Differentialgleichungen der Geometrie und der Physik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Differentialgleichungen der Geometrie und der Physik"

Transkript

1 Friedrich Sauvigny Partie I le Differentialgleichungen der Geometrie und der Physik Grundlagen und Integraldarstellungen Unter Berücksichtigung der Vorlesungen von E. Heinz Springer

2 Inhaltsverzeichnis von Band 1. Grundlagen und Integraldarstellungen I Differentiation und Integration auf Mannigfaltigkeiten... 1 $1 Der Weierstraßsche Approximationssatz Parameterinvariante Integrale und Differentialformen Die äußere Ableitung von Differentialformen Der Stokessche Integralsatz für Mannigfaltigkeiten Der Gaußsche und der Stokessche Integralsatz Kurvenintegrale Das Poincarésche Lemma Die Coableitung und der Laplace-Beltrami-Operator II Grundlagen der Funktionalanalysis Das Daniellsche Integral mit Beispielen Fortsetzung des Daniell-Integrals zum Lebesgue-Integral Meßbare Mengen Meßbare Funktionen Das Riemannsche und Lebesguesche Integral auf Quadern Banach- und Hilberträume Die Lebesgueschen Räume LP(X) Beschränkte lineare Funktionale auf LP(X) und schwache Konvergenz III Der Brouwersche Abbildungsgrad mit geometrischen Anwendungen Die Umlaufszahl Der Abbildungsgrad im Rn Geometrische Existenzsätze Der Index einer Abbildung Der Produktsatz Die Sätze von Jordan-Brouwer

3 X Inhaltsverzeichnis von Band 1 IV Verallgemeinerte analytische Funktionen Die Cauchy-Riemannsche Differentialgleichung Holomorphe Funktionen im Cn $3 Geometrisches Verhalten von holomorphen Funktionen in C Isolierte Singularitäten und der allgemeine Residuensatz Die inhomogene Cauchy-Riemannsche Differentialgleichung Pseudoholomorphe Funktionen Konforme Abbildungen Randverhalten konformer Abbildungen V Potentialtheorie und Kugelfunktionen Die Poissonsche Differentialgleichung im Rn Die Poissonsche Integralformel mit ihren Folgerungen Das Dirichletproblem für die Laplacegleichung im Rn Die Theorie der Kugelfunktionen: Fourierreihen Die Theorie der Kugelfunktionen in n Variablen VI Lineare partielle Differentialgleichungen im Rn Das Maximumprinzip für elliptische Differentialgleichungen Quasilineare elliptische Differentialgleichungen Die Wärmeleitungsgleichung Charakteristische Flächen Die Wellengleichung im Rn für n = 1,3, Die Wellengleichung im Rn für n > Die inhomogene Wellengleichung und ein Anfangsrandwertproblem Klassifikation, Transformation und Reduktion partieller Differentialgleichungen Literaturverzeichnis Sachverzeichnis

4 Inhaltsverzeichnis von Band 2 - Funkt ionalanalyt ische Lösungsmet hoden VII Operatoren im Banachraum 1 Fixpunktsätze 2 Der Leray-Schaudersche Abbildungsgrad 3 Fundamentaleigenschaften des Abbildungsgrades $4 Lineare Operatoren im Banachraum VIII Lineare Operatoren im Hilbertraum 1 Verschiedene Eigenwertprobleme $2 Integralgleichungsprobleme $3 Der abstrakte Hilbertraum $4 Beschränkte lineare Operatoren im Hilbertraum $5 Unitäre Operatoren $6 Vollstetige Operatoren im Hilbertraum $7 Spektraltheorie vollstetiger Hermitescher Operatoren $8 Das Sturm-Liouvillesche Eigenwertproblern $9 Das Weylsche Eigenwertproblem IX X Lineare elliptische Differentialgleichungen $1 Die Differentialgleichung (x,y) +P(Z,Y)4Z(Z,Y) + dz,y)4,(z,y) $2 Die Schwarzsche Integralformel $3 Das Riemann-Hilbertsche Randwertproblem $4 Potentialtheoretische Abschätzungen $5 Die Schaudersche Kontinuitätsmethode $6 Existenz- und Regularitätssätze $7 Die Schauderschen Abschätzungen = T(Z,Y) Schwache Lösungen elliptischer Differentialgleichungen $1 Sobolevräume $2 Einbettung und Kompaktheit $3 Existenz schwacher Lösungen

5 xii Inhaltsverzeichnis von Band 2 $4 Beschränktheit schwacher Lösungen $5 Hölderstetigkeit schwacher Lösungen $6 Schwache potentialtheoretische Abschätzungen $7 Randregularität schwacher Lösungen XI Nichtlineare partielle Differentialgleichungen $1 Die Fundamentalformen und Krümmungen einer Fläche $2 Zweidimensionale parametrische Integrale $3 Quasilineare hyperbolische Differentialgleichungen und Systeme zweiter Ordnung (Charakteristische Parameter) $4 Das Cauchysche Anfangswertproblem für quasilineare hyperbolische Differentialgleichungen und Systeme zweiter Ordnung 55 Die Riemannsche Integrationsmethode $6 Das Bernsteinsche Analytizitätstheorem XII Nichtlineare elliptische Systeme $1 $2 $3 4 5 $6 7 8 $9 Maximumprinzipien für das H- Flächensystem Gradientenabschätzungen für nichtlineare elliptische Systeme Globale Abschätzungen für nichtlineare Systeme Das Dirichletproblem für nichtlineare elliptische Systeme Verzerrungsabschätzungen für ebene elliptische Systeme Eine Krümmungsabschätzung für Minimalflächen Globale Abschätzungen für konforme Abbildungen bezüglich einer Riemannschen Metrik Einführung konformer Parameter in eine Riemannsche Metrik Die Uniformisierungsmethode bei quasilinearen elliptischen Differentialgleichungen

Inhaltsverzeichnis. vii

Inhaltsverzeichnis. vii Inhaltsverzeichnis 1 Riemann-Integrale... 1 1.1 Eigentliche und uneigentliche Riemann-Integrale... 1 1.2 Aufgaben... 7 Die Integration wichtiger Sprungfunktionen... 7 Eigentliche und uneigentliche Riemann-Integrale...

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Springer-Lehrbuch Masterclass Partielle Differentialgleichungen Eine anwendungsorientierte Einführung Bearbeitet von Ben Schweizer 1. Auflage 2013. Taschenbuch. xvi, 583 S. Paperback ISBN 978 3 642 40637

Mehr

Funktionentheorie erkunden mit Maple

Funktionentheorie erkunden mit Maple Springer-Lehrbuch Funktionentheorie erkunden mit Maple Bearbeitet von Wilhelm Forst, Dieter Hoffmann 1. Auflage 2012. Taschenbuch. xviii, 328 S. Paperback ISBN 978 3 642 29411 2 Format (B x L): 15,5 x

Mehr

MATHEMATISCHE METHODEN DER PHYSIK

MATHEMATISCHE METHODEN DER PHYSIK MATHEMATISCHE METHODEN DER PHYSIK ERSTER BAND VON WOLFGANG GRÖBNER und PETER LESKY o. Professor Dozent an der Universität Innsbruck BIBLIOGRAPHISCHES INSTITUT MANNHEIM HOCHSCHUL TASCHENBUCH ER-VERLAG INHALTSVERZEICHNIS

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK * v. MANGOLDT/KNOPP EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM VIERTER BAND MENGENLEHRE LEBESGUESCHES MASS UND INTEGRAL TOPOLOGISCHE RÄUME VEKTORRÄUME FUNKTIONALANALYSIS

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher Grundstudium Mathematik Analysis III Bearbeitet von Herbert Amann, Joachim Escher Neuausgabe 2008. Taschenbuch. xii, 480 S. Paperback ISBN 978 3 7643 8883 6 Format (B x L): 17 x 24 cm Gewicht: 960 g Weitere

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Vektoranalysis, Funktionentheorie, Transformationen

Vektoranalysis, Funktionentheorie, Transformationen Rainer Schark Theo Overhagen Vektoranalysis, Funktionentheorie, Transformationen Verlag Harri Deutsch Inhaltsverzeichnis I Vektoranalysis 9 1 Vektorfunktionen und Raumkurven 11 1.1 Vektorfunktionen 11

Mehr

Inhaltsverzeichnis. I Vektoranalysis g

Inhaltsverzeichnis. I Vektoranalysis g I Vektoranalysis g 1 Vektorfunktionen und Raumkurven JJ 1.1 Vektorfunktionen n 1.2 Ableitung einer Vektorfunktion 12 1.3 Bogenlänge und Tangenteneinheitsvektor 16 1.4 Hauptnormale und Krümmung 19 1.5 Binormale

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Meyers Handbuch über die Mathematik

Meyers Handbuch über die Mathematik Meyers Handbuch über die Mathematik Herausgegeben von Herbert Meschkowski in Zusammenarbeit mit Detlef Laugwitz 2. erweiterte Auflage BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH LEXIKONVEK.1AG INHALT

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg / Haf / Wille Höhere Mathematik für Ingenieure Band III Gewöhnliche Differentialgleichungen, Distributionen, Integraltransformationen Von Prof. Dr. rer. nat. Herbert Haf Universität Kassel, Gesamthochschule

Mehr

Springer-Lehrbuch. Höhere Mathematik 2. Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung

Springer-Lehrbuch. Höhere Mathematik 2. Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung Springer-Lehrbuch Höhere Mathematik 2 Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung Bearbeitet von Kurt Meyberg, Peter Vachenauer überarbeitet 2003. Taschenbuch. xiii,

Mehr

ANALYSE NUMERISCHER VERFAHREN

ANALYSE NUMERISCHER VERFAHREN ANALYSE NUMERISCHER VERFAHREN von Eugene Isaacson Professor für Mathematik Leiter des Rechenzentrums Courant Institute of Mathematical Sciences New York University und Herbert Bishop Keller Professor für

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Anton Deitmar. Analysis. 2., durchgesehene Auflage

Anton Deitmar. Analysis. 2., durchgesehene Auflage Springer-Lehrbuch Anton Deitmar Analysis 2., durchgesehene Auflage Anton Deitmar Mathematisches Institut Universität Tübingen Tübingen, Deutschland ISSN 0937-7433 Springer-Lehrbuch ISBN 978-3-662-53351-2

Mehr

Modulhandbuch für. den Bachelor-Studiengang Mathematik. und. den Bachelor-Studiengang Wirtschaftsmathematik. an der Universität Augsburg

Modulhandbuch für. den Bachelor-Studiengang Mathematik. und. den Bachelor-Studiengang Wirtschaftsmathematik. an der Universität Augsburg Universität Augsburg Institut für Modulhandbuch für den Bachelor-Studiengang und den Bachelor-Studiengang Wirtschaftsmathematik an der Universität Augsburg 29.06.2009 Grundlegend für dieses Modulhandbuch

Mehr

^ Springer Spektrum. Anwendungen lernen. Höhere Analysis durch. Skrzypacz. und Ingenieurwissenschaften. Matthias Kunik

^ Springer Spektrum. Anwendungen lernen. Höhere Analysis durch. Skrzypacz. und Ingenieurwissenschaften. Matthias Kunik Matthias Kunik Piotr Skrzypacz Höhere Analysis durch Anwendungen lernen Für Studierende der Mathematik, Physik und Ingenieurwissenschaften ^ Springer Spektrum Inhaltsverzeichnis 1 Riemann-Integrale 1 1.1

Mehr

Mathematik fur Physiker und Mathematiker

Mathematik fur Physiker und Mathematiker Rainer Wust Mathematik fur Physiker und Mathematiker Band 2 Rainer Wust Mathematik fur Physiker und Mathematiker 2., uberarbeitete Auflage Band 2: Analysis im Mehrdimensionalen und Einfuhrungen in Spezialgebiete

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

Funktionalanalysis II. Sommersemester 2002

Funktionalanalysis II. Sommersemester 2002 Funktionalanalysis II Sommersemester 2002 Prof. Dr. Michael Růžička Inhaltsverzeichnis 1 Fixpunktsätze 1 1.1 Der Banachsche Fixpunktsatz....................... 2 Gewöhnliche Differentialgleichungen....................

Mehr

Elliptische Differentialgleichungen zweiter Ordnung

Elliptische Differentialgleichungen zweiter Ordnung Springer-Lehrbuch Masterclass Elliptische Differentialgleichungen zweiter Ordnung Eine Einführung mit historischen Bemerkungen Bearbeitet von Ernst Wienholtz, Hubert Kalf, Thomas Kriecherbauer 1. Auflage

Mehr

Normierte Algebren. von M. A. Neumark. Mit 3 Abbildungen

Normierte Algebren. von M. A. Neumark. Mit 3 Abbildungen Normierte Algebren von M. A. Neumark Mit 3 Abbildungen VEB Deutscher Verlag der Wissenschaften Berlin 1990 Inhalt I. Elemente der Topologie und der Funktionalanalysis 1. Lineare Räume 19 1. Definition

Mehr

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur ersten Auflage Bezeichnungen v vi xv Kapitel I Einführung 1 1. Beispiele und Typeneinteilung 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen

Klemens Burg Herbert Haf Friedrich Wille Andreas Meister. Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen und funktionalanalytische Grundlagen Klemens Burg Herbert Haf Friedrich Wille Andreas Meister Partielle Differentialgleichungen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine Einführung unter besonderer Berücksichtigung der Anwendungen Von Dr. phil. Dr. h. c. mult. Lothar Collatz em. o. Professor an der Universität Hamburg 7., überarbeitete und

Mehr

Anschauliche Funktionentheorie

Anschauliche Funktionentheorie Anschauliche Funktionentheorie von Tristan Needham Übersetzt von Dr. Norbert Herrmann und Ina Paschen Oldenbourg Verlag München Wien XIX Inhaltsverzeichnis 1. Geometrie und komplexe Arithmetik 1 1.1 Einführung

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Rudolf Taschner LEHRGANG DER KONSTRUKTIVEN MATHEMATIK. 3. Teil: FUNKTIONEN. Vorlesungen über Mathematik. Wien 1993

Rudolf Taschner LEHRGANG DER KONSTRUKTIVEN MATHEMATIK. 3. Teil: FUNKTIONEN. Vorlesungen über Mathematik. Wien 1993 Vorlesungen über Mathematik Rudolf Taschner LEHRGANG DER KONSTRUKTIVEN MATHEMATIK 3. Teil: FUNKTIONEN Wien 1993 MANZ Verlags- und Universitätsbuchhandlung INHALTSVERZEICHNIS 1. STETIGE FUNKTIONEN...

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

Rechenverfahren und Auswertemodelle der Landesvermessung

Rechenverfahren und Auswertemodelle der Landesvermessung Bernhard Heck Rechenverfahren und Auswertemodelle der Landesvermessung Klassische und moderne Methoden Herbert Wichmann Verlag Karlsruhe IX INHALT Seite TEIL I: ALLGEMEINE GRUNDLAGEN 1 Einführung 1 1.1

Mehr

VORLESUNGEN ÜBER VARIATIONSRECHNUNG VON ORD. PROFESSOR DER MATHEMATIK AN DER UNIVERSITÄT CHICAGO

VORLESUNGEN ÜBER VARIATIONSRECHNUNG VON ORD. PROFESSOR DER MATHEMATIK AN DER UNIVERSITÄT CHICAGO ^ '.. '.. ' ' VORLESUNGEN ÜBER VARIATIONSRECHNUNG VON DR.OSKAR BOLZA ORD. PROFESSOR DER MATHEMATIK AN DER UNIVERSITÄT CHICAGO UMGEARBEITETE UND STARK VERMEHRTE DEUTSCHE AUSGABE DER "LECTURES ON THE CALCULUS

Mehr

Nebenfach Mathematik Studienplan

Nebenfach Mathematik Studienplan Nebenfach Mathematik Studienplan Studienbeginn im Wintersemester 3. Semester Numerische Analysis I 4. Semester Computeralgebra 5. Semester Funktionentheorie Numerisches Praktikum Nebenfach Mathematik Studienplan

Mehr

Mathematik für Physiker 3 Inhaltsübersicht

Mathematik für Physiker 3 Inhaltsübersicht Goethe-Universität Frankfurt Wintersemester 2013/2014 Institut für Mathematik Hans Crauel Mathematik für Physiker 3 Inhaltsübersicht I. Differentialgleichungen II I.1 Explizit lösbare Differentialgleichungen;

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN I"., ' '--. _... DIFFERENTIALGLEICHUNGEN i. GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN VON DR.E.KAMKE f EHEMALS O. PROFESSOR AN DER UNIVERSITÄT TÜBINGEN MIT 38 FIGUREN 6. AUFLAGE, UNVERÄNDERTER NACHDRUCK DER

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine Einführung unter besonderer Berücksichtigung der Anwendungen Von Dr. phil. Dr. h. c. mult. Lothar Collatz em. o. Professor an der Universität Hamburg 6., überarbeitete und

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Schwache Lösungstheorie

Schwache Lösungstheorie Kapitel 4 Schwache Lösungstheorie Bemerkung 4.1 Motivation. Dieses Kapitel stellt eine Erweiterung des Lösungsbegriffes von partiellen Differentialgleichungen vor die schwache Lösung. Diese Erweiterung

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

ANGEWANDTE MATHEMATIK FÜR PHYSIKER UND INGENIEURE

ANGEWANDTE MATHEMATIK FÜR PHYSIKER UND INGENIEURE ANGEWANDTE MATHEMATIK FÜR PHYSIKER UND INGENIEURE A.D.Myschkis Mit 191 Abbildungen 1981 VERLAG HARRI DEUTSCH THUN UND FRANKFURT/M. INHALTSVERZEICHNIS Die mit einem Stern versehenen Abschnitte können beim

Mehr

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung Horst Niemeyer Edgar Wermuth Lineare Algebra Analytische und numerische Behandlung v FriedrVieweg & Sohn Braunschweig/Wiesbaden VIII Inhaltsverzeichnis Symbolverzeichnis XII 1 Die euklidischen Vektorräume

Mehr

Stefan Sauter, Christoph Schwab. Randelementmethoden. Analyse, Numerik und Implemen tierung schneller Algorithmen. Teubner

Stefan Sauter, Christoph Schwab. Randelementmethoden. Analyse, Numerik und Implemen tierung schneller Algorithmen. Teubner Stefan Sauter, Christoph Schwab Randelementmethoden Analyse, Numerik und Implemen tierung schneller Algorithmen Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis Vorwort VII 1 Einführung

Mehr

Differentialgleichungen mit MATHCAD und MATLAB

Differentialgleichungen mit MATHCAD und MATLAB Hans Benker Differentialgleichungen mit MATHCAD und MATLAB Mit 33 Abbildungen Sprin ger 1 Einleitung 1 1.1 Differentialgleichungen in Technik, Natur- und Wirtschaftswissenschaften 2 1.2 Lösung von Differentialgleichungen

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele...

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele... Inhaltsverzeichnis 1 Partielle Differentialgleichungen und ihre Typeneinteilung... 1 1.1 Beispiele... 1 1.2 Typeneinteilungen bei Gleichungen zweiter Ordnung... 5 1.3 Typeneinteilungen bei Systemen erster

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit

falls falls Satz v. Cauchy: falls analytisch ist auf einfach zusammenhängendem Gebiet, gilt: Geschlossener Weg liefert 0: Wegunabhängigkeit:, mit Zusammenfassung: Analytische Funktionen Def: Komplexe Funktion ist analytisch in, falls überall in existiert. Cauchy-Riemann- Differentialgleichungen: Def: Komplexes Wegintegral: Substitution: Wichtiges

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Konstruktion von Flächen vorgeschriebener mittlerer Krümmung mit der Kontinuitätsmethode

Konstruktion von Flächen vorgeschriebener mittlerer Krümmung mit der Kontinuitätsmethode Konstruktion von Flächen vorgeschriebener mittlerer Krümmung mit der Kontinuitätsmethode Diplomarbeit vorgelegt von Matthias Bergner aus Chemnitz Institut für Mathematik der Brandenburgischen Technischen

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

Potenzreihenentwicklung im Reellen und Komplexen

Potenzreihenentwicklung im Reellen und Komplexen Potenzreihenentwicklung im Reellen und Komplexen Christoph Lassnig 26. Januar 20 Zusammenfassung Dieses Dokument bietet einen kleinen Überblick über Potenzreihen, sowie auf ihnen aufbauenden Sätzen und

Mehr

PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK

PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK r. ' " ' ". =... - ' '. - '.. PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK VON ARNOLD SOMMERFELD! 6. AUFLAGE,1. -, BEARBEITET UND ERGÄNZT VON FRITZ SAUTER PROFESSOR AN DER UNIVERSITÄT KÖLN MIT47 FIGUREN

Mehr

Literaturhinweise. Die erforderlichen Vorkenntnisse in linearer Algebra f"mden sich in Fischer, G.: Lineare Algebra. Vieweg, 7. Auflage 1981.

Literaturhinweise. Die erforderlichen Vorkenntnisse in linearer Algebra fmden sich in Fischer, G.: Lineare Algebra. Vieweg, 7. Auflage 1981. 280 Literaturhinweise Die Analysis 3 ist die Fortsetzung von Forster, 0.: Analysis 1. Differential- und Integralrechnung einer Veränderlichen. Vieweg, 3. Aufl. 1980. Forster, 0.: Analysis 2. Differentialrechnung

Mehr

Funktionentheorie. Wolfram Decker

Funktionentheorie. Wolfram Decker Funktionentheorie Wolfram Decker Inhaltsverzeichnis Kapitel. Grundlagen 7 1. Komplexe Zahlen 7 1.1. Der Körper C 7 1.2. Konjugation 7 1.3. Euklidischer Abstand, C als metrischer Raum 8 1.4. Zusammenhang

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Schulformspezifischer Master Lehramt an Förderschulen Mathematik

Schulformspezifischer Master Lehramt an Förderschulen Mathematik 10-MATHMM-1021- Pflicht Höhere Analysis für Lehrer (Mittelschule) 2. Semester Mathematisches Institut jedes Sommersemester Vorlesung "Höhere Analysis für Lehrer" (4 SWS) = 60 h Präsenzzeit und 105 h Selbststudium

Mehr

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden

4.1 Motivation von Variationsmethoden Variationsmethoden im Sobolevraum Motivation von Variationsmethoden Kapitel 4 Das Dirichlet Prinzip Bevor wir uns der Lösung von Randwertproblemen mithilfe der eben entwickelten Techniken zuwenden, wollen wir uns einer Idee zur Lösung widmen, die einige Elemente dieser

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Tutorial Differentialgleichungen Band I

Tutorial Differentialgleichungen Band I Tutorial Differentialgleichungen Band I mit einem kurzen Repetitorium der Differentialrechnung und einem ausführlichen Tutorial über unbestimmte Integrale und numerische Verfahren P. Schneider, Herborn,

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

Erweiterungscurriculum Analysis für die Technik

Erweiterungscurriculum Analysis für die Technik BEILAGE 4 zum Mitteilungsblatt 21. Stück, Nr. 135.3-2016/2017, 29.06.2017 Erweiterungscurriculum Analysis für die Technik Datum des Inkrafttretens 1. Oktober 2017 Inhaltsverzeichnis 1 Allgemeines...- 2-2

Mehr

Analysis und mathematische Physik

Analysis und mathematische Physik Hans Triebel Analysis und mathematische Physik Carl Hanser Verlag München Wien Inhalt Zahlen und Räume 22 Beeile Zablen 22 Zahlsysteme 22 Abstand und Vollständigkeitsaxiom 23 Komplexe Zablen 23 Definitionen

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Mathematik für Physiker C Aufgabenblatt 1

Mathematik für Physiker C Aufgabenblatt 1 Hansen / Krauß 23.10.2015 Aufgabenblatt 1 Alle Aufgaben sind Präsenzaufgaben für die Übungsstunde. Aufgabe 1 Ist die Exponentialfunktion periodisch? Aufgabe 2 Bestimme größtmögliche offene Teilmengen D

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

Inhaltsverzeichnis. Teil I: Allgemeine Grundlagen... 1

Inhaltsverzeichnis. Teil I: Allgemeine Grundlagen... 1 Teil I: Allgemeine Grundlagen... 1 1 Einführung... 1 1.1 Erdfigur und Schwerefeld... 1 1.2 Bezugsflächen der Geodäsie... 5 1.3 Aufgaben der Landesvermessung... 13 1.4 Aufbau der klassischen Landesvermessungen...

Mehr

Funktionentheorie I. M. Griesemer

Funktionentheorie I. M. Griesemer Funktionentheorie I M. Griesemer Übersicht der wichtigsten Definitionen und Sätze der Vorlesung Funktionentheorie I, SS 2001, Fachbereich Mathematik, Johannes Gutenberg - Universität Mainz. Inhalt der

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Klaus Hefft Mathematischer Vorkurs zum Studium der Physik Das Begleitbuch zum Heidelberger Online-Kurs ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum k_/l AKADEMISCHER VERLAG Inhaltsverzeichnis Vorwort

Mehr

Modul-Handbuch. für den. Masterstudiengang Mathematik. an der. Ernst-Moritz-Arndt-Universität Greifswald

Modul-Handbuch. für den. Masterstudiengang Mathematik. an der. Ernst-Moritz-Arndt-Universität Greifswald -Handbuch für den Masterstudiengang Mathematik an der Ernst-Moritz-Arndt-Universität Greifswald 1 e Analysis/Optimierung Modul Funktionentheorie Vertrautheit mit grundlegenden Konzepten der Funktionentheorie

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

[4] CONWAY, J.B.: Functions o/one Complex Variable, korrigierter Nachdruck der 2. Auflage, Springer-Verlag 1986

[4] CONWAY, J.B.: Functions o/one Complex Variable, korrigierter Nachdruck der 2. Auflage, Springer-Verlag 1986 Literaturverzeichnis [1] AHLFORS, L.V.: Complex Analysis, McGraw-Hill, New York, 2. Auflage 1966 [2] BEHNKE, H.j SOMMER, F.: Theorie der analytischen Funktionen einer komplexen Veränderlichen, Studienausgabe

Mehr