofes Beispiel. Mantelflächen sind in der Regel so fies!

5 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 5 Kurven und Bogenlängen Zum Beispiel: Bahn eines Teilchens. Geben Sie für jeden Zeitpunkt t [a,b] den Ort x(t) des Teilchens an: c : [a,b] R 3, c(t) = (x (t), x (t), x 3 (t)) T = x(t) Definition: Eine stetige Funktion c : [a,b] R n heißt (Parameterdarstellung einer) Kurve im R n mit Anfangspunkt c(a) und Endpunkt c(b). Die Kurve heißt geschlossen, wenn c(a) = c(b) gilt. BEISPIELE: a) c : [,] R 3, c(t) = a+t(b a) T a b R 3 fest. (geradlinige Verbindung von a und b) b) c : [,π] R, c(t) = (acost, bsint) T c) c : [,4π] R, c(t) = (acost, bsint) T d) c : [,π] R, c(t) = (acos(t), bsin(t)) T e) c : [,π] R, c(t) = (acos( t), bsin( t)) T Bild der letzten vier Kurven =? Kurven b)-e) unterscheiden sich in : Geschwindigkeit, Umlaufsinn, Anzahl der Durchläufe Kreis : x +y = r Ellipse: x a + y b =

6 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 6 Kuspe:(t 3,t ) Zykloide:(t sin t, cos t) Abbildung : Kuspe, Zykloide, Schraubenlinie mit 6 Windungen f) c : [,] R, c(t) = (t 3, t ) T (Kuspe) g) c : [,π] R, c(t) = (rt asint, r acost) T (Zykloide) h) c : [,π] R 3, c(t) = (rcos(t), rsin(t), t) T (Schraubenlinie mit Radius r, Ganghöhe π und 6 Windungen) i) Plotten in Matlab z.b. Kuspe t=-:.5:; % oder linspace(-,,4); x= t.^3; y=t.^; plot(x,y) %(in 3-d : plot3(x,y,z))

7 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 7 Kurvenlänge: Approximiere Kurve durch Polygonzug durch c(t i ), i =,,,m m Länge des Polygonzugs: l(z) = c(t i ) c(t i ) Für jede C Kurve gilt unabhängig von der Parametrisierung i= L(c) = b a ċ(t) dt. Beispiel: c : [,π] R 3, cos(t ) tsin(t ) c(t) := sin(t ) = ċ(t) = tcos(t ) t ċ(t) = 4t sin (t )+ 4t cos (t )+4 = 4+4t L(c) = π 4+4t dt +t dt = [t +t ] t t +t dt = = [t +t ] t + +t dt [t +t ] +t dt + +t dt Substutution t = sinh(u), dt = cosh(u) du im letzten Integral ergibt +t [t +t ] dt = + du = t +t + arsinh(t)+c Also = t +t + ln(t+ +t )+C L(c) = π +t dt = = π +4π + ln(π + +4π ) [ t +t + ln(t+ ] π +t )

8 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 8 Parametrisierung nach der Bogenlänge Eingangsbeispiele zu Kurven: Ellipse wurde je nach Parametrisierung unterschiedlich schnell durchlaufen. Gleichmäßigen Durchlauf mit Geschwindigkeit ċ(t) = erreicht man mit Parametrisierung nach der Bogenlänge: Sei c : [,π] R, c(t) = (rcost, rsint) T Definiere die Bogenlängenfunktion s : [,π] [, L(c)] = [, πr], s(t) := Hier also s(t) = t rdτ = rt [, πr] Wähle σ = s(t) = rt als neuen Parameter. Definiere t ċ(τ) dτ C : [,πr] R, C(σ) = (rcos( σ r ), rsin(σ r ))T Es gilt dann C (σ) = rsin( σ r ) r rcos( σ r ) = Ċ(σ) = r Allgemein definieren wir für eine glatte Kurve c : [a,b] R n, t c(t) mit der Länge L( c) die Bogenlängenfunktion s : [a,b] [, L(c)], s(t) := t ċ(τ) dτ s ist eine streng monoton wachsende Funktion. Es ist also ein Parameterwechsel von t zu s(t) möglich. Wir definieren die nach der Kurvenlänge parametrisierte Kurve als Es gilt dann d dσ ĉ(σ) =. ĉ(σ) := c(s (σ)) Der Tangenteneinheitsvektor der Kurve im Punkt ĉ(σ) ist T(σ) = d dσ ĉ(σ) Der Hauptnormalenvektor der Kurve im Punkt ĉ(σ) ist n(σ) = d dσ ĉ(σ)

9 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 9 und die Krümmung der Kurve im Punkt ĉ(σ) ist κ(σ) = d dσ ĉ(σ) Für das Beispiel unseres Kreises erhalten wir rsin( σ r T(σ) = ) ( r rcos( σ r ) sin( σ = r ) ) cos( σ r ) r und κ(σ) = ( r cos(σ r ) ) r sin(σ r ) = r Bei beliebiger Parametrisierung gilt für den Tangenteneinheitsvektor T und die Krümmung κ T(t) = ẋ(t) ẋ(t) ẍ(t) ẋ(t), κ(t) = < ẋ(t), ẍ(t) > ẋ(t) Im R 3 gilt damit κ(t) = ẋ(t) ẍ(t) ẋ(t) 3 Beispiel: c : [, π ] R, c(t) = ( cos (t)) sin (t) = ċ(t) = ( ) ( sin(t)cos(t) sin(t) cos(t) = sin(t)cos(t) ) = ċ(t) = 4sintcost L(t) = 4sin(τ)cos(τ)dt = sin (τ) t = sin (t) = σ t = arcsin( σ ) und cos (t) = σ. ĉ(σ) = c(t(σ)) = c(arcsin( σ )) = ( σ σ ) ĉ (σ) = ( ) ĉ (σ) = ( Krümmung = κ =. Logisch, da c auch als c(x) = ( x x) geschrieben weden kann! )

10 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 Matlab Codes % Rotationskörper, f= rotierte Funktion, hier % x^ bzw. x.*sin(x) hold on % optional: plotten der Achsen: plot3([-..7],[ ],[ ], g ) %x-achse plot3([ ],[-.7.7],[ ], g ) %y-achse plot3([ ],[ ],[-.7.7], g ) %z-achse x=linspace(,pi/,); % x-vektor f=x.*x; %x.*sin(x); % Funktionswerte y=x.*; % Nullvektor mit der Länge von x plot3(x,y,f); % Graph der Funktion f plot3(x,y,-f); % Graph der Funktion -f % Im folgenden werden einzelne Schnitte von Ebenen senkrecht % zur x-achse durch den Rot.koerper durch plotten von % Kreisen mit Radius f(x) um den Punkt (x,,)^t angedeutet for x=:pi/8:pi/ % x-koordinaten, für die % Schnitte gezeichnet werden f=x.*x; % Funktionswerte zu x %f=x.*sin(x); % alternative Funktionswerte phi=linspace(,*pi,); % Winkel für die % ein Punkt auf den Kreisen mit %Radius f(x) und Mittelpunkt x % berechnet wird y=f*sin(phi); z=f*cos(phi); xv=x*ones(size(phi)); % der x-vektor enthaelt in % allen Komponenten den aktuellen x-wert, % und hat die gleiche Länge wie der phi- % (also auch der y- oder z-)vektor plot3(xv,y,z, r ) end

11 Anleitungen Analysis II, H. P. Kiani, SoSe, Blatt 6 ALTERNATIV: % Rotation der Funktion g(y)= sqrt(y) um die y-achse im Bereich % y \in [.5, ]. Die y_achse erscheint im Bild als z-achse, % daher z=.5:.:; Die beiden anderen Koordinaten liegen im Bild auf % Kreise mit Radius g(z) grid on % axis([ ]) %Festlegung der Achsen (optional) z=:.:; x=linspace(-sqrt(),sqrt(),); y=x; [X,Y,Z]=meshgrid(x,y,z); %Erzeugt xyz Gitterpunkte im 3-d-Raum V=X.^+Y.^-(sqrt(Z)).^; % V wird für jeden Gitterpunkt berechnet p= patch(isosurface(x,y,z,v,)) %isosurface(a,b,c,f,w) berechnet %(a,b,c) Werte, für die V(a,b,c)=w % ist (Niveauflächen, vgl Analysis III) %patch ermöglicht die Visualisierung der %(z.b. durch isosurface erzeugten) Fläche % in R^3 set(p, FaceColor, w, EdgeColor, b ); %Legt verschiedene % Eigenschaften des Objektes p fest. % Hier Oberfläche : weiß = nicht sichtbar. % Netz blau. Alternativen z.bsp % set(p, FaceColor, red, EdgeColor, none ); % rote Fläche, kein Netz daspect([ ]) %Skalierung der Achsen axis tight % Achsenbereich wird den Daten angepasst % axis equal % Skalierung auf allen Achsen gleich camlight %Schatten lighting flat % Alternativen: gouraud, none, phong

Hörsaalübung 5, Analysis II

Hörsaalübung 5, Analysis II Fachbereich Mathematik der Universität Hamburg Dr.H.P.Kiani Hörsaalübung 5, Analysis II SoSe 8, 4./ 5. Juni Rotationskörper und Kurvenintegrale Die ins Netz gestellten Kopien der Unterlagen sollen nur

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 4, Analysis II SoSe 6, 3/4. Mai Uneigentliche und parameterabhängige Integrale, Rotationskörper Die ins Netz gestellten Kopien

Mehr

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie

D-BAUG Analysis I HS 2014 Dr. Meike Akveld. Serie D-BAUG Analysis I HS 2014 Dr. Meike Akveld Serie 12 1. Für die Hyperbel mit der Gleichung x 2 y 2 = 1 (siehe Abbildung 1) betrachten wir die Parametrisierung ( ) ( ) x(t) cosh t r : R R 2, r(t) = =. y(t)

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Analysis III für Studierende der Ingenieurwissenschaften

Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 7/8 Dr. K. Rothe Analsis III für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben u Blatt Analsis III, K. Rothe, WiSe 7/8, Hörsaalübung

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 017 Dr. K. Rothe Analysis II für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 1 Aufgabe 1: Aus einem kreisförmigen

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge.

Zwischenprüfung, Gruppe A Analysis I/II. Bestimmen Sie bei jeder der folgenden Aussagen, ob sie wahr oder falsch ist. ist eine Nullfolge. Multiple Choice. Die folgenden acht Aufgaben sind Multiple Choice-Aufgaben. Bei jeder Aufgabe gibt es 4 Aussagen, die wahr oder falsch sind. Für 4 korrekte Antworten gibt es 4 Punkte, für 3 korrekte Antworten

Mehr

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen

1. Zykloide. 2. Rollkurven. 3. Tangenten der Zykloide. 4. Bogenlänge der Zykloide. 5. Bogenelement. 6. Zykloidenbogen . Zykloide. Rollkurven 3. Tangenten der Zykloide 4. Bogenlänge der Zykloide 5. Bogenelement 6. Zykloidenbogen 7. Krümmungskreisradius der Zykloide 8. Natürliche Gleichung der Zykloide 9. Die natürliche

Mehr

Lokale Extrema von Funktionen mehrerer Variabler

Lokale Extrema von Funktionen mehrerer Variabler Kapitel 11 Lokale Extrema von Funktionen mehrerer Variabler Bemerkung 11.1 Motivation. Bei skalarwertigen Funktionen einer Variablen gibt es notwendige und hinreichende Bedingungen für das Vorliegen von

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

Musterlösungen zu Serie 6

Musterlösungen zu Serie 6 D-ERDW, D-HEST, D-USYS Mathematik II FS 3 Dr. Ana Cannas da Silva Musterlösungen zu Serie 6. Die Bogenlänge des Graphen einer differenzierbaren Funktion b f : [a, b] R ist durch + (f (x)) dx gegeben. Insbesondere

Mehr

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit

Kurven. Darstellungsweisen. Steigung von Kurven. Implizite Funktionen. Bogenlänge. Felder. Kurvenintegrale. Wegunabhängigkeit Ergänzung Kurven Darstellungsweisen Steigung von Kurven Implizite Funktionen Bogenlänge Felder Kurvenintegrale Wegunabhängigkeit Kurven Darstellungsweisen Funktionen und Kurven Wir haben schon zahlreiche

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske

Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 2014 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Vorlesungsvertretung Analysis II, H. P. Kiani, SoSe 214 Ergänzungen/Erläuterungen zu den Folien von Prof. Iske Kurvenintegrale Zur Erinnerung:

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II 1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr.

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr. Fachbereich Informatik Sommersemester 8 Prof Dr Peter Becker Höhere Analysis Lösungen zu Aufgabenblatt 7 Aufgabe (Eigenschaften von Kurven ++6 Punkte (a Untersuchen Sie, ob die Kurve sin(πt cos(πt t t,

Mehr

Einführung in Matlab, 2. Teil

Einführung in Matlab, 2. Teil 1 / 18 Einführung in Matlab, 2. Teil Christof Eck, Monika Schulz und Jan Mayer Plotten von Funktionen einer Veränderlichen 2 / 18 Matlab plottet keine Funktionen, sondern Wertetabellen als Polygonzug!

Mehr

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6

Musterlösung Basisprüfung, Gruppe A Analysis I/II ) = 28π 6 Winter 8. Single Choice: 6J (a) Der Flächeninhalt einer Kreisscheibe mit Radius R ist gegeben durch πr. Aus Symmetriegründen ist der Flächeninhalt eines Kreisssektors mit 6 gegeben durch πr 6. Folglich

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 20/202 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 6.2.20 Die ins Netz gestellten

Mehr

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt

Mehr

Mathematik II Lösung 9. Lösung zu Serie 9

Mathematik II Lösung 9. Lösung zu Serie 9 D-EDW, D-HEST, D-USYS Dr. Ana annas 5. April 6 Lösung zu Serie 9. Überprüfung des Satzes von Green Für die Kreisscheibe mit adius a um Null gilt, dass die äußere Einheitsnormalen in einem Punkt (x, y auf

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler

D-CHAB Grundlagen der Mathematik I (Analysis B) FS 2016 Theo Bühler D-CHAB Grundlagen der Mathematik I Analysis B) FS 6 Theo Bühler Lösung. Finde eine Stammfunktion von a) f : R R, fx) := x cosx 5 ) sinx 5 ) ) = 5 cosx 5 )x, also die Stammfunktion von fx) durch F x) :=

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2 D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des

Mehr

Zwischenprüfung, Gruppe B Analysis I/II

Zwischenprüfung, Gruppe B Analysis I/II .3.27 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Spiralen DEMO. Text Nr Stand 9. März 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Spiralen Text Nr. 5435 Stand 9. März 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 5435 Spiralen Vorwort Es gibt eine ganze Reihe von spiralähnlichen Kurven. Einige davon habe ich für diesen

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x

R 1. 3 x 1+9. y 1 (x) = x 2, y 2(x) = x 3, y 3(x) = p x Studiengang: ME/MB Semester: SS 9 Analysis II Serie: Thema: bestimmtes Integral. Aufgabe: Berechnen Sie den Wert der folgenden bestimmten Integrale: d) g) j) R (x e x )dx, b) R sinx cos7xdx, e) R e R p

Mehr

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Department Mathemati der Universität Hamburg WiSe 2009/200 Dr. Hanna Peywand Kiani Anleitung zu Blatt 4 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenreihen 5.2.2009 Die ins Netz

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür

Mehr

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde.

Serie 12. D-MAVT, D-MATL Analysis I HS 14. Abgabetermin der schriftlichen Aufgaben: Freitag, in der Übungsstunde. D-MAVT, D-MATL Analysis I HS 4 Prof. Dr. Paul Biran Nicolas Herzog Serie Abgabetermin der schriftlichen Aufgaben: Freitag, 9..4 in der Übungsstunde.. Das schattierte Gebiet wird um diez-achse rotiert.

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften

Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Analysis III für Studierende der Ingenieurwissenschaften Die ins Netz gestellten Kopien der

Mehr

Lösungsvorschläge zum 8. Übungsblatt.

Lösungsvorschläge zum 8. Übungsblatt. Übung zur Analysis I WS / Lösungsvorschläge zum 8 Übungsblatt Aufgabe 9 a) : [, ] R definiert durch t) := t, t 3 ) b) : [, π] R mit t) := cost), sint)), : [π, π] R mit t) := cost), sint)) und f : R R mit

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Department Mathematik der Universität Hamburg WiSe 2011/2012 Dr. Hanna Peywand Kiani Anleitung zu Blatt 3 Analysis I für Studierende der Ingenieurwissenschaften Reelle Zahlenfolgen 02.12.2011 Die ins Netz

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

Volumen eines Rotationskörpers

Volumen eines Rotationskörpers Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte

Mehr

Klausur zur Geometrie für Bachelor und Lehramt

Klausur zur Geometrie für Bachelor und Lehramt Klausur zur Geometrie für Bachelor und Lehramt Aufgabe ( Punkt) Lösung Aufgabe Kurzfragen (jeweils Punkte) (a) Skizzieren Sie qualitativ eine ebene Kurve c : R R mit Krümmung κ(t) = t (b) Ist die ebene

Mehr

Prüfungsklausur Mathematik II für Bauingenieure am

Prüfungsklausur Mathematik II für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Bauingenieure am 20.07.2017 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Kurven und Kurvenintegrale. Kapitel 3. Kurven und Kurvenintegrale. Peter Becker (H-BRS) Höhere Analysis Sommersemester / 308

Kurven und Kurvenintegrale. Kapitel 3. Kurven und Kurvenintegrale. Peter Becker (H-BRS) Höhere Analysis Sommersemester / 308 Kapitel 3 Peter Becker (H-BRS) Höhere Analysis Sommersemester 2018 141 / 308 Inhalt Inhalt 3 Geometrische Eigenschaften von Kurven Kurvenintegrale Peter Becker (H-BRS) Höhere Analysis Sommersemester 2018

Mehr

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H Ebene Kurven Definition: Eine parametrisierte ebene Kurve ist eine stetige Abbildung x(t) t x(t) = y(t) eines Intervalls [a, b] nach R. Dabei heißt t [a, b] der Kurvenparameter. Beide Komponentenabbildungen

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 17: Woche vom Übungsaufgaben 8. Übung SS 17: Woche vom 22.5. - 26. 5. 2017 Heft Ü 2: 24.15.f; 25.11.b, f; 26.1.a, b, c; + 1 Zusatzaufgabe zur Reduktion bei DGLn Krümmungsvektor, Krümmung im R 3 (R n ) Def. 5.17: Der

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1:

= r ). Beispiele. 1) Kreis. Skizze mit Tangentialvektoren ( x. 2) Zykloide. Skizze für a = r = 1: VEKTORANALYSIS Inhalt: 1) Parametrisierte Kurven 2) Vektorfelder 3) Das Linienintegral 4) Potentialfelder 1 Parametrisierte Kurven Definitionen xt () Kurve: x = x() t = y() t, t zt () xt () dxt () Tangentialvektor:

Mehr

Höhere Mathematik Vorlesung 7

Höhere Mathematik Vorlesung 7 Höhere Mathematik Vorlesung 7 Mai 2017 ii Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt. Albert Einstein 7 Flächenintegrale Flächen Reguläre Flächen: ei D R 2 regulär. Unter einer Fläche

Mehr

Topologie metrischer Räume

Topologie metrischer Räume Technische Universität München Christoph Niehoff Ferienkurs Analysis für Physiker Vorlesung Montag SS 11 In diesem Teil des Ferienkurses beschäftigen wir uns mit drei Themengebieten. Zuerst wird die Topologie

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / r. Hanna Peywand Kiani.. Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz, Potentiale

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2016/2017 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Elementare Lösungsmethoden für

Mehr

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 20 Dr. Hanna Peywand Kiani Anleitung 6 Komplexe Funktionen für Studierende der Ingenieurwissenschaften Cauchy Integralformeln, Taylor-Reihen, Singularitäten,

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

Kurvenintegral, Tangenten

Kurvenintegral, Tangenten Vorzeigeaufgaben: HS10 Aufgabe 2 WS05/06 Aufgabe 1a+b HS11 Aufgabe 2: falls Zeit am Ende vom Kursblock 1, ansonsten als Hausaufgabe. Empfohlene Bearbeitungsreihenfolge: HS09 Aufgabe 1 HS08 Aufgabe 3 HS12

Mehr

Kurven. injektiv, dann heißt K eine Jordan-Kurve.

Kurven. injektiv, dann heißt K eine Jordan-Kurve. Kurven Der Begriff der Kurve, zunächst etwa im R 2 oder R 3, kann auf zwei Arten gebildet werden. Der geometrische Zugang definiert eine Kurve als den geometrischen Ort von Punkten in der Ebene bzw. im

Mehr

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers

Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen Rotationskörpers http://www.fotocommunity.de/search?q=table&index=fotos&options=ytoyontzoju6inn0yxj0ijtpoja7czo3oijkaxnwbgf5ijtzojg6ijizmjy4oduwijt9/pos/13 Geometrische Anwendung des Integrals: Schwerpunkt eines homogenen

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ).

γ(t k ) γ(t k 1 ) (2) t cos Peano-Kurve ). 49 Bogenlänge und Krümmung 49 Bogenlänge und Krümmung 211 49.1 Weglängen. a) Es seien E ein Banachraum und γ : [a,b] E ein Weg. Für eine Zerlegung Z = {a = t < t 1

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr