Beschreibung von Daten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Beschreibung von Daten"

Transkript

1 Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, im Buch usw. 1 1 In einem Versicherungsunternehmen besteht ein Team aus vier Arbeitnehmern, welche im Mittel die folgenden Zeiten (in Stunden) zur Bearbeitung eines Versicherungsfalles benötigen: Arbeitnehmer A B C D benötigte Zeit Wie lange benötigt das Team im Mittel zur Bearbeitung eines übernommenen Falles? Welcher Mittelwert ist zur Bearbeitung der Fragestellung geeignet? 1 2 Die folgende Tabelle enthält Daten der österreichischen Volkszählungen 1951 und Privathaushalte mit... Personen Jahr Insges a) Zeichnen Sie Kreisdiagramme zum Vergleich der Verteilung der Haushaltsgrößen. b) Bestimmen Sie die durchschnittliche Haushaltsgröße im Jahre 1991, unter der (unrealistischen) Annahme, dass es keinen Haushalt mit 5

2 6 Beschreibung von Daten mehr als 6 Personen gab. Vergleichen sie die Lösung mit jener zu Aufgabe Inwieweit beinflusst die getroffene Annahme die Ergebnisse. 1 3 Berechne einen Schiefekoeffizienten für folgende Stichprobe von Beobachtungen: 12, 12, 5, 14, 1, 9, 10, 4 Ist ihre Verteilung eher rechts- oder linksschief? 1 4 Folgende Tabelle basiert auf Daten aus dem Jahr 1990 und enthält eine Einteilung der österreichischen landwirtschaftlichen Betriebe in Größenklassen nach der Nutzfläche in Hektar. Berücksichtigt wurden nur Betriebe mit mindestens einem Hektar und höchstens 80 Hektar Nutzfläche. Nutzfläche in ha Anteil der Betriebe in % Zeichnen Sie ein Histogramm und ein Summenpolygon zu den Daten. Ermitteln Sie dann anhand des Summenpolygons (ungefähr) den Median der Betriebsgrößen. 1 5 Die Flugline ADUAL AIR hat für eine Flugroute folgende Tabelle für die Verspätungen beim Abflug ermittelt: Minuten Anzahl Berechne das arithmetische Mittel der Verspätungen! 1 6 Fünf Freunde feiern eine Party und trinken dabei jeweils einen Liter Wein. Bei der Heimfahrt werden alle fünf kontrolliert und müssen sich einem Alkoholtest unterziehen. Dabei wurden folgende Promillewerte ermittelt: 2.2, 1.6, 2.4, 1.8, 1.9 a) Zeichnen Sie die empirische Verteilungsfunktion zu den Messungen. b) Welchen Wert nimmt die empirische Verteilungsfunktion an den Stellen 1.8 und 2.5 an? Ermitteln Sie daraus jenen Anteil der Freunde, deren Alkoholgehalt im Blut mehr als 1.8 und höchstens 2.5 betrug!

3 Beschreibung von Daten Ein Film wird 100 zufällig ausgewählten Testpersonen gezeigt, welche eine Bewertung auf einer Skala von 0 20 abgaben. Die folgende Tabelle fasst die Bewertungen zusammen. Punkte Anzahl Berechne den Quartilsabstand zu den Daten. 1 8 Die folgende Tabelle enthält die Verzinsung eines Bankguthabens in 5 aufeinanderfolgenden Jahren. Jahr Verzinsung 1.2% 3.5% 4.4% 4.8% 6.1% Wie hoch war die mittlere Verzinsung? Beschreibung von Daten Welche Lagemaßzahlen kann man in den folgenden Situationen berechnen? a) Gewichte aus einer Stichprobe von 50 Konservendosen,,Pfirsichtraum mit symmetrischer Verteilung. b) Einkommen der 200 Arbeitnehmer eines Betriebs mit schiefer Verteilung. c) Religionsbekenntnisse der Bewohner einer bestimmten Stadt. d) Wertveränderung (in %) einer Aktie in fünf aufeinanderfolgenden Jahren.

4 8 Beschreibung von Daten 1 10 Nach einer Umfrage wurden die monatlichen Ausgaben von 100 dreiköpfigen Familien für Hygiene- und Körperpflegeprodukte folgendermaßen zusammengefasst: > a) Berechnen Sie den Median der Ausgaben. b) Welche Probleme treten bei der Berechnung des arithmetischen Mittels auf? 1 11 Um eine bestimmte Strecke zurückzulegen gibt es zwei Möglichkeiten. Entweder mit dem PKW: 1/2 der Strecke Autobahn (durchschnittlich 130 km/h), 1/4 der Strecke durch Städte (durchschnittlich 35 km/h), 1/4 der Strecke Landstraße (durchschnittlich 60 km/h), oder mit der Bahn: 1/2 der Strecke Land (durchschnittlich 100 km/h), 1/2 der Strecke Brücken und Tunnels (durchschnittlich 60 km/h). Mit welcher Möglichkeit erreicht man die größere Durchschnittsgeschwindigkeit? 1 12 Von 14 Männern im Alter von Jahren wurden die Körpergewichte in kg gemessen: 72, 75, 78, 61, 64, 86, 92, 85, 69, 75, 89, 76, 81, 82. Erstellen Sie ein Stamm & Blatt Diagramm sowie ein Bo & Whisker Diagramm Ermitteln Sie den Median der Daten in Aufgabe 1 4 rechnerisch Betrachte nochmals die Volkszählungsergebnisse von Aufgabe 1 2. Dazu ist noch bekannt, dass im Jahre Personen und Personen in Privathaushalten lebten. Berechne für 1951 und 1991 jeweils die mittleren Haushaltsgrößen! Wie groß sind die Haushalte mit mehr als 6 Personen im Mittel?

5 Beschreibung von Daten Berechnen Sie den Median, das arithmetische Mittel und die Varianz zu folgender Stichprobe von Beobachtungen: 7, 12, 5, 14, 1, 9, 10, In einem Betrieb wurde folgende Einkommensverteilung (in 1000 EURO) erhoben: von bis Anzahl a) Zeichne ein Histogramm mit Gesamtfläche 1. Wie hoch ist der Balken der ersten Klasse? b) Wie lautet das Verhältnis der Höhe des Balkens der zweiten Klasse zur Höhe des Balkens der ersten Klasse? c) Berechnen Sie den Median der Einkommen des Betriebs! 1 17 Betrachten Sie die Daten aus 1 4, und berechnen Sie arithmetisches Mittel und Standardabweichung der Betriebsgröße! 1 18 Bei welchen der sechs angegebenen Kurven kann es sich prinzipiell um Summenkurven handeln? (Auch die Achsenbeschriftung beachten!) (a) (b) (c) X (d) (e) (f)

6 10 Beschreibung von Daten 1 19 Eine Aktie wies in vier aufeinanderfolgenden Jahren folgende prozentualen Wertveränderungen (der Kurse am Jahresende) auf: +20%, +112%, +5%, 14% a) Wenn der Emissionspreis (Anfangspreis) 10 EURO betrug, wie groß waren die Kurse am Ende der ersten vier Jahre? Stellen Sie dieses Kurse grafisch dar. b) Wie hoch war die mittlere Wertveränderung (in Prozent)? c) Angenommen für eine andere Aktie war die Wertveränderung in jedem Jahr die gleiche. Wir groß ist die jährliche Wertveränderung, wenn Emissionspreis und Wert der Aktie am Ende des vierten Jahres die gleichen sind wie in a) Eine Familie teilt Ihre Monatsausgaben von 2200 EURO folgendermaßen auf: Nahrung: 400 EURO, Wohnen: 800 EURO, Freizeit: 300 EURO, Bekleidung: 200 EURO, Sparen: 500 EURO. Wenn Sie ein Kreisdiagramm zeichnen wollen, welchen Winkel hat der Abschnitt für die Nahrung? (Ganzer Kreis = 360.) 1 21 Betrachten Sie das folgende Histogramm mit Fläche 1: a) Wie groß ist die relative Häufigkeit der Klasse von 1 3? b) Wenn man die ersten beiden Klassen zusammenfasst, welche Höhe hat dann der Balken der neu entstandenen Klasse? c) Berechnen Sie den Median zum Histogramm!

7 Beschreibung von Daten Betrachte nochmals Beispiel??. Wie viele der 60 Teilnehmer konnten nur höchstens 1/4 der vorgesetzten Torte essen? 1 23 Ein Unternehmen bestellt regelmäßig Büromaterial. Dabei ergaben sich Wartezeiten zwischen Bestellung und Lieferung, die in folgender Tabelle zusammengefasst wurden: Wartezeit in Tagen h i Erstellen sie ein Flächenhistogramm zur Darstellung der Häufigkeitsverteilung der Wartezeiten! 1 24 Die folgende Tabelle gibt die Durchschnittsgeschwindigkeit von Usain Bolt über Abschnitte von jeweils 20 m bei seinem Weltrekordlauf (2009) (Quelle: APA): Abschnitt Durchschnittstempo (km/h) 0-20 m 24, m 41, m 43, m 44, m 43,4 Berechnen Sie seine Durchschnittsgeschwindigkeit! 1 25 Gegeben sind folgende klassifizierten Daten: Klasse abs. Häufigkeit h i rel. Häufigkeit f i F i Klassenbreite Balkenhöhe für Histogramm Klassenmittelpunkt i a) Vervollständigen Sie die Tabelle! b) Ermitteln Sie den Mittelwert! c) Ermitteln Sie die Varianz! d) Ermitteln Sie grafisch den Median und das 3. Quartil! e) Ermitteln Sie rechnerisch den Median und das 3. Quartil! f) Zeichnen Sie das Histogramm und das Summenpolygon!

8 12 Beschreibung von Daten 1 26 Eine Oktave besteht aus den Halbtonschritten C, cis, d, dis, e, f, fis, g, gis, a, ais, h, c. Die Frequenz von c ist doppelt so gross wie die von C. Wie groß ist das Frequenz-Verhältnis zweier aufeinanderfolgender Halbtöne im Mittel? 1 27 Eine Aktie hat nach drei Jahren 20 % Wertsteigerung erfahren. In den ersten beiden Jahren waren die Gewinne 2% und 5%. Wie groß war die Wertsteigerung im 3. Jahr? Wie groß war die durchschnittliche Verzinsung über die drei Jahre? 1 28 Der Notendurchschnitt ist eine beliebte Größe zur Charakterisierung der Leistung einer Schulklasse. Ist er auch sinnvoll? Lösungen 1 2: a) Relative Häufigkeiten und Winkel: Personen im Haushalt Jahr relative Häufigkeiten Winkel in Grad Daraus erhält man folgende Kreisdiagramme: u. mehr 6 u. mehr b) = : Das Flächenhistogramm findet man unten neben dem Summenpolygon. Zur Ermittlung des Summenpolygons benötigen wir die kumulierten relativen Häufigkeiten F i:

9 Beschreibung von Daten 13 i F i rel. Haeuf. pro ha Fi Median Groesse in ha Flächenhistogramm Summenpolygon Durch Ablesen von der Kurve bei y = 0.5 sieht man, dass der Median nahe bei 8 liegt. 1 6: a) Empirische Verteilungsfunktion: F b) DurchAblesenausobigerGrafikfindetman:F n(1.8) = 0.4,F n(2.5) = 1. Der gesuchte Anteil ist F n(2.5) F n(1.8) = 0.6.

10 14 Beschreibung von Daten 1 8: Mittlere Verzinsung: 3.987%. 1 10: a) Median: b) Die Klassen ganz außen sind sogenannte offene Randklassen. Ohne zusätzliche Annahmen kann man deren Klassenmitten, die in die Berechnung des arithmetischen Mittels eingehen, nicht bestimmen. 1 12: 6 : : : : 2 Stamm und Blatt Bo & Whisker Diagramm 1 14: Zur Berechnung der mittleren Haushaltsgröße ermitteln wir zunächst die durchschnittliche Größe der Haushalte, die 6 und mehr Personen umfassen: Sie betrug 7.22 (1951) bzw (1991). Damit erhält man als mittlere Haushaltsgröße 3.11 (für 1951), bzw (für 1991). 1 16: a) Höhe: b) Verhältnis: 1:1. c) Median: : Summenkurven sind: (a), (b) und (f). Die Kurven (c) und (e) sind nicht monoton wachsend, während (d) nicht von 0 bis 1 geht. 1 20: Einen Winkel von : 15 Personen. 1 24: 37.56km/h. 1 26: Nein. Schulnoten sind ordinalskalierte Merkmale, daher ist die Durchschnittsbildung nicht sinnvoll. Aussagekräftiger sind Median und die beiden Quartile.

Beschreibung von Daten

Beschreibung von Daten Kapitel 2 Beschreibung von Daten In diesem Kapitel geht es um die Beschreibung von empirisch erhobenen Daten Größere Datenmengen sind schwer zu überblicken Weil ein Bild leichter als eine Ansammlung von

Mehr

Beispiel 4 (Einige weitere Aufgaben)

Beispiel 4 (Einige weitere Aufgaben) 1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten. R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Übungsblatt 3. Größe in cm Anzahl der (Klassenmitten) Studenten ges:100

Übungsblatt 3. Größe in cm Anzahl der (Klassenmitten) Studenten ges:100 Aufgabe 1: Übungsblatt 3 Die Körpergröße von 100 Studenten sei wie folgt verteilt: Größe in cm Anzahl der (Klassenmitten) Studenten 158 1 162 6 166 10 170 22 174 21 178 17 182 14 186 5 190 3 194 1 ges:100

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden.

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden. Aufgabe 1: Nehmen Sie Stellung zu den nachfolgenden Behauptungen (richtig/falsch mit kurzer Begründung): a) Die normierte Entropie ist gleich Eins, wenn alle Beobachtungen gleich häufig sind. b) Bei einem

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen GRUPPE B Prüfung aus Statistik 1 für SoziologInnen 16. Oktober 2015 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden Name in Blockbuchstaben: Matrikelnummer: 1) Wissenstest (maximal 20 Punkte) Kreuzen ( )

Mehr

Statistik Skalen (Gurtner 2004)

Statistik Skalen (Gurtner 2004) Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

1. Schularbeit Gruppe A Seite 1 7E, 7. November 2011

1. Schularbeit Gruppe A Seite 1 7E, 7. November 2011 1. Schularbeit Gruppe A Seite 1 7E, 7. November 2011 NAME Für den Computerteil gilt: Die Verwendung von Excel, Word und GeoGebra (oder vergleichbaren Programmen) ist erlaubt. Das Internet darf verwendet

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 14. Oktober 2010 Übungen Aufgabenblatt 1 wird heute Nachmittag auf das Weblog gestellt. Geben Sie die Lösungen dieser

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Kapitel VII - Konzentration von Merkmalswerten

Kapitel VII - Konzentration von Merkmalswerten Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Ruediger.Braun@uni-duesseldorf.de Heinrich-Heine Universität Düsseldorf Mathematik für Biologen p. 1 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen:

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: http://www.serlo.org/ 1. In einer Schulklasse ergaben sich bei einer Mathematikschulaufgabe folgende Noten: Note 1

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 3 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 5 Aufgabe

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 2 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 4 Aufgabe

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr.

Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Hochschule Darmstadt Fachbereich MN Prof. Dr. Dietrich Baumgarten Darmstadt, den 9.7.2012 Klausur zur Vorlesung Statistik für BWL Name Vorname Matrikelnr. Aufgabe 1 2 3 4 5 6 Summe Note Punkte 1 Aufgabe

Mehr

SMALL & CR4 40 (N = 63) F E/F F E/F F E/ F 25% %

SMALL & CR4 40 (N = 63) F E/F F E/F F E/ F 25% % 1 Beispiel 4 (Die Lorenzkurve in der Betriebswirtschaft) Example 4.1 (The distribution of firms in Germany) Source: Vivek Ghosal, Prakash Loungani, The differential impact of incertainty on investment

Mehr

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 11 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 5. Januar 2009 1 / 22 Online-Materialien Die Materialien

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 14. Oktober 2006 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: Kreuze die jeweils richtige Antwort an (maximal 6 Punkte) 1.1. Bei einer rechtsschiefen

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25 8 Aufgaben im Dokument Aufgabe P7/2009 Die Jungen der Klassen 8a und 8b werden gemeinsam in einer Sportgruppe unterrichtet. Beim Ballwurf werden von den 10 Schülern der 8a und den 13 Schülern der 8b folgende

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.5: Histogramm (klassierte erreichte Punkte, Fortsetzung Bsp. 1.1) 0.25 0.2 Höhe 0.15 0.1 0.05 0 0 6 7 8,5 10 11 erreichte Punkte Dr. Karsten Webel 24 Beispiel 1.5: Histogramm (Fortsetzung) Klasse

Mehr

Kreisdiagramm, Tortendiagramm

Kreisdiagramm, Tortendiagramm Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie Institut für Mathematische Stochastik WS 1999/2000 Universität Karlsruhe 11. Mai 2000 Dr. Bernhard Klar Nachklausur zur Vorlesung Statistik für Studierende der Biologie Bearbeitungszeit: 90 Minuten Name:

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße Klausur: Statistik Jürgen Meisel Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung Bearbeitungszeit: 60 Minuten 1.) Mittelwerte und Streumaße In einer Vorlesung auf der Universität sitzen 30 Studenten

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 1 bis 3 Seite 1 von 11 Prof. Dr. Karin Melzer, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 1 bis 3 Seite 1 von 11 Prof. Dr. Karin Melzer, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 3 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 5 Aufgabe

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Deskriptive Statistik Erläuterungen

Deskriptive Statistik Erläuterungen Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung

Mehr

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen.

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen. Aufgabenstellung Klausur Methoden der Marktforschung 0.08.004 Der Automobilhersteller People Car verkauft eine neue Variante seines Erfolgsmodells Wolf zunächst nur auf einem Testmarkt. Dabei muss das

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Oktober 2010 1 empirische Verteilung 2 Lageparameter Modalwert Arithmetisches Mittel Median 3 Streuungsparameter

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht.

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht. , D 1 Kreuze die richtige Aussage an und stelle die anderen Aussagen richtig. A Das arithmetische Mittel kennzeichnet den mittleren Wert einer geordneten Datenliste. B Die Varianz erhält man, wenn man

Mehr

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a Aufgabe 1: Harry Potters Filmkritik 25 Schüler und Schülerinnen der Klasse 9 sollten die ersten beiden Harry-Potter- Filme mit ausgezeichnet (a), sehr gut (sg), gut (g), mittelprächtig (m), schlecht (s)

Mehr

Übungsblatt 4. Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten

Übungsblatt 4. Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten Aufgabe 1: Übungsblatt 4 Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten a) s 2 X, s 2 Y, sz, 2 s 2 U, s 2 V, s 2 W, s 2 T b) c XY, c Y Z c) c ZU, c

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 1: Beschreibende Statistik 1. Wir unterscheiden verschiedene Arten von Merkmalen. Nennen Sie für jedes Erhebungsmerkmal eine zulässige Ausprägung, geben Sie jeweils eine

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2.

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2. Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k=1 (2k 1) = n 2. Aufgabe 2. (7 Punkte) Gegeben sei das lineare Gleichungssystem x + 2z = 0 ay

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Kapitel 35 Histogramme

Kapitel 35 Histogramme Kapitel 35 Histogramme In einem Histogramm können Sie die Häufigkeitsverteilung der Werte einer intervallskalierten Variablen darstellen. Die Werte werden zu Gruppen zusammengefaßt und die Häufigkeiten

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von

2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von 2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von Wahrscheinlichkeiten. (5 Punkte) Antwort: Unabhängig von der quantitativen Herleitung

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Übung 1: Einführung, grafische Darstellung univariater Datensätze

Übung 1: Einführung, grafische Darstellung univariater Datensätze Übung 1: Einführung, grafische Darstellung univariater Datensätze Vor einer Bürgermeisterwahl, bei der fünf Kandidaten (A bis E) zur Auswahl stehen, wurden 160 Wahlberechtigte nach ihrer Wahlabsicht befragt.

Mehr