Höhere Mathematik für Ingenieure

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik für Ingenieure"

Transkript

1 Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule f Mit 256 Figuren, zahlreichen Beispielen und 157 Übungen, zumhteil mit Lösungen il3f!'!.?i 3 aiir A J. H?.s)\ B. G. Teubner Stuttgart 1990

2 Inhalt Vektoranalysis (F. Wille) 1 Kurven 1.1 Wege, Kurven, Bogenlängen Einführung: Ebene Kurven Kurven im R n Glatte und stückweise glatte Kurven Bogenlänge Parametertransformation, Orientierung Theorie ebener Kurven Bogenlänge und umschlossene Fläche Krümmung und Krümmungsradius Tangenteneinheitsvektor, Normalenvektor, natürliche Gleichung Evolute und Evolvente Beispiele ebener Kurven I: Kegelschnitte Kreis Ellipse Hyperbel Parabel Allgemeine Kegelschnittgleichung, Hauptachsentransformation Beispiele ebener Kurven II: Rollkurven, Blätter, Spiralen Zykloiden Epizykloiden Anwendung: Wankelmotor 66 1:4.4 Hypozykloide, Blattartige Kurven Kurbelgetriebe Spiralen Theorie räumlicher Kurven Krümmung, Torsion und begleitendes Dreibein Berechnung von Krümmung, Torsion und Dreibein in beliebiger Parameterdarstellung Natürliche Gleichungen und Frenetsche Formeln 89

3 1.6 Vektorfelder, Potentiale, Kurvenintegrale Vektorfelder und Skalarfelder Kurvenintegrale Der Kurvenhauptsatz Potentialkriterium Berechnung von Potentialen Beweis des Potentialkriteriums Flächen 2.1 Flächenstücke und Flächen Flächenstücke Tangentenebenen, Normalenvektoren Parametertransformation, Orientierung Flächen Flächenintegrale Flächeninhalt Flächenintegrale erster und zweiter Art Transformationsformel für Flächenintegrale zweiter Art Integralsätze 3.1 Der Gaußsche Integralsatz Ergiebigkeit, Divergenz Der Gaußsche Integralsatz für Bereiche mit stückweise glattem Rand Die Kettenregel der Divergenz Beweis des Gaußschen Integralsatzes für Bereiche mit stückweise glattem Rand Gaußscher und Greenscher Integralsatz in der Ebene Der Gaußsche Integralsatz für Skalarfelder Der Stokessche Integralsatz Einfache Flächenstücke.' Zirkulation, Wirbelstärke, Rotation Idee des Stokesschen Integralsatzes Stokesscher Integralsatz im dreidimensionalen Raum Zirkulation und Stokesscher Satz in der Ebene Weitere Differential- und Integralformeln Nabla-Operator...' Formeln über Zusammensetzungen mit grad, div und rot. 167

4 3.3.3 Gaußscher und Stokesscher Satz in div-, grad-, rot- und Nabla-Form Partielle Integration Die beiden Greenschen Integralformeln Krummlinige orthogonale Koordinaten Die Differentialoperatoren grad, div, rot, A in krummlinigen orthogonalen Koordinaten Wirbelfreiheit, Quellfreiheit, Potentiale Wirbelfreiheit: rot V=0, skalare Potentiale Laplace-Gleichung, harmonische Funktionen Poissongleichung Quellenfreiheit: div V=0, Vektorpotentiale Quellfreie Vektorpotentiale Helmholtzscher Zerlegungssatz Alternierende Differentialformen 4.1 Alternierende Differentialformen im K Integralsätze in Komponentenschreibweise... f Differentialformen und totale Differentiale Rechenregeln für Differentialformen Integration von Differentialformen, Integralsätze Alternierende Differentialformen im IR" Definition, Rechenregeln Integrale über p-dimenionalen Flächen Transformationsformel für Integrale Der allgemeine Stokessche Satz Kartesische Tensoren 5.1 Tensoralgebra Motivation: Spannungstensor., Definition kartesischer Tensoren Rechenregeln für Tensoren Invariante Tensoren.... : Diagonalisierung symmetrischer Tensoren und das Tensorellipsoid 233 t 5.2 Tensoranalysis { Differenzierbare Tensorfelder, Fundamentalsatz der Feldtheorie 237

5 5.2.2 Zusammenhang zwischen Tensorgradienten und grad, div, rot, A Der Gaußsche Satz für Tensorfelder zweiter Stufe Anwendungen 243 Funktionentheorie (H. Haf) 6 Grundlagen 6.1 Komplexe Zahlen Wiederholung und Ergänzung Die Riemannsche Zahlenkugel Topologische Hilfsmittel Folgen von komplexen Zahlen Reihen von komplexen Zahlen Kurven und Gebiete in C Funktionen einer komplexen Variablen Funktionsbegriff Stetigkeit Elementare Funktionen Holomorphe Funktionen 7.1 Differenzierbarkeit im Komplexen, Holomorphie Ableitungsbegriff, Holomorphie Rechenregeln für holomorphe Funktionen Die Cauchy-Riemannschen Differentialgleichungen Umkehrung der elementaren Funktionen Die Potentialgleichung Komplexe Integration Integralbegriff, Der Cauchysche Integralsatz Folgerungen aus dem Cauchyschen Integralsatz Umkehrung des Cauchyschen Integralsatzes Anwendungen der komplexen Integralrechnung Erzeugung holomorpher Funktionen durch Grenzprozesse Folgen von Funktionen { Reihen von Funktionen Potenzreihen 359

6 XI Charakterisierung holomorpher Funktionen Analytische Fortsetzung Asymptotische Abschätzungen Asymptotische Entwicklungen Die Sattelpunktmethode 384 Isolierte Singularitäten, Laurententwicklung 8.1 Laurentreihen Holomorphe Funktionen in Ringgebieten Singularitäten Residuensatz und Anwendungen Der Residuensatz Das Prinzip vom Argument Anwendungen: (a) Berechnung von reellen uneigentlichen Integralen 411 (b) Die Eulersche Gammafunktion 420 Konforme Abbildungen 9.1 Einführung in die Theorie konformer Abbildungen Geometrische Kennzeichnung holomorpher Funktionen Der Riemannsche Abbildungssatz Spezielle konforme Abbildungen Anwendungen auf die Potentialtheorie Dirichletsche Randwertprobleme Neumannsche Randwertprobleme Potential von Punktladungen Ebene stationäre Strömungen 476 i 10 Anwendungen der Funktionentheorie auf die Besselsche Differentialgleichung 10.1 Die Besselsche Differentialgleichung.' Motivierung i Die Hankeischen Funktionen Allgemeine Lösung der Besselschen Differentialgleichung 496

7 10.2 Die Besselschen und Neumannschen Funktionen Definitionen und grundlegende Eigenschaften Integraldarstellungen der Besselschen Funktionen Reihenentwicklung und asymptotisches Verhalten der Besselschen Funktionen Orthogonalität und Nullstellen der Besselschen Funktionen Die Nemannschen Funktionen Verhalten der Lösung der Besselschen Differentialgleichung Anwendungen Radialsymmetrische Lösungen der Schwingungsgleichung Schwingungen einer Membran 521 Anhang 528 Lösungen zu den Übungen 1 ) 531 Symbole 549 Literatur 552 Sachverzeichnis 558 ') Zu den mit * versehenen Übungen werden Lösugen angegeben oder Lösungswege skizziert

Klemens Burg, Herbert Haf, Friedrich Wille. Vektoranalysis

Klemens Burg, Herbert Haf, Friedrich Wille. Vektoranalysis Klemens Burg, Herbert Haf, Friedrich Wille Vektoranalysis Klemens Burg, Herbert Haf, Friedrich Wille Vektoranalysis Höhere Mathematik für Ingenieure, Naturwissenschaftler und Mathematiker Verfasst von

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Funktionentheorie erkunden mit Maple

Funktionentheorie erkunden mit Maple Springer-Lehrbuch Funktionentheorie erkunden mit Maple Bearbeitet von Wilhelm Forst, Dieter Hoffmann 1. Auflage 2012. Taschenbuch. xviii, 328 S. Paperback ISBN 978 3 642 29411 2 Format (B x L): 15,5 x

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg I Haf I Wille Höhere Mathematik für Ingenieure Band 11 Lineare Algebra Von Dr. rer. nat. Friedrich Wille, Dr. rer. nat. Herbert Haf und Dr. rer. nat. Klemens Burg Professoren an der Universität Kassel,

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

für öummies Mathematik für Ingenieure II J. Michael Fried Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier,

für öummies Mathematik für Ingenieure II J. Michael Fried Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier, J. Michael Fried Mathematik für Ingenieure II für öummies Fachkorrektur Von ör. Marianne Hammer-Attmann, Mona öentier, Ei/a Förster, Robert Herre und ör. Patrick Kühnet WILEY- VCH WILEY-VCH Verlag GmbH

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Differentialgleichungen der Geometrie und der Physik

Differentialgleichungen der Geometrie und der Physik Friedrich Sauvigny Partie I le Differentialgleichungen der Geometrie und der Physik Grundlagen und Integraldarstellungen Unter Berücksichtigung der Vorlesungen von E. Heinz Springer Inhaltsverzeichnis

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Rotation, Divergenz und das Drumherum

Rotation, Divergenz und das Drumherum Rotation, Divergenz und das Drumherum Eine Einführung in die elektromagnetische Feldtheorie Von Akad. Direktor i. R. Dr.-Ing. Gottlieb Strassacker Universität Fridericiana (TH) Karlsruhe 4., vollständig

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Inhaltsverzeichnis. vii

Inhaltsverzeichnis. vii Inhaltsverzeichnis 1 Riemann-Integrale... 1 1.1 Eigentliche und uneigentliche Riemann-Integrale... 1 1.2 Aufgaben... 7 Die Integration wichtiger Sprungfunktionen... 7 Eigentliche und uneigentliche Riemann-Integrale...

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Elektromagnetische Felder

Elektromagnetische Felder Elektromagnetische Felder Prof. Dr.-Ing. habil. Gerhard Wunsch Dr. sc. techn. Hans-Georg Schulz u VEB VERLAG TECHNIK BERLIN Inhaltsverzeichnis Schreibweise und Formelzeichen der wichtigsten Größen 10.1.

Mehr

Rotation, Divergenz und Gradient

Rotation, Divergenz und Gradient Gottlieb Strassacker, Roland Süße Rotation, Divergenz und Gradient Einführung in die elektromagnetische Feldtheorie 6. durchgesehene und ergänzte Auflage Mit 151 Abbildungen, 17 Tabellen und 70 Beispielen

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung * S.L. Salas/Einar Hille Calculus Einführung in die Differential- und Integralrechnung Aus dem Amerikanischen von Michael Basler, Thomas Lange und Karl-Heinz Lotze Mit 670 Abbildungen Spektrum Akademischer

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Teubner Studienbücher Physik Mathematischer Einführungskurs für die Physik Bearbeitet von Prof. em. Dr. Siegfried Großmann erweitert, überarbeitet 2012. Taschenbuch. xvii, 407 S. Paperback ISBN 978 3 8351

Mehr

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher Grundstudium Mathematik Analysis III Bearbeitet von Herbert Amann, Joachim Escher Neuausgabe 2008. Taschenbuch. xii, 480 S. Paperback ISBN 978 3 7643 8883 6 Format (B x L): 17 x 24 cm Gewicht: 960 g Weitere

Mehr

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen

2.5.5 Fundamentalsatz der Algebra, Folgen und Reihen, stetige Funktionen im Komplexen Inhaltsverzeichnis 1 Grundlagen 1 1.1 Reelle Zahlen..................................... 1 1.1.1 Die Zahlengerade................................. 1 1.1.2 Rechnen mit reellen Zahlen...........................

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Inhaltsverzeichnis. Teil I Eindimensionale Analysis 27. Einleitung 21. Kapitel 1 Grundtagen der Analysis 29. Über die Autoren 10 Danksagung 10

Inhaltsverzeichnis. Teil I Eindimensionale Analysis 27. Einleitung 21. Kapitel 1 Grundtagen der Analysis 29. Über die Autoren 10 Danksagung 10 Inhaltsverzeichnis Über die Autoren 10 Danksagung 10 Einleitung 21 Zweiter Teil für Naturwissenschaftler oder höhere Mathematik 21 Ein leicht verständlicher Einstieg in die höhere Mathematik anhand von

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK H. v. MANGOLDT'S EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM SEIT DER SECHSTEN AUFLAGE NEU HERAUSGEGEBEN UND ERWEITERT VON KONRAD KNOPP E. 0. PROFESSOR DER MATHEMATIK AN DER

Mehr

Klemens Burg, Herbert Haf, Friedrich Wille. Höhere Mathematik für Ingenieure

Klemens Burg, Herbert Haf, Friedrich Wille. Höhere Mathematik für Ingenieure Klemens Burg, Herbert Haf, Friedrich Wille Höhere Mathematik für Ingenieure Klemens Burg, Herbert Haf, Friedrich Wille Höhere Mathematik für Ingenieure Band I: Analysis 8., überarbeitete Auflage Bearbeitet

Mehr

Mathematik für Physiker 3 Inhaltsübersicht

Mathematik für Physiker 3 Inhaltsübersicht Goethe-Universität Frankfurt Wintersemester 2013/2014 Institut für Mathematik Hans Crauel Mathematik für Physiker 3 Inhaltsübersicht I. Differentialgleichungen II I.1 Explizit lösbare Differentialgleichungen;

Mehr

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1

Inhaltsverzeichnis. Kapitel 1. Zahlen und Vektoren... 1 Inhaltsverzeichnis Kapitel 1. Zahlen und Vektoren... 1 1. Mengen und Abbildungen... 1 1.1 Mengen 1.2 Mengenoperationen 1.3 Abbildungen 2. Die reellen Zahlen... 3 2.1 Bezeichnungen 2.2 Ungleichungen 2.3

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Inhaltsverzeichnis Vorwort Grundlagen

Inhaltsverzeichnis Vorwort Grundlagen Inhaltsverzeichnis Vorwort... 1 Grundlagen... 1 1.1 Mengenlehre... 1 1.1.1 Mengenbegriff... 2 1.1.2 Mengenoperationen... 4 1.1.3 Abbildungen... 7 1.2 Logik... 12 1.2.1 Aussagenlogik... 12 1.2.2 Prädikatenlogik...

Mehr

Inhaltsübersicht. P U n k t G -. Seite

Inhaltsübersicht. P U n k t G -. Seite Inhaltsübersicht. P U n k t G -. Die Lage eines Punktes 1 Übungen 2 Anwendungen (Hydranten, Panamakanal, Rohrleitung)... 3 Entfernung zweier Punkte. 4 Übungen 5 Berechnung geradlinig begrenzter Flächen

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

2 Funktionentheorie im Gebiet

2 Funktionentheorie im Gebiet 2 Funktionentheorie im Gebiet Die von uns betrachteten Funktionen leben immer auf einem Gebiet G (das ist eine offene zusammenhängende Teilmenge) der komplexen Ebene oder der Riemannschen Zahlenkugel C.

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN I INHALTSVERZEICHNIS Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN 1 1.1 Skalare und Vektoren 1.2 Art von Vektoren 1.3 Summe und Differenz von Vektoren 1.4 Parallele Vektoren 1.5 Betrag eines Vektors

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben

Höhere Mathematik. Grundlagen Beispiele Aufgaben. Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben shermann K. stein Einf ührungskurs Höhere Mathematik Grundlagen Beispiele Aufgaben Mit 887 Bildern, 525 vollständig durchgerechneten Beispielen und 4759 Aufgaben Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Helmut Fischer Helmut Kaul. Mathematik für Physiker 1

Helmut Fischer Helmut Kaul. Mathematik für Physiker 1 Helmut Fischer Helmut Kaul Mathematik für Physiker 1 Helmut Fischer Helmut Kaul Mathematik für Physiker Band 1: Grundkurs 7., durchgesehene Auflage STUDIUM Bibliografische Information der Deutschen Nationalbibliothek

Mehr

Anschauliche Funktionentheorie

Anschauliche Funktionentheorie Anschauliche Funktionentheorie von Tristan Needham Übersetzt von Dr. Norbert Herrmann und Ina Paschen Oldenbourg Verlag München Wien XIX Inhaltsverzeichnis 1. Geometrie und komplexe Arithmetik 1 1.1 Einführung

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

für bummies Mathematik der Physik Thoralf Hasch Fachkorrektur Von Dr. Patrick Kühne! WILEY-VCH Verlag GmbH & Co. KGaA Dr. VCH

für bummies Mathematik der Physik Thoralf Hasch Fachkorrektur Von Dr. Patrick Kühne! WILEY-VCH Verlag GmbH & Co. KGaA Dr. VCH Dr. Thoralf Hasch Mathematik der Physik für bummies Fachkorrektur Von Dr. Patrick Kühne! TECHNISCHE INFOR M ATI 0 N S B i B L i OTHEK UNIV ERSITÄTS B!8 LIOTH EK HANNOVER WILEY VCH WILEYVCH Verlag GmbH

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige Sätze der mathematischen Funktionentheorie,

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

Meyers Handbuch über die Mathematik

Meyers Handbuch über die Mathematik Meyers Handbuch über die Mathematik Herausgegeben von Herbert Meschkowski in Zusammenarbeit mit Detlef Laugwitz 2. erweiterte Auflage BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH LEXIKONVEK.1AG INHALT

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Lineare Algebra und analytische Geometrie von Günther Eisenreich Mit 107 Abbildungen und 2 Tabellen 3., erweiterte und berichtigte Auflage Akademie Verlag Inhaltsverzeichnis A. Allgemeine Vorbemerkungen

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

DIE MATHEMATIK FÜR PHYSIK UND CHEMIE

DIE MATHEMATIK FÜR PHYSIK UND CHEMIE 612A9 DIE MATHEMATIK FÜR PHYSIK UND CHEMIE VON HENRY MARGENAU EUGENE HIGGINS PROFESSOR DER PHYSIK UND NATURPHILOSOPHIE YALE UNIVERSITÄT UND GEORGE MOSELEY MURPHY DIREKTOR DES INSTITUTS FÜR CHEMIE AM WASHINGTON

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG

ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG ANALYTISCHE GEOMETRIE, VEKTORRECHNUNG UND INFINITESIMALRECHNUNG 21. Auflage Mit 3 74 Bildern und 1080 A ufgaben mit Lösungen A Fachbuchverlag Leipzig Inhaltsverzeichnis Analytische Geometrie 1. Punkte

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

4 Der globale Cauchysche Integralsatz 56

4 Der globale Cauchysche Integralsatz 56 Inhaltsverzeichnis Vorbemerkung ii 0 Abbildungen f : U lc lc, (x, y) f(x, y) 2 1 Holomorphe Funktionen 10 2 Kurvenintegrale 18 3 Die Stammfunktion 27 3.1 Stammfunktionen und der Cauchysche Integralsatz........

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 76 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 12.11.28 2 / 76 Wiederholung Glatte Flächen Wiederholung Vektorprodukt Definition Flächeninhalt

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Klassische elementare Analysis

Klassische elementare Analysis i Max Koecher Klassische elementare Analysis 1987 Birkhäuser Verlag Basel Boston Inhaltsverzeichnis Kapitel I Der goldene Schnitt Einleitung 11 1 Elementare Eigenschaften 11 1. Definition - 2. Konstruktion

Mehr

T0 Rechenmethoden, WiSe2011/12 Di + Do Woche Datum Thema (mit * gekennzeichnete Themen sind für Lehramt Gymnasium und Nebenfächler nicht

T0 Rechenmethoden, WiSe2011/12 Di + Do Woche Datum Thema (mit * gekennzeichnete Themen sind für Lehramt Gymnasium und Nebenfächler nicht T0 Rechenmethoden, WiSe2011/12 Di + Do Woche Datum Thema (mit * gekennzeichnete Themen sind für Lehramt Gymnasium und Nebenfächler nicht prüfungsrelevant) 1 18.10.11 Vektorrechnung (a) Beispiele, Addition

Mehr

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr..

Differentialund. Integralrechnung. Von G. M. Fichtenholz. Mit 168 Abbildungen. Dreizehnte Auflage ^<= /' M^ntrKkiVr.. Differentialund Integralrechnung Von G. M. Fichtenholz Mit 168 Abbildungen Dreizehnte Auflage /' M^ntrKkiVr.. s^os«^

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Höhere Mathematik griffbereit

Höhere Mathematik griffbereit M.J. WYGODSKI Höhere Mathematik griffbereit In deutscher Sprache herausgegeben von Prof. Dr. Ferdinand Cap, Innsbruck Mit 483 Abbildungen und 15 Tabellen AKADEMIE-VERLAG BERLIN 1972 Inhaltsverzeichnis

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

x 2(t), j 1, 2. x 1(t) + x j x 2 (x 1(t), x 2(t)) und x j(t) = x j x 1

x 2(t), j 1, 2. x 1(t) + x j x 2 (x 1(t), x 2(t)) und x j(t) = x j x 1 Differentialformen für die Thermodynamik Bitte den Text über Kettenregel und Koordinatenfunktionen zuerst lesen. Normaler Weise bevorzugen wir bis einschließlich Dimension 3 die Vektoranalysis vor den

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Technische Universität München Carla Zensen Ferienkurs Analysis 2 für Physiker Vorlesung Dienstag SS 2012 1 Lokale Umkehrbarkeit und implizite Funktionen Ein Ingenieur und ein Mathematiker wachen nachts

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr