Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons)

Größe: px
Ab Seite anzeigen:

Download "Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons)"

Transkript

1 Physik des Geonium-Atoms (Präzisionsmessung des gyromagnetischen Faktors des Elektrons) Marc Wagner mcwagner. Dezember 5

2 Einführung Wechselwirkung zwischen Elektronenspin und Magnetfeld (g: g-faktor beziehungsweise gyromagnetischer Faktor des Elektrons): H = µb = g q σ mc B Quantenelektrodynamik (QED): g/ = (135) Ziel: Präzise experimentelle Bestimmung von g (Test der QED) Geonium-Atom (ein Atom, das an die Erde gebunden ist) Elektron (verschiedene oszillierende Bewegungsformen; ω z, ω +, ω, ω s ) Penning-Falle (ein Apparat, der elektrische und magnetische Felder erzeugt, die ein Elektron gefangen halten) ω z =... Messgerät (misst die Frequenzen der Elektronenbewegung; aus den Ergebnissen kann der g-faktor bestimmt werden)

3 Gliederung Penning-Falle Bewegung eines Elektrons in einer Penning-Falle Klassische Bewegung Quantenmechanische Bewegung Spin-Bewegung Bestimmung des gyromagnetischen Faktors aus den verschiedenen Bewegungsfrequenzen Langfristiges zeitliches Verhalten eines Elektrons in einer Penning-Falle Thermodynamik eines Elektrons in einer Penning-Falle Motional-Sideband-Cooling Messung der verschiedenen Bewegungsfrequenzen Schlussbemerkungen

4 Penning-Falle (1) Penning-Falle: Ein Apparat der elektromagnetische Felder erzeugt, die Elektronen einsperren (F. M. Penning: 1936 Vorarbeiten; H. G. Dehmelt: 1959 Entwicklung, 1973 Einsperren einzelner Elektronen, 1989 Nobelpreis) Magnetisches Feld (homogen): Kreisbahn in der x-y-ebene B = B Elektrisches Feld (harmonisch): Schwingung entlang der z-achse ( )) E = φ = φ (z x d y = φ d x y z (die x-terme und die y-terme in φ sind notwendig damit die Maxwell-Gleichung div(e) = φ = erfüllt ist; Quadrupolfeld)

5 Penning-Falle () Feldlinienverlauf in der Penning-Falle (rotationssymmetrisch um z-achse) B = B, E =... = φ d x y z.6.4. z-achse x-achse beziehungsweise y-achse Experimentelle Realisierung des homogenen Magnetfelds: Solenoid (eine lange stromdurchflossene Spule, die das Geonium-Atom umgibt)

6 Penning-Falle (3) Experimentelle Realisierung des elektrischen Quadrupolfelds: Platten die wie Isoflächen von φ geformt sind ( )) E = φ = φ (z x d y =... Deckel (z : Abstand Ursprung-Deckel; Hyperboloid): z x y = z Umgebender Ring (ρ : Abstand Ursprung-Ring; Rotationsfläche einer hyperbolischen Kurve): 6 mm z x y = ρ.6.4. Wähle d so, dass φ Deckel φ Ring = φ -. z-achse x-achse beziehungsweise y-achse

7 Klassische Bewegung eines e (1) Bewegungsgleichung: m r = q(e + ṙ c B) = q φ d z-komponente der Bewegung: x y z + ṙ c B z-komponente der Bewegungsgleichung (harmonischer Oszillator): m z = qφ d z Lösung (qφ > ): Axiale Bewegung ( qφ z = a z cos(ω z t + ϕ z ), ω z = md ) 1/ z(t).1 Axiale Bewegung t (Zeitachse)

8 Klassische Bewegung eines e () x-komponente und y-komponente der Bewegung (qualitativ): Homogenes Magnetfeld in z-richtung Elektron bewegt sich auf einer Kreisbahn (Frequenz ist geschwindigkeitsunabhängig) Schwache Korrektur durch quadratisches elektrisches Potential: φ xy = φ 4d ( x + y ) Elektron ist schneller auf der dem Hang abgewandten Seite Kreisbahn hat größeren Radius auf der dem Hang abgewandten Seite Elektron ist langsamer auf der dem Hang zugewandten Seite Kreisbahn hat kleineren Radius auf der dem Hang zugewandten Seite Insgesamt: Spiralbahn um den Potentialberg herum elektrischer Potentialberg φ xy dem Hang zugewandte Seite hohes elektrisches Potential kleine Kreise -1 niedriges elektrisches Potential große Kreise dem Hang abgewandte Seite

9 Klassische Bewegung eines e (3) x-komponente und y-komponente der Bewegung (quantitativ): x-komponente und y-komponente der Bewegungsgleichung: ( ) ( ( ) ẍ φ x m = q + B ( )) ẏ ÿ d y c ẋ Lösung für starke magnetische und schwache elektrische Felder ((qb/mc) > qφ /md ): Summe zweier Kreisbewegungen ( ) ( ) ( ) x cos(ω+ t + ϕ = r + ) cos(ω t + ϕ y + + r ) sin(ω + t + ϕ + ) sin(ω t + ϕ ) ( ( ω ± = qb ) ) 1/ qb mc ± qφ mc md ω + : Zyklotronbewegung (schnell, kleiner Radius) ω : Magnetronbewegung (langsam, großer Radius)

10 Klassische Bewegung eines e (4) Im Experiment: (ω + ) : (ω z ) : (ω ) (1 7 ) : ( 1 3 ) : (1) ω + : Zyklotronbewegung (schnell, kleiner Radius) ω z : Axiale Bewegung (mittelschnell) ω : Magnetronbewegung (langsam, großer Radius) Zyklotron- und Magnetronbewegung 1 Zyklotron-, Magnetron- und axiale Bewegung z-achse x-y-ebene x-y-ebene 1 z(t).1 Axiale Bewegung t (Zeitachse)

11 Quantenmechanik eines e (1) Hamilton-Operator eines geladenen Teilchens im elektromagnetischen Feld: H = 1 ( p q ) m c A + qφ Geonium-Atom: Hamilton-Operator ist eine Summe eines ausschließlich von x und y abhängigen Anteils und eines ausschließlich von z abhängigen Anteils: H = H xy + H z H xy = 1 m (( px p y ) qb c ( y x )) qφ 4d (x + y ) H z = p z m + qφ d z x-y-problem und z-problem können unabhängig voneinander gelöst werden

12 Quantenmechanik eines e () z-richtung: Harmonischer Oszillator H z = p z m + qφ d z Lösung mit Hilfe von Auf- und Absteigeoperatoren: mωz 1 a z = z + i p z, a z = m ω ( z H z = ω z a z a z + 1 ) mωz 1 z i p z m ω z ω z wie im klassischen Fall (axiale Bewegung) Eigenwerte von H z : ( E z,nz = ω z n z + 1 ), n z {, 1,,...}

13 Quantenmechanik eines e (3) x-richtung und y-richtung: Hamilton-Operator kann in eine Summe zweier harmonischer Oszillatoren umgeschrieben werden (längere Rechnung) ( H xy = ω + a +a ) ( ω a a + 1 ) Energie ω + wie im klassischen Fall (Zyklotronbewegung) ω wie im klassischen Fall (Magnetronbewegung) Eigenwerte von H xy : ( E xy,n+,n = ω + n ) ( ω n + 1 ) n +, n {, 1,,...} n + = ω + n + = 1 ω ω z Minuszeichen bei der Magnetronbewegung aufgrund des elektrischen Potentialbergs n + = n z =, 1,... n =, 1,...

14 Spin eines e Spinoperator: s = σ Magnetisches Moment: µ = g q σ mc Energie Wechselwirkung mit dem magnetischen Feld: n + = ω s H s = µb = ω s σ z, ω s = g qb mc ω + n + = 1 ω a = ω s ω + Eigenwerte von H s : E s = ω s n s, n s { 1, 1 } n + =

15 Bestimmung von g aus ω +, ω z, ω a (1) Bereits bekannt: ω z = ω s ( ) ( 1/ ( qφ, ω md ± = qb ) ) qb mc ± qφ 1/ mc md = g qb mc Energie Es folgt: ω s = g (ω + + ω ), ω + ω = ω z Man misst die Anomalie ( Abweichung des g-faktors von ): a = g 1 = ω s ω + + ω 1 = n + = 1 ω + n + = ω s =ω a {}}{ ω s ω + ω ω + + ω = ω a ω z /ω + ω + + ω z /ω + ω a = ω s ω +

16 Bestimmung von g aus ω +, ω z, ω a () Anomalie ( Abweichung des g-faktors von ): a = g 1 = ω s ω + + ω 1 = =ω a {}}{ ω s ω + ω ω + + ω = ω a ω z/ω + ω + + ω z/ω + Vorteile der Anomalie-Messung: ω +, ω z und ω a können experimentell hinreichend genau bestimmt werden Anomalie hängt ausschließlich von ω +, ω z und ω a ab (Ungenauigkeiten in m, q, B, φ,... gehen nicht ins Experiment ein) Anomalie ist ein stabil zu messender Ausdruck (keine etwa gleich großen Zahlen werden voneinander abgezogen,...)

17 Typische experimentelle Parameter Typische experimentelle Parameter eines Geonium-Atoms: Ausdehnung der Geonium-Apparatur: d = z = ρ /.3 cm Potentialdifferenz: φ 1 V Magnetfeld: B/c 6 T Daraus folgende Energiedifferenzen: Zyklotronbewegung: ω ev Axiale Bewegung: ω z ev Magnetronbewegung: ω ev Anomaliedifferenz: ω a ev Deckelelektroden Ringelektrode Hilfselektroden Feldemissionselektrode Nickelring (magnetische Flasche)

18 Thermodynamik eines e (1) Wie sieht das langfristige zeitliche Verhalten eines Elektrons in einer Penning-Falle aus? Welchen Einfluss hat die Temperatur auf das Experiment? Wie stabil ist ein durch n +, n z, n und n s gegebener Quantenzustand? Welche Quantenzustände werden bei welchen Temperaturen bevorzugt? Was die mittlere Auslenkung der Elektronenbewegung bei gegebener Temperatur? Ist die Penning-Falle groß genug? Mit welchen Verfahren können bestimmte Quantenzustände erzwungen werden ( Kühlung )?

19 Thermodynamik eines e () Zwei mögliche Prozesse zum Energieaustausch: Kopplung an die Schwarzkörperstrahlung der Geonium-Apparatur (Wärmebad, T = 4. K): Alle vier Bewegungsformen (ω +, ω z, ω, ω s ) Kopplung an das Messgerät (Wärmebad, T = 4. K): Nur die axiale Bewegung (ω z ), da ausschließlich diese Bewegungsform gemessen wird Zwei Klassen von interessanten Größen: Mittlere Besetzungszahlen n + T und n z T bei gegebener Temperatur T im thermodynamischen Gleichgewicht ( E... = ω... n ) = T T (1/kT) ln(z...) T Übergangsraten γ +, γ z, γ und γ s (Wie lange dauert es, bis das System im thermodynamischen Gleichgewicht ist?) n... (t) = n... () T e γ...t (zeitabhängige Störungstheorie) T

20 Thermodynamik eines e (3) Typische experimentelle Parameter (Kühlung mit flüssigem Helium, 4. K): Zyklotronbewegung: n + 4. K.5 quantenmechanische Behandlung γ + 1.5/s thermodynamisches Gleichgewicht wird schnell erreicht n + =.5 r + n + =.5 1/ m Axiale Bewegung: n z 4. K 15 klassische Behandlung γ z 6.5/s (dominiert von der Kopplung an das Messgerät ) thermodynamisches Gleichgewicht wird schnell erreicht n z = 15 a z n z = 15 1/ m Magnetronbewegung: n Motional-Sideband-Cooling 15 klassische Behandlung γ Bewegung stabil n = 15 r n = 15 1/ m Spin: γ s Spin stabil

21 Motional-Sideband-Cooling (1) Zur präzisen experimentellen Bestimmung der Frequenzen ω z, ω + und ω a sind kleine Magnetronradien erforderlich (im Experiment führen schwache Abweichungen von einer idealen Penning-Falle bei großen Magnetronradien zu starken Verschmierungen der Messkurven) Kühlung der Magnetronbewegung notwendig (wegen des negativen Vorzeichens im Hamiltonoperator: Kühlung = Zuführen von Energie) ( H xy = ω + a +a ) ( ω a a + 1 ) Einstrahlen von Photonen der Energie ω scheidet aus, da dies den Magnetronradius vergrößert (die Magnetronbesetzungszahl nimmt ihren thermodynamischen Erwartungswert an: n T = )

22 Motional-Sideband-Cooling () Motional-Sideband-Cooling: Kombinierte Aufheizung beziehungsweise Abkühlung der axialen Bewegung und der Magnetronbewegung Einstrahlen von Photonen der Energie (ω z + ω ): k + 1 k k 1 n z n x... l 1 l l (ω z + ω ) l 1 l l + 1 (ω z + ω ) l 1 l l + 1 (n z, n ) (n z + 1, n 1) (Abkühlen der Magnetronbewegung) (n z, n ) (n z 1, n + 1) (Aufheizen der Magnetronbewegung) Wahrscheinlichkeiten dieser Übergänge enthalten den Faktor (n z + 1)n beziehungsweise n z (n 1) (grundlegende Eigenschaft von Bosonen) n > n z Abkühlung der Magnetronbewegung dominiert n < n z Aufheizung der Magnetronbewegung dominiert n z wird nur temporär verändert (axiale Bewegung ist stark an das Messgerät und die Schwarzkörperstrahlung gekoppelt) Maximal erreichbare Abkühlung: n n z n z 4. K 15

23 Messung von ω z ω z tritt in der Anomalie auf: a = g 1 = ω a ω z/ω + ω + + ω z/ω + Axial schwingendes Elektron induziert eine Wechselspannung U(t) = RI(t) der Frequenz ω z Messen dieser Wechselspannung ist sehr schwierig, da Signal äußerst schwach Antreiben der Schwingung durch eine Wechselspannungsquelle und Messung der Resonanzfrequenz ermöglicht die Bestimmung von ω z e : ω z Geonium-Atom Amplitudenmessung antreibende Wechselspannung R U(t) = RI(t)

24 Einsperren eines einzelnen Elektrons Anlegen einer hohen Spannung an der Feldemissionselektrode injiziert hochenergetische Elektronen in die Penning-Falle Einige der Elektronen stoßen mit Restgas-Atomen zusammen und werden dabei so stark abgebremst, dass sie von den Feldern der Penning-Falle gefangen werden Starkes Antreiben der axialen Bewegung treibt die Elektronen gegen die Wände der Penning-Falle Die Stufenstruktur in U zeigt an, wann genau ein Elektron in der Penning-Falle verblieben ist U circa 15 Minuten t

25 Messung von ω + und ω a (1) ω + und ω a treten in der Anomalie auf: a = g 1 = ω a ω z/ω + ω + + ω z /ω + Verwendung einer magnetischen Flasche B (schwache Korrektur des homogenen magnetischen Felds B; x-terme und y-terme sind notwendig, damit die Maxwell-Gleichungen div( B) = und rot( B) = erfüllt sind): B B + B, B = b xz yz z (x + y ) / Magnetisches Moment µ in z-richtung: Veränderung der axialen Frequenz ω z durch magnetische Flasche H B = µ B = µ z bz + Korrektur der x-y-bewegung

26 Messung von ω + und ω a () Mit den Frequenzen ω + (Kreisstrom) und ω a (Kreisstrom und Spin) beziehungsweise deren Besetzungszahlen ist das magnetische Moment µ verknüpft Einstrahlen von Photonen der Energie ω + beziehungsweise ω a verändert das magnetische Moment µ und führt damit zu einer quantitativ messbaren Veränderung δω z der axialen Frequenz ω z Aus δω z folgt ω + beziehungsweise ω a

27 Schlussbemerkungen (1) Ausgezeichnete Übereinstimmung von Theorie und Experiment (erfolgreicher Test der QED): Messungen am Geonium-Atom: g/ = (4) (Van Dyck et al. 1984) Quantenelektrodynamik (QED): g/ = (135) (Kinoshita et al. 1984)

28 Schlussbemerkungen () Weitere Anwendungen: Fehler im QED-Wert von g aufgrund von Unsicherheiten in der experimentellen Bestimmung der Feinstrukturkonstante α = e /4πǫ c Indirektes Messen von α über eine Messung von g Messen der gyromagnetischen Faktoren anderer geladener Teilchen (e +, p,...) Präzises experimentelles Bestimmen von Massenverhältnissen verschiedener Teilchensorten (m p /m e = (76),...) Test der CPT-Symmetrie ( Teilchen wird zu Antiteilchen ) durch Vergleich der gyromagnetischen Faktoren von Elektron und Positron Literatur: Geonium theory: Physics of a single electron or ion in a Penning trap, L. S. Brown und G. Gabrielse, Reviews of Modern Physics, Vol. 58, No. 1, , 1986

g-faktor Elektron

g-faktor Elektron g-faktor des Elektrons 06.1.13 1 Gliederung 1. Historie. Theoretische Grundlagen g-faktor des Elektrons ii. Penning Falle i. 3. experimentelle Realisation i. Aufbau ii. QND Messung iii. Quantensprung Spektroskopie

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor 0 E x E y E z F µ = @ µ A @ A µ E = x 0 B z B y E y B z 0 B x E z B y B x 0 Die homogenen Maxwell- Gleichungen B = 0 E + @ t B = 0 sind durch

Mehr

Wiederholung: QED. Ruhendes Teilchen + Lorentz-Boost: 2 Spinoren für jeweils positive und negative Energie (j3=+1/2 und j3=-1/2)

Wiederholung: QED. Ruhendes Teilchen + Lorentz-Boost: 2 Spinoren für jeweils positive und negative Energie (j3=+1/2 und j3=-1/2) Wiederholung: QED Dirac-Gleichung für freies Teilchen: Siehe Vorlesung von G. Steinbrück Lösung Ruhendes Teilchen + Lorentz-Boost: 2 Spinoren für jeweils positive und negative Energie (j3=+1/2 und j3=-1/2)

Mehr

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011.

Skript zur 19. Vorlesung Quantenmechanik, Freitag den 24. Juni, 2011. Skript ur 19. Vorlesung Quantenmechanik, Freitag den 4. Juni, 011. 13.5 Weitere Eigenschaften des Spin 1/ 1. Die Zustände und sind war Eigenustände der -Komponente ŝ des Spin- Operators s, sie stellen

Mehr

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf

In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf L. D. LANDAU f E. M. LIFSCHITZ QUANTENTHEORIE In. deutscher Sprache herausgegeben von Dr. Siegfried Matthies Zentralinstitut für Kernforschung der Akademie der Wissenschaften der DDR, Rossendorf Mit 21

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Teilchen im elektromagnetischen Feld

Teilchen im elektromagnetischen Feld Kapitel 5 Teilchen im elektromagnetischen Feld Ausgearbeitet von Klaus Henrich, Mathias Dubke und Thomas Herwig Der erste Schritt zur Lösung eines quantenmechanischen Problems ist gewöhnlich das Aufstellen

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Test des CPT-Theorems mit Antiwasserstoff

Test des CPT-Theorems mit Antiwasserstoff Test des CPT-Theorems mit Antiwasserstoff Seminar Präzisionsexperimente Benjamin Daiber 8.11.2013 Betreuung: Prof. S. Menzemer 1 Übersicht Theorie Was ist CPT? CPT-Theorem Auswirkungen auf die Physik Test

Mehr

r r : Abstand der Kerne

r r : Abstand der Kerne Skript zur 10. Vorlesung Quantenmechanik, Freitag den 0. Mai, 011. 7.6 Anwendung Kernschwingungen in einem zweiatomigen Molekül. V ( r ) r 0 V 0 h ω 1 h ω r r : Abstand der Kerne Für Schwingungen kleiner

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

Einstein-de-Haas-Versuch

Einstein-de-Haas-Versuch Einstein-de-Haas-Versuch Versuch Nr. 5 Vorbereitung - 7. Januar 23 Ausgearbeitet von Martin Günther und Nils Braun Einführung 2 Aufbau und Durchführung Das hier vorgestellte Experiment von Einstein und

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr

Ionen in der Falle. und HITRAP. Frank Herfurth. GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ionen in der Falle. und HITRAP. Frank Herfurth. GSI Helmholtzzentrum für Schwerionenforschung GmbH Ionen in der Falle CRYRING@ESR und HITRAP Frank Herfurth Überblick Was wollen wir messen? Warum? Warum hochgeladene Schwerionen? Uranion 91+ Wir sperren Ionen ein. Warum? Wie? Eine Ionenfalle und ein Speicherring.

Mehr

1.4 Die Dirac-Gleichung

1.4 Die Dirac-Gleichung .4 Die Dirac-Gleichung Suche Differentialgleichung. Ordnung in der Zeit, relativistische Kovarianz. Ordnung auch in Ortskoordinaten 2. Vorlesung, 9.4.2 H rel Ψ = i Ψ t (ħ = c = ) zu bestimmen Ansatz: H

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

in Matrixnotation geschrieben wird, dann ist es leichter, physikalische Inhalte herauszufinden. Der HAMILTONoperator nimmt folgende Gestalt an

in Matrixnotation geschrieben wird, dann ist es leichter, physikalische Inhalte herauszufinden. Der HAMILTONoperator nimmt folgende Gestalt an 4a Die Pauligleichung Wenn der formelle DIRACoperator siehe 3 Abschnitt 3 unter Berücksichtigung der elektromagnetischen Potentiale V und A H D = c α p e A/c + β m c 2 + ev. in Matrixnotation geschrieben

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes

1. Zusammenfassung: Masse in der klassischen Mechanik. 2. Energie des klassischen elektromagnetischen Feldes 2. Vorlesung 1. Zusammenfassung: Masse in der klassischen Mechanik + 1. Übungsaufgabe 2. Energie des klassischen elektromagnetischen Feldes Literatur: beliebiges Lehrbuch klassische Elektrodynamik z.b.

Mehr

SQUID. Superconducting Quantum Interference Device Funktionsweise und Anwendungen. Christian Bespin

SQUID. Superconducting Quantum Interference Device Funktionsweise und Anwendungen. Christian Bespin SQUID Superconducting Quantum Interference Device Funktionsweise und Anwendungen Christian Bespin 20.06.2016 Motivation Abb.: Hämäläinen et al. Magnetoencephalography 2 Supraleitung Eigenschaften: Verschwindender

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein.

3. Feinstruktur von Alkalispektren: Die gelbe D-Linie des Na ist ein Dublett, sollte aber nur eine Linie sein. 13. Der Spin Experimentelle Fakten: 2. Normaler Zeeman-Effekt ist die Ausnahme: Meist sieht man den anormalen Zeeman-Effekt (Aufspaltung beobachtet, für die es keine normale Erklärung gab wegen Spin).

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Musterlösung zur Probeklausur Theorie 1

Musterlösung zur Probeklausur Theorie 1 Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg Magnetohydrodynamik Ivan Kostyuk Universität Heidelberg 22.05.2015 Inhalt 1. Ladungen in Elektromagnetischen Feldern 1.1 E B Drift 1.2 Ladungen in inhomogenen magnetischen Feldern 1.3 Magnetische Flasche

Mehr

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme

Inhaltsverzeichnis. Teil I. Nichtrelativistische Vielteilchen-Systeme Inhaltsverzeichnis Teil I. Nichtrelativistische Vielteilchen-Systeme 1. Zweite Quantisierung... 3 1.1 Identische Teilchen, Mehrteilchenzustände undpermutationssymmetrie... 3 1.1.1 Zustände und Observable

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Frühjahr 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Stabile Kreisbahnen im Zentralpotential Ein Teilchen der Masse m bewegt sich im Raum unter dem Einfluss einer

Mehr

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.:

9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators. Schrödinger-Gl.: phys4.015 Page 1 9.3.3 Lösungsansatz für die Schrödinger-Gleichung des harmonischen Oszillators Schrödinger-Gl.: Normierung: dimensionslose Einheiten x für die Koordinate x und Ε für die Energie E somit

Mehr

Teil III. Grundlagen der Elektrodynamik

Teil III. Grundlagen der Elektrodynamik Teil III Grundlagen der Elektrodynamik 75 6. Die Maxwellschen Gleichungen 6.1 Konzept des elektromagnetischen eldes Im folgenden sollen die Grundgleichungen für das elektrische eld E( x, t) und für das

Mehr

Kalte Ionen, Seitenbandkühlen und Ionen-Uhren

Kalte Ionen, Seitenbandkühlen und Ionen-Uhren Kalte Ionen, und Ionen-Uhren [2] Seite 1 Überblick Motivation Ionen Fallen Ramankühlen Ionen-Uhren Theorie Verschränkte Uhren Realisierungen Zwei-Elementige Uhren Dopplerkühlen Licht-Atom-Kopplung Was

Mehr

Elektronenspinresonanz-Spektroskopie

Elektronenspinresonanz-Spektroskopie Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie) engl.: Electron Paramagnetic Resonance Spectroscopy (EPR-Spectroscopy) Stephanie Dirksmeyer, 671197 Inhalt 1. Grundidee 2. physikalische Grundlagen

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik)

SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik) SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 11 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität

Mehr

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung

Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Prof. T. Esslinger (Dated: Mittwoch, 5. Februar 4, 9: Uhr) Aufgaben I. IONEN IN EINER FALLE Eine Falle für elektrisch geladene Ionen wird durch

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ

Übungen zur Theoretischen Physik F SS 08. c γα c αγ = δ γ,γ γ γ = δ γ,γ Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 7 1. Berechnung der Spur (1 Punkt) (i)

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Grundlagen der magnetischen Kernresonanz

Grundlagen der magnetischen Kernresonanz Grundlagen der magnetischen Kernresonanz 26.05.2014 Spin und gyromagnetisches Verhältnis Zeeman-Effekt Spin-Präzession Magnetisierung Teilchen haben Spin S Erfüllt Eigenwertgleichungen ˆ S 2 Ψ = s(s +

Mehr

Manipulation isolierter Quantensysteme

Manipulation isolierter Quantensysteme Manipulation isolierter Quantensysteme Andreas Brakowski Universität Bielefeld 19.06.2012 A. Brakowski (Universität Bielefeld) Manipulation isolierter Quantensysteme 19. Juni 2012 1 / 27 Inhaltsverzeichnis

Mehr

Prüfungsähnliche Klausur Leistungskurs Physik

Prüfungsähnliche Klausur Leistungskurs Physik Pestalozzi-Gymnasium Heidenau Hauptstr. 37 10. Februar 2011 Schuljahr 2010/2011 Prüfungsähnliche Klausur Leistungskurs Physik Allgemeine Arbeitshinweise Ihre Arbeitszeit (einschließlich Zeit für Lesen

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr