Kompositionalität & DSM

Größe: px
Ab Seite anzeigen:

Download "Kompositionalität & DSM"

Transkript

1 & DSM 7. Dezember 2011

2 Mitchell & Lapata (2008) I Evaluation verschiedener Kompositionsmodi: additiv gewichtet additiv (Kintsch, 2001) multiplikativ gemischt p = u + v Vektoraddition p = α u + β v Vektoraddition + Skalare Multiplikation p = α u + β v + n n m Vektoraddition inkl. Nachbarn des Prädikats p i = u i v i punktweises Produkt p i = αu i + βv i + γu i v i gewichtete Summe aus gewichtet additiv und multiplikativ Ergebnis: multiplikativ ist besser

3 Mitchell & Lapata (2008) II Diskussion (s. z.b. Grefenstette, 2010): additives und multiplikatives Modell sind kommutativ was Gewichte genau besagen und wie man sie bestimmt ist unklar

4 Erk & Padó (2008) I A Structured Vector Space Model for Word Meaning in Context Selektionsrestriktionen/-präferenzen werden mittels zusätzlicher Vektoren kodiert: w = ( v, R, R 1 ), R, R 1 : {subj, obj, comp,...} D

5 Erk & Padó (2008) II Vektorkomposition basiert auf einfachem Kompositionsmodus von z.b. Mitchell & Lapata (2008) Eigentliche Komposition mit den Selektionsvektoren: a = ( v a R 1 b (r), R a {r}, R 1 a ) b = ( v b R a (r), R b, R 1 b {r})

6 Erk & Padó (2008) III Bestimmung der Selektionsvektoren aus Korpus: Semantischer Raum: BNC, höchstfrequente Worte als Dimensionen, Frequenzen in Fenster der Größe 10 Dependenz-Parsing zur Bestimmung der grammatischen Relationen: f (a, r, b) Frequenz mit der a in Relation r zu b im Korpus vorkommt Bestimmung der Selektionsfunktionen: R b (r) 0 = f (a, r, b) v a R b (r) cut = a:f (a,r,b)>0 a:f (a,r,b)>θ R b (r) pow = (R b (r) 0 ) n f (a, r, b) v a bzgl. punktweiser Multiplikation

7 Erk & Padó (2008) IV Diskussion (s. z.b. Grefenstette, 2010): syntaktische Information steuert die Komposition keine rekursive Komposition (der groß schwere rote Ball) keine echte Komposition, sondern eher Disambiguierung

8 Baroni & Zamparelli (2010) Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space Idee: Adjektive sind lineare VR-Abbildungen V V, dh. dargestellt durch Matrizen Ergebnis der Komposition eines Adjektivs A mit einem Nomen v ist A v Adjektivbedeutungen werden aus Korpus anhand von Adjektiv-Nomen-Paaren gelernt Diskussion: Was hat die gelernte Adjektivbedeutung A mit dem entsprechenden Vektor zu tun? Separate Bedeutung eines Adjektivs je Verwendungsweise (prädikativ vs. modifizierend)

9 Clark & Pulman (2007) I Definition (Tensorprodukt über Vektorräumen) Seien V ein n-dimensionaler VR mit Basis (v 1,..., v n ) und W ein m-dimensionaler VR mit Basis (w 1,..., w m ). Dann ist das Tensorprodukt V W dieser Räume der n m-dimensionale Vektorraum mit Basis (v i w j ) i=1,...,n;j=1,...,m. Das Tensorprodukt zweier Vektoren v = n i=1 a iv i V und v = m i=1 b iw i W ist gegeben durch v w = n i=1 m a i b j (v i w j ) j=1 Man stelle sich vor, im kartesischen Produkt V W zu rechnen, wobei man (v i w j ) mit (v i, w j ) identifiziert (aber Vorsicht, diese Analogie hat enge Grenzen; vgl. R 2 als R-VR mit R R)

10 Clark & Pulman (2007) II Combining symbolic and distributional models of meaning John drinks strong beer quickly Eigene Vektoren für grammatische Relationen {subj, obj, adj, adv,...} die orthonormal sind Repräsentation: drinks subj John obj ( beer adj strong) adv quickly

11 Clark & Pulman (2007) III Satz Sei V ein Innenproduktraum. Dann ist V V ein Innenproduktraum mit (v 1 v 2 ), (v 1 v 2) = v 1, v 1 v 2, v 2, v i, v i V Damit einfacher Vergleich von Ausdrücken mit gleicher Struktur: John drinks beer vs. Mary drinks wine Diskussion (s. z.b. Grefenstette, 2010): das Tensorprodukt ist nicht kommutativ das Resultat der Komposition ist in einem anderen VR als die Ausgangsvektoren Sätze unterschiedlicher Länge liegen in verschiedenen Räumen und sind nicht vergleichbar

12 Vergleich DSM-Anspruch: Ein Kompositionsmodus f : V V V für einen Typ von semantischem Objekt Vergleich zur Montague-Semantik: Im Prinzip auch nur zwei Kompositionsmodi: Funktionalapplikation: FA(ϕ, ψ) = ϕ ( ψ ) Intersektive Modifikation: IM(ϕ, ψ) = λx.ϕ(x) ψ(x) (IM ist sogar kommutativ!) ABER: extrem reiches Typeninventar: dog/red/sleep see give a former e, t e, e, t e, e, e, t e, t, e, t, t e, t, e, t

13 Zusammenfassung Komposition Nur einen Kompositionsmodus bei einem semantischen Typ zu verlangen ist unrealistisch Kommutativität eines einzelnen Kompositionsmodus ist kein grundlegendes Problem

14 Literatur M. Baroni and R. Zamparelli Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2010), East Stroudsburg PA: ACL, pages S. Clark and S. Pulman Combining symbolic and distributional models of meaning. In Proceedings of the AAAI Spring Symposium on Quantum Interaction, pages 52 55, Stanford, CA. D. Clarke. submitted. A Context-theoretic Framework for Computational Semantics. Submitted to Computational Linguistics for review K. Erk and S. Padó A structured vector space model for word meaning in context. In Proceedings of EMNLP, pages E. Grefenstette Compositionality in Distributional Semantics Models: A Critical Overview of Current Literature. unpublished Ms. E. Grefenstette, M. Sadrzadeh, S. Clark, B. Coecke and S. Pulman Concrete sentence spaces for compositional distributional models of meaning. Proceedings of the 9th International Conference on Computational Semantics (IWCS 2011). W. Kintsch Predication. Cognitive Science, 25(2): J. Mitchell and M. Lapata Vector-based models of semantic composition. In Proceedings of ACL, pages P. Smolensky Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial Intelligence, 46(1 2): , November.

Seminar Distributionelle Semantik

Seminar Distributionelle Semantik Seminar Distributionelle Semantik Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Wintersemester 2011/12 Semantische Ähnlichkeit Fundamentale Aufgabe für semantische

Mehr

Dependency-Based Construction of Semantic Space Models ( Padó, Lapata 2007) Distributionelle Semantik WS 11/

Dependency-Based Construction of Semantic Space Models ( Padó, Lapata 2007) Distributionelle Semantik WS 11/ Dependency-Based Construction of Semantic Space Models ( Padó, Lapata 2007) Distributionelle Semantik WS 11/12 21.11.2011 Lena Enzweiler 1 Was ist das Problem? Wortbasierte Vektormodelle betrachten nur

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Bedeutung als Vektor? Überlegungen zur Distributionellen Semantik

Bedeutung als Vektor? Überlegungen zur Distributionellen Semantik Bedeutung als Vektor? Überlegungen zur Distributionellen Semantik Christine Engelmann Germanistische Sprachwissenschaft (Friedrich-Schiller-Universität Jena) 18.01.2013 Forschungsbereich innerhalb der

Mehr

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18.

Lineare Algebra I. Christian Ebert & Fritz Hamm. Gruppen & Körper. Vektorraum, Basis & Dimension. Lineare Algebra I. 18. 18. November 2011 Wozu das alles? Bedeutung von Termen Vektoren in R n Ähnlichkeiten zwischen Termbedeutungen Skalarprodukt/Norm/Metrik in R n Komposition von Termbedeutungen Operationen auf/abbildungen

Mehr

Kompositionalität. Christian Ebert & Fritz Hamm. Kompositionalität. 1. Dezember 2011

Kompositionalität. Christian Ebert & Fritz Hamm. Kompositionalität. 1. Dezember 2011 1. Dezember 2011 sprinzip The meaning of a complex expression is determined by the meaning of its parts and the mode of composition. Die Bedeutung eines komplexen Ausdrucks ist durch die Bedeutung seiner

Mehr

The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry

The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry The trick in teaching mathematics is that I do the easy part and you do the hard part. Hahn Hiang Shin, Complex Numbers and Geometry MBT Mathematische Basistechniken Der Vektorraum Lineare Gleichungssysteme

Mehr

Geometrie & Bedeutung

Geometrie & Bedeutung Geometrie & Bedeutung Seminar für Sprachwissenschaft Universität Tübingen Christian Ebert christian.ebert@uni-tuebingen.de Fritz Hamm friedrich.hamm@uni-tuebingen.de Wilhelmstr. 19 Wilhelmstr. 19 Zimmer

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 12 (SS 2011) Abgabetermin: Donnerstag, 7. Juli http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hier

Mehr

Kapitel 14. Matrizenrechnung

Kapitel 14. Matrizenrechnung Kapitel 14 Matrizenrechnung Lineare Abbildungen und Matrizen Matrizenrechnung Ansatzpunkt der Matrizenrechnung sind die beiden mittlerweile wohlbekannten Sätze, welche die Korrespondenz zwischen linearen

Mehr

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42

Vektoren. Jörn Loviscach. Versionsstand: 11. April 2009, 23:42 Vektoren Jörn Loviscach Versionsstand:. April 29, 23:42 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen mit Pfeilen schon kennen gelernt. Addition und Subtraktion klappen in drei wie

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Multilineare Algebra

Multilineare Algebra Multilineare Algebra Handout zur Vorlesung Differentialgeometrie Dr. Bernd Ammann, Prof. Chr. Bär Literatur Frank Warner, Foundations of differentiable manifolds and Lie groups, Kapitel 2 1 Tensoren Motivation.

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 30 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs.

2.2.2 Semantik von TL. Menge der Domänen. Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. 2.2.2 Semantik von TL Menge der Domänen Zu jedem Typ gibt es eine Menge von möglichen Denotationen der Ausdrücke dieses Typs. Diese Menge wird Domäne des betreffenden Typs genannt. Johannes Dölling: Formale

Mehr

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai.

Algebra II. Prof. Dr. M. Rost. Übungen Blatt 3 (SS 2016) 1. Abgabetermin: Freitag, 6. Mai. Algebra II Prof. Dr. M. Rost Übungen Blatt 3 (SS 2016) 1 Abgabetermin: Freitag, 6. Mai http://www.math.uni-bielefeld.de/~rost/a2 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige Definitionen

Mehr

Logik und modelltheoretische Semantik. Montague-Grammatik

Logik und modelltheoretische Semantik. Montague-Grammatik Logik und modelltheoretische Montague-Grammatik Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 23.5.2017 Zangenfeind: Montague-Grammatik 1 / 23 Vorgeschichte Ursprung

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Barsalou-Frames und lexikalische Bedeutung Dekomposition und Wortbildungssemantik

Barsalou-Frames und lexikalische Bedeutung Dekomposition und Wortbildungssemantik Barsalou-Frames und lexikalische Bedeutung Dekomposition und Wortbildungssemantik Sebastian Löbner Heinrich-Heine-Universität Düsseldorf Allgemeine Sprachwissenschaft SFB 991 The Structure of Representations

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Rechnen mit Matrizen 2 1.1 Matrixmultiplikation............................................

Mehr

Latent Vector Weighting. Word Meaning in Context

Latent Vector Weighting. Word Meaning in Context Latent Vector Weighting for Word Meaning in Context Tim Van de Cruys, Thierry Poibeau, Anna Korhonen (2011) Präsentation von Jörn Giesen Distributionelle Semantik 16.01.2012 1 Distributational Hypothesis

Mehr

Seminar zur Darstellungstheorie von Köchern HS08. Erste Definitionen und der Satz von Gabriel

Seminar zur Darstellungstheorie von Köchern HS08. Erste Definitionen und der Satz von Gabriel Seminar zur Darstellungstheorie von Köchern HS08 Erste Definitionen und der Satz von Gabriel Autoren: Nicoletta Andri Claude Eicher Reto Hobi Andreas Pasternak Professorin: Prof. K. Baur Assistent: I.

Mehr

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007.

Vektoren. Mathematik I für Biologen, Geowissenschaftler und Geoökologen. Vektoren. Stefan Keppeler. 21. November 2007. Mathematik I für Biologen, Geowissenschaftler und Geoökologen Vektoren 21. November 2007 Vektoren Vektoren werden zur Darstellung gerichteter Größen verwendet. Man stelle sich also einen Pfeil in eine

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: Masse, Volumen, Energie, Arbeit, Druck, Temperatur 2) Vektoren: vollständig

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Markov Logik. Matthias Balwierz Seminar: Maschinelles Lernen WS 2009/2010 Prof. Fürnkranz

Markov Logik. Matthias Balwierz Seminar: Maschinelles Lernen WS 2009/2010 Prof. Fürnkranz Markov Logik Matthias Balwierz Seminar: Maschinelles Lernen WS 2009/2010 Prof. Fürnkranz Überblick Markov Netze Prädikatenlogik erster Stufe Markov Logik Inferenz Lernen Anwendungen Software 18.11.2009

Mehr

Erkennung und Visualisierung attribuierter Phrasen in Poetiken

Erkennung und Visualisierung attribuierter Phrasen in Poetiken Erkennung und Visualisierung attribuierter Phrasen in Poetiken Andreas Müller (1) Markus John (2) Steffen Koch (2) Thomas Ertl (2) Jonas Kuhn (1) (1), Universität Stuttgart (2) Institut für Visualisierung

Mehr

Cognitive Systems Master thesis

Cognitive Systems Master thesis Cognitive Systems Master thesis Recherche Phase SS 2011 Gliederung 1. Einleitung 2. Analogie Modelle 2.1 SME 2.2 Ava 2.3 Lisa 3. Zusammenfassung 4. Ausblick 2 Einleitung Analogie Problemsituation wird

Mehr

Mathematische Grundlagen der Computerlinguistik Lineare Algebra

Mathematische Grundlagen der Computerlinguistik Lineare Algebra Mathematische Grundlagen der Computerlinguistik Lineare Algebra Dozentin: Wiebke Petersen 10. Foliensatz Wiebke Petersen math. Grundlagen 1 Einleitung Die lineare Algebra beschäftigt sich mit Vektorräumen

Mehr

Semantik und Pragmatik

Semantik und Pragmatik Semantik und Pragmatik SS 2005 Universität Bielefeld Teil 4, 6. Mai 2005 Gerhard Jäger Semantik und Pragmatik p.1/35 Prädikatenlogik: atomare Formeln Syntax JO, BERTIE, ETHEL, THE-CAKE... sind Individuenkonstanten

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

11. Vorlesung. Lineare Algebra und Sphärische Geometrie.

11. Vorlesung. Lineare Algebra und Sphärische Geometrie. 11. Vorlesung. Lineare Algebra und Sphärische Geometrie. In dieser Vorlesung behandeln wir eine geometrische Anwendung der linearen Algebra. Insbesondere betrachten wir orthogonale Abbildungen. 1. Orthogonale

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana.

Lineare Algebra. 5. Übungsstunde. Steven Battilana. Lineare Algebra 5. Übungsstunde Steven Battilana stevenb@student.ethz.ch November, 6 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen +: E E! E, (x, y) 7! x + y (Addition) : E E! E, (x, y) 7! x

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2018/2019

Prüfungsangebot. Fachbereich Sprach- und Literaturwissenschaften Bachelor Linguistik/Language Sciences. Wintersemester 2018/2019 Bezeichnung der sleistung Studienabschnitt: Pflichtbereich (nach ) LS1a Einführung in die Linguistik Introduction to Linguistics of. Dr. Thomas Stolz 9 Allgemeine und Vergleichende Sprachwissenschaft General

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Extraktion und Visualisierung von multidimensionalen Textinformationen zur Integration von Big Data in unternehmensspezifischen Wissenslandkarten

Extraktion und Visualisierung von multidimensionalen Textinformationen zur Integration von Big Data in unternehmensspezifischen Wissenslandkarten Extraktion und Visualisierung von multidimensionalen Textinformationen zur Integration von Big Data in unternehmensspezifischen Wissenslandkarten FOM Hochschulzentrum Dortmund, Fachbereich Wirtschaftsinformatik

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Zkl ( ) = Rth ( ) =

Zkl ( ) = Rth ( ) = Prof. Dr. Alfred Toth Semiotische Tensoren und Eigenwerte 1. In Toth (2007a, S. 48 f.) habe ich im Anschluss an Kidwaii (1997) Zeichenklassen und Realitätsthematiken als semiotische Vektoren und zu ihrer

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Vektorräume. Lineare Algebra I. Kapitel Juni 2012

Vektorräume. Lineare Algebra I. Kapitel Juni 2012 Vektorräume Lineare Algebra I Kapitel 9 12. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

. How Complex are Complex Predicates? K. Maiterth, A. Domberg. Seminar: Komplexe Verben im Germanischen Universität Leipzig Problem..

. How Complex are Complex Predicates? K. Maiterth, A. Domberg. Seminar: Komplexe Verben im Germanischen Universität Leipzig Problem.. How Complex are Complex Predicates? K Maiterth, A Domberg Seminar: Komplexe Verben im Germanischen Universität Leipzig 21052012 Inhalt 1 Verbcluster im Deutschen Komplexer Kopf VP-Komplementierung 2 Haiders

Mehr

Slot Grammar Eine Einführung

Slot Grammar Eine Einführung Slot Grammar Eine Einführung München, 4. Dez. 2002 Gerhard Rolletschek gerhard@cis.uni-muenchen.de 1 ! Entstehungskontext Übersicht! Elemente der Slot Grammar (Was ist ein Slot?)! Complement Slots vs.

Mehr

Vektoren. Jörn Loviscach. Versionsstand: 30. März 2010, 18:06 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Vektoren. Jörn Loviscach. Versionsstand: 30. März 2010, 18:06 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Vektoren Jörn Loviscach Versionsstand: 30. März 2010, 18:06 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Rechnen mit Pfeilen Bei den komplexen Zahlen haben wir das Rechnen

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 00: Organisatorisches Julia Kreutzer & Julian Hitschler 25. Oktober 2016 Institut für Computerlinguistik, Heidelberg 1 Überblick 1. Vorstellung

Mehr

5 Noethersche Ringe und Moduln

5 Noethersche Ringe und Moduln 5 Noethersche Ringe und Moduln Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen sind äquivalent: (i) A

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGEBRA Ferienkurs Hanna Schäfer Philipp Gadow INHALT 1 Grundbegriffe 1 1.1 Aussagen und Quantoren 1 1.2 Mengen 2 1.3 Gruppen 3 1.4 Körper 4 1.5 Vektorräume 5 1.6 Basis und Dimension 7 Aufgaben

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Tensorprodukte. Isabel Semm. 21. Dezember 2004

Tensorprodukte. Isabel Semm. 21. Dezember 2004 Tensorprodukte Isabel Semm 21. Dezember 2004 1 1 Existenz und Eindeutigkeit Definition: Seien M, N, P A-Moduln. f: M x N P heisst A-bilinear, falls x M: N P, y f(x, y) und y N: M P, x f(x, y) Homomorphismen

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Die angesprochene Thematik macht den Kern dieser Veranstaltung aus. Lineare Techniken sind zentral für weite Bereiche mathematischen Argumentierens. Durch in der Analysis

Mehr

Combinatory Categorial Grammar. Teil 2: Semantik in der CCG

Combinatory Categorial Grammar. Teil 2: Semantik in der CCG Combinatory Categorial Grammar Teil 2: Semantik in der CCG Referat Referentin: Éva Mújdricza Semantikkonstruktion SS 08 Dozenten: Anette Frank, Matthias Hartung Ruprecht-Karls-Universität HD 29.04.2008

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Deutsche Wortbildung in Grundzügen

Deutsche Wortbildung in Grundzügen Wolfgang Motsch Deutsche Wortbildung in Grundzügen wde G Walter de Gruyter Berlin New York 1999 INHALT Vorwort xi Kapitel 1: Grundlagen 1. Der allgemeine Rahmen 1 2. Lexikoneintragungen 3 3. Wortbildungsmuster

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 57 Lineare Abbildungen bei Körperwechsel Definition 57.1. Zu einer linearen Abbildung ϕ: V W zwischen K-Vektorräumen

Mehr

Semantik und Pragmatik

Semantik und Pragmatik Semantik und Pragmatik SS 2005 Universität Bielefeld Teil 6, 20. Mai 2005 Gerhard Jäger Semantik und Pragmatik p.1/16 Typentheorie: Motivation Viele syntaktische Konstruktionen der natürlichen Sprachen

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

. Splitting Compounds By Semantic Analogy

. Splitting Compounds By Semantic Analogy .. Splitting Compounds By Semantic Analogy Joachim Daiber, Lautaro Quiroz, Roger Wechsler and Stella Frank Institute for Logic, Language and Computation University of Amsterdam Lautaro Quiroz In Master

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

Kapitel III: Vektorräume

Kapitel III: Vektorräume apitel III: Vektorräume 6 Vektorräume und Unterräume Definitionen und Beispiele In diesem Paragraphen kommen wir nun endlich zurück auf die in 1 erörterten Beispiele und behandeln diejenige Struktur, die

Mehr

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte

Kapitel 4. Multilineare Abbildungen. 4.4 Tensorprodukte Kapitel 4 c M. Roczen und H. Wolter Lineare Algebra individuell Online Ver. 0.52, 3.5.2005 Multilineare Abbildungen In diesem Kapitel werden Abbildungen von Vektorräumen untersucht, die in mehreren Argumenten

Mehr

FK03 Mathematik I: Übungsblatt 13 Lösungen

FK03 Mathematik I: Übungsblatt 13 Lösungen FK0 Mathematik I: Übungsblatt Lösungen Verständnisfragen. Wann nennt man die Vektoren v,..., v n R n linear unabhängig? Die Vektoren v,..., v n R n heißen linear unabhängig, falls die folgende Gleichung

Mehr

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind.

2. Vektorräume 2.1. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. . Vektorräume.. Vektoren im R n. Vektoren sind gerichtete Groen, die durch ihre Lange (Betrag, Norm) und Richtung gekennzeichnet sind. Physikalische Beispiele fur Vektoren: Kraft, Geschwindigkeit, Beschleunigung,

Mehr

Topic Maps. Wissensmanagement in Bildungseinrichtungen. Seminar Web Engineering Lars Heuer,

Topic Maps. Wissensmanagement in Bildungseinrichtungen. Seminar Web Engineering Lars Heuer, Topic Maps Wissensmanagement in Bildungseinrichtungen Seminar Web Engineering Lars Heuer, 14.01.2005 Inhalt Zielsetzung Problemstellung Was sind Topic Maps? Eigenschaften von Topic Maps Merging RDF Einsatz

Mehr

Geraden in 3 Dimensionen in Form von 2 linearen Gleichungen in den 3 Unbekannten x 1, x 2, x 3.

Geraden in 3 Dimensionen in Form von 2 linearen Gleichungen in den 3 Unbekannten x 1, x 2, x 3. Geraden in 3 Dimensionen in Form von 2 linearen Gleichungen in den 3 Unbekannten x 1, x 2, x 3. In Analogie zu einer Geraden kann man eine Ebene durch einen Punkt in der Ebene (mit Ortsvektor r 0 ) und

Mehr

Typengetriebene Interpretation. Arnim von Stechow Einführung in die Semantik

Typengetriebene Interpretation. Arnim von Stechow Einführung in die Semantik Typengetriebene Interpretation Arnim von Stechow Einführung in die Semantik arnim.stechow@uni-tuebingen.de Programm Logische Typen Typengesteuerte Interpretation λ-schreibweise Prädikatsmodifikation (PM)

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure

Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure Technische Universität Berlin WS / Fakultät II Institut f. Mathematik Seiler Rambau Wiehe Gentz Scherfner Körner Schulz-Baldes Schwarz Lösung zum 6. Übungsblatt Lineare Algebra für Ingenieure http://www.math.tu-berlin.de/hm/linalg/aktuell/main.html

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Linguistische Grundlagen 6. Semantik

Linguistische Grundlagen 6. Semantik Linguistische Grundlagen 6. Semantik Gereon Müller Institut für Linguistik Universität Leipzig www.uni-leipzig.de/ muellerg Gereon Müller (Institut für Linguistik) 04-006-1001: Linguistische Grundlagen

Mehr

3.8. Lineare Abbildungen.

3.8. Lineare Abbildungen. 38 Lineare Abbildungen 38 Lineare Abbildungen 38 Definition Es seien V und W Vektorräume über K Eine Abbildung α : V W heißt linear, wenn für alle Vektoren u, v V und alle Skalare k K gilt: α(u + v α(u

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra

V. Lineare Algebra. 35 Lineare Abbildungen und Matrizen. 156 V. Lineare Algebra 156 V. Lineare Algebra V. Lineare Algebra 35. Lineare Abbildungen und Matrizen 156 36. Eigenwerte und Eigenvektoren 161 37. Hauptvektoren 165 38. Normen und Neumannsche Reihe 168 39. Numerische Anwendungen

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr