MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

Größe: px
Ab Seite anzeigen:

Download "MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,"

Transkript

1 Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker I MNF-math-phys Semester, Dauer: 1 Semester Telefon 0431/ , 1-Fach Bachelor Physik Veranstaltungstitel (Lehrform) Kontaktzeit Status Mathematik für Physiker I (Vorlesung) Mathematik für Physiker I (Übung) 270 Stunden 9 LP keine Gruppengröße 4 SWS Pflicht Die Studierenden besitzen die Fähigkeit: - zur Aneignung mathematischer Arbeitsweisen/Beweismethoden - zum selbstständigen Erarbeiten mathematischer Inhalte - zur Vertiefung mathematischer Grundlagen für die Physik: Lineare Algebra und Differentialrechung einer Veränderlichen Lineare Algebra - Logische Grundlagen - Zahlen, N, Q, R, C - vollständige Induktion - Rn, Skalarmultiplikation, Skalarprodukt - Vektorräume, Basis, Dimension, Basiswechsel - lineare Abbildungen auf Rn, Cn - Matrizen - Determinanten, Entwicklungssatz, lineare Gleichungssysteme Konvergenz - Folgen reeller Zahlen, Konvergenz, Cauchy-Krit. - Reihen, Konvergenzkriterien, absolute Konvergenz, Exponentialreihe Stetigkeit, Differenzierbarkeit in R - Funktionen - Grenzwert, Stetigkeit - Zwischenwertsatz, Maximumssatz - Umkehrfunktion (Log) - komplexwertige Funktionen, exp(ix), Eulerformeln - Differentiation, geom. Interpretation, Produktregel, Quotientenregel, Kettenregel, Ableitung der Umkehrfkt., höhere Ableitungen - Taylorscher Satz - Kurvendiskussion, lokale Extrema, Regel von l'hospital Prüfung Modulprüfung 2 SWS Pflicht Zusatzangaben Pflichtmodul Lösung der Übungen und Präsentation als Prüfungsvorleistung; eine Klausur von max. 180 Minuten oder im Ausnahmefall mündliche Prüfung 160

2 Literatur weitere Angaben Mathematik für Physiker I zum Gesamtumfang des Moduls von 30 Minuten H. Fischer, H. Kaul: Mathematik für Physiker I/II, Teubner, 2005 Weitere Literatur wird in der Vorlesung bekannt gegeben. weitere Angaben: Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung. 161

3 Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Mathematik für Physiker II MNF-math-phys Semester, Dauer: 1 Semester Telefon 0431/ , 1-Fach Bachelor Physik Veranstaltungstitel (Lehrform) Kontaktzeit Status Mathematik für Physiker II (Vorlesung) Mathematik für Physiker II (Übung) 270 Stunden 9 LP Kenntnis der Lerninhalte des Moduls Mathematik für Physiker I Die Studierenden besitzen die Fähigkeit: - zum selbständigen Erarbeiten mathematischer Inhalte - zur Vertiefung mathematischer Grundlagen für die Physik: Integration und Differentialrechnung mehrer Veränderlicher Integration auf R - Substitutionsregel, partielle Integration - Hauptsatz der Differential- und Integralrechnung - Folgen und Reihen von Funktionen - Vertauschen von Grenzprozessen Gruppengröße 4 SWS Pflicht Pflichtmodul 2 SWS Pflicht Lineare Algebra - Eigenwerte, Hauptachsentransformation - orthogonale und unitäre Matrizen - quadratische Formen Prüfungsleistungen Literatur Differentialrechnung im Rn - Topologie des Rn - Konvergenz und Stetigkeit - Totale und partielle Differenzierbarkeit, Funktionalmatrix, lineare Approximation, Richtungsableitung - Taylorscher Satz in Rn - Lokale Extrema, Hessematrix Prüfung Modulprüfung Zusatzangaben Lösung der Übungen und Präsentation als Prüfungsvorleistung; eine Klausur von max. 180 Minuten oder im Ausnahmefall mündliche Prüfung zum Gesamtumfang des Moduls von 30 Minuten H. Fischer, H. Kaul. Mathematik für Physiker I/II, Teubner. Weitere Literatur wird in der Vorlesung bekannt gegeben. 162

4 weitere Angaben Mathematik für Physiker II weitere Angaben: Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung. 163

5 Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Mathematik für Physiker III MNF-math-phys Semester, Dauer: 1 Semester Telefon 0431/ , 1-Fach Bachelor Physik Veranstaltungstitel (Lehrform) Kontaktzeit Status Mathematik für Physiker III (Vorlesung) Mathematik für Physiker III (Übung) 270 Stunden 9 LP Gruppengröße Kenntnis der Lerninhalte der Module Mathematik für Physiker I und II Die Studierenden besitzen die Fähigkeit: - zum Selbständigen Erarbeiten mathematischer Inhalte - zur Vertiefung mathematischer Grundlagen für die Physik: Gewöhnliche und partielle Differentialgleichungen - Implizite Funktionen, Extremwerte mit Nebenbedingungen, Lagrangemultiplikatoren - parameterabhängige Integrale Integration im Rn - Integral stetiger Funktionen mit kompaktem Träger - Mehrfache Integrale, Transformationsformel 4 SWS Pflicht Pflichtmodul 2 SWS Pflicht Gewöhnliche Differentialgleichungen - Differentialgleichungen 1. Ordnung, getrennte Variable, lineare Differentialgleichungen, homogene Differentialgleichungen, exakte Differentialgleichungen - Differentialgleichungen 2. Ordnung, Newton-Bewegungsgleichungen, erstes Integral, Umformen in System gekoppelter Differentialgleichungen 1. Ordnung - Systeme gewöhnlicher Differentialgleichungen 1. Ordnung, Lipschitz- Bedingung, Existenz, Eindeutigkeit, Satz von Picard-Lindelöf - Inhomogene lineare Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten, Greensche Funktion Prüfungsleistungen Partielle Differentialgleichungen - Separationsansatz, z.b. Wärmeleitungsgleichung, Wellengleichung, Schrödingergleichung Prüfung Modulprüfung Zusatzangaben Lösung der Übungen und Präsentation als Prüfungsvorleistung; eine Klausur von max. 180 Minuten oder im Ausnahmefall mündliche Prüfung zum Gesamtumfang des Moduls von

6 Literatur weitere Angaben Mathematik für Physiker III Minuten H. Fischer H. Kaul: Mathematik für Physiker I/II, Teubner. Weitere Literatur wird in der Vorlesung bekannt gegeben. weitere Angaben: Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung. 165

7 Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker IV MNF-math-phys-404, Dauer: 1 Semester Telefon 0431/ , 1-Fach Bachelor Physik Veranstaltungstitel (Lehrform) Kontaktzeit Status Mathematik für Physiker IV (Vorlesung) Mathematik für Physiker IV (Übung) 210 Stunden 7 LP keine Gruppengröße Die Studierenden sind befähigt: - zum Selbständiges Erarbeiten mathematischer Inhalte - zur Vertiefung mathematischer Grundlagen für die Physik: Funktionentheorie und Hilbertraumtheorie 4 SWS Pflicht Elemente der Funktionentheorie - Differenzierbarkeit auf C - Cauchyscher Integralsatz und Integralformel, Cauchy-Riemann Differentialgleichungen - Potentialgleichung in 2D, Randwertproblem - Potenzreihenentwicklung - Meromorphe Funktionen - Residuensatz, Berechnung bestimmter reeller Integrale - Analytische Fortsetzung Lineare Operatoren auf Hilberträumen - Prähilberträume, Skalarprodukt, Norm, stetige L2-integr. Funktionen - Orthonormalsysteme, Schmidtsches Orthonormalisierungsverfahren, Legendre Polynome - Konvergenz im quadratischen Mittel, Fourrierreihen, Bessel- Ungleichung, Parsevalsche Gleichung - Distributionen, Konvergenz im Mittel, lineare Funktionale, Diracfunktion, Hauptwert - Vollständigkeit, starke Topologie, Cauchyfolgen, Beispiel L2(Rn) - stetige lineare Operatoren, symmetrische Operatoren, adjungierter Operator, orthogonale Projektoren, unitäre Operatoren, isometrische Operatoren - Fouriertransformation, Beispiel eines unitären Operators auf L2(Rn) Prüfung Modulprüfung 1 SWS Pflicht Zusatzangaben Wahlpflichtmodul Lösung der Übungen und Präsentation als Prüfungsvorleistung; eine Klausur von max. 180 Minuten oder im Ausnahmefall mündliche Prüfung 166

8 Literatur weitere Angaben Mathematik für Physiker IV zum Gesamtumfang des Moduls von 30 Minuten H. Fischer, H. Kaul: Mathematik für Physiker I/II, Teubner. Weitere Literatur wird in der Vorlesung bekannt gegeben. weitere Angaben: Die Modulnote ist durch die Klausurnote gegeben oder die Note der mündlichen Prüfung. 167

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Bemerkung: Termine und Orte für die einzelnen Lehrveranstaltungen sind dem Stundenplan zu entnehmen.

Bemerkung: Termine und Orte für die einzelnen Lehrveranstaltungen sind dem Stundenplan zu entnehmen. Allgemeine Modulbeschreibungen für das erste Semester Bachelor Informatik 1. Objektorientierte Programmierung Bestehend aus - Vorlesung Objektorientierte Programmierung (Prof. Zimmermann) - Übung zu obiger

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

Mathematik für BWL-Bachelor: Übungsbuch

Mathematik für BWL-Bachelor: Übungsbuch Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

Inhaltsverzeichnis. I A n alysis Grundlagen über Mengen und die Sätze von Bolzano-Weierstrass 55

Inhaltsverzeichnis. I A n alysis Grundlagen über Mengen und die Sätze von Bolzano-Weierstrass 55 Inhaltsverzeichnis I A n alysis 1 9 1 G rundlagen 11 1.1 Motivation... 11 1.2 G rundlagen... 12 1.2.1 Funktionen... 12 1.2.2 Eigenschaften von Funktionen... 13 1.2.3 Verkettete Funktionen... 15 1.2.4 Reelle

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München Übersicht Vorstudium Das erste Anwendungsgebiet im Grundstudium ist Physik (1. und 2. Sem.) Im 3. und 4. Sem.

Mehr

Mathematik. Modul-Nr./ Code 6.1. ECTS-Credits 5. Gewichtung der Note in der Gesamtnote 5 / 165

Mathematik. Modul-Nr./ Code 6.1. ECTS-Credits 5. Gewichtung der Note in der Gesamtnote 5 / 165 Mathematik Modul-Nr./ Code 6.1 ECTS-Credits 5 Gewichtung der Note in der Gesamtnote 5 / 165 Modulverantwortliche Semester Qualifikationsziele des Moduls Prof. Dr. B. Christensen, Prof. Dr. B. Kuhnigk,

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011 Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Synopse. - zuletzt geändert durch den 13. Änderungsbeschluss vom Chemie L3

Synopse. - zuletzt geändert durch den 13. Änderungsbeschluss vom Chemie L3 Synopse Vierzehnter Beschluss des ZfL vom 13.02.2013 zur Änderung der Studien- und Prüfungsordnung für den Studiengang Lehramt an Gymnasien vom 23.08.2006 - zuletzt geändert durch den 13. Änderungsbeschluss

Mehr

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss

1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss 1 Studienpläne bis zum Vordiplom und Bachelor-Abschluss Die Pflichtvorlesungen für das Studium Lehramt Mathematik an Gymnasien (LG) stimmen in den ersten Semestern weitgehend mit denen des Studiengangs

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Informationen zur Lehrveranstaltung andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, July 19, 2016 Übersicht Motivation Motivation für

Mehr

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation

Mehr

Modulkatalog: Kernbereich des Schwerpunktfachs Physik

Modulkatalog: Kernbereich des Schwerpunktfachs Physik Die Naturwissenschaftlich-Technische Fakultät 7 der Universität des Saarlandes Fachrichtung Physik Modulkatalog: Kernbereich des Schwerpunktfachs Physik Fassung vom 12. August 2015 auf Grundlage der Prüfungs-

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Universität Augsburg. Modulhandbuch. Studiengang Lehramt Gymnasium LPO 2012, Version ab WS 2015 Lehramt

Universität Augsburg. Modulhandbuch. Studiengang Lehramt Gymnasium LPO 2012, Version ab WS 2015 Lehramt Universität Augsburg Modulhandbuch Studiengang Lehramt Gymnasium LPO 2012, Version ab WS 2015 Lehramt Stand: (leer) - Gedruckt am 18.11.2015 Inhaltsverzeichnis Übersicht nach Modulgruppen 1) Fachwissenschaft

Mehr

Modulhandbuch. Mathematik

Modulhandbuch. Mathematik Modulhandbuch Zwei-Fach-Bachelor Teilstudiengang (Basisfach) Mathematik Campus Landau Universität Koblenz-Landau Universität Koblenz-Landau Institut für Mathematik Fortstraße 7 76829 Landau Ansprechpartner:

Mehr

Vorkurs Mathematik für Ingenieure für Dummies

Vorkurs Mathematik für Ingenieure für Dummies Dr. Thoratf Rasch Vorkurs Mathematik für Ingenieure für Dummies Fachkorrektur (/on Dr. Patrick Kühnet WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Einleitung Über den Autor Danksagung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker

Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker Grundbegriffe - Funktionen einer und mehrerer Veränderlicher - Folgen und Reihen, Zinsrechnung - Differential- und Integralrechnung-Vektorrechnung

Mehr

Studienberatung Mathematik Lehramt: Prof. Dr. Stefan Hilger KG I B 001a. Terminvereinbarung per .

Studienberatung Mathematik Lehramt: Prof. Dr. Stefan Hilger KG I B 001a. Terminvereinbarung per  . S. Hilger Studium,,Lehramt Mathematik in Eichstätt Angaben ohne Gewähr Okt 2014 1 Studienberatung Mathematik Lehramt: Prof. Dr. Stefan Hilger Stefan.Hilger@ku.de KG I B 001a. Terminvereinbarung per email.

Mehr

Studien- und Prüfungsordnung der Albert-Ludwigs-Universität für den Studiengang Lehramt an Gymnasien

Studien- und Prüfungsordnung der Albert-Ludwigs-Universität für den Studiengang Lehramt an Gymnasien Vom 24. März 2011 (Amtliche Bekanntmachungen Jg. 42, Nr. 7, S. 25 252) in der Fassung vom 23. Juni 2014 (Amtliche Bekanntmachungen Jg. 45, Nr. 55, S. 216 494) Studien- und Prüfungsordnung der Albert-Ludwigs-Universität

Mehr

Schulformspezifischer Master Lehramt an Förderschulen Mathematik

Schulformspezifischer Master Lehramt an Förderschulen Mathematik 10-MATHMM-1021- Pflicht Höhere Analysis für Lehrer (Mittelschule) 2. Semester Mathematisches Institut jedes Sommersemester Vorlesung "Höhere Analysis für Lehrer" (4 SWS) = 60 h Präsenzzeit und 105 h Selbststudium

Mehr

Modulhandbuch Bachelorstudiengang Physik

Modulhandbuch Bachelorstudiengang Physik Modulhandbuch (180 ECTS-Punkte) Auf Basis der Prüfungs- und Studienordnung vom 31. Januar 2007 82/128/---/H0/H/2006 Stand: 13.06.2013 Inhaltsverzeichnis Abkürzungen und Erklärungen... 3 Modul: P 1 Mechanik

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

1.Semester Bachelor Chemie

1.Semester Bachelor Chemie 1.Semester Bachelor Chemie 1 Modul: 08-AC1 Anorganische Chemie 1 23 S Studentischer Arbeitsaufwand: 600 h 20 ECTS Grundlagen der Allgemeinen und Anorganischen Chemie 1.1 Teilmodul: 08-AC1-1 Grundlagen

Mehr

Universität Augsburg. Modulhandbuch. Studiengang Lehramt Gymnasium LPO 2008 Lehramt

Universität Augsburg. Modulhandbuch. Studiengang Lehramt Gymnasium LPO 2008 Lehramt Universität Augsburg Modulhandbuch Studiengang Lehramt Gymnasium LPO 2008 Lehramt Stand: (leer) - Gedruckt am 18.11.2015 Inhaltsverzeichnis Übersicht nach Modulgruppen 1) Fachwissenschaft (Gy) (PO 08)

Mehr

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart )

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart ) Herder-Gymnasium Köln-Buchheim: Schulinterner Lehrplan Mathematik Leistungskurs Q1/Q2 (Stand: März 2013) Schulinterner Lehrplan M LK Q1/Q2 (Abi 2014 und 2015) ANALYSIS (1) (in Klammern: Abschnitte aus

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung /

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung / Algebra II Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium 82-105-L-MAT09-H-0610 N.N. Lehramt (H. Fischer) Leistungspunkte (ECTS-Punkte) 5 Gründliches

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

Modulplan Bachelor Soziologie

Modulplan Bachelor Soziologie INSTITUT FÜR SOZIOLOGIE gültig ab Oktober 2010 Modulplan Bachelor Soziologie Modul 1: Soziologische Theorien (12 ECTS) Vorlesung und Übung Soziologische Theorien I (4 SWS, 6 ECTS) 120 Stunden Voraussetzungen

Mehr

Mathematische Methoden

Mathematische Methoden Mathematische Methoden Vorbesprechung Josef Leydold Institute for Statistics and Mathematics WU Wien Wintersemester 2016/17 Vorbesprechung Josef Leydold Mathematische Methoden WS 2016/2017 Vorbesprechung

Mehr

Mathematik für Informatiker

Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker 2., aktualisierte Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Carl von Ossietzky Universität Oldenburg. Studienordnung Unterrichtsfach Mathematik. Lehramt an Berufsbildenden Schulen

Carl von Ossietzky Universität Oldenburg. Studienordnung Unterrichtsfach Mathematik. Lehramt an Berufsbildenden Schulen Carl von Ossietzky Universität Oldenburg Studienordnung Unterrichtsfach Mathematik Lehramt an Berufsbildenden Schulen 1 Geltungsbereich (1) Diese Studienordnung regelt das fachwissenschaftliche und fachdidaktische

Mehr

Fachschaft Lehramt GHR. Modulplan, euer erstes Semester, die Anmeldung zu den Veranstaltungen & mehr

Fachschaft Lehramt GHR. Modulplan, euer erstes Semester, die Anmeldung zu den Veranstaltungen & mehr Fachschaft Lehramt GHR Modulplan, euer erstes Semester, die Anmeldung zu den Veranstaltungen & mehr Abschluss Modul 1 & 2 keine keine keine empf. Semester 1. Sem. und 2. Sem. 3. Sem. und 4. Sem. Studienverlaufsplan

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Mathematik mit MATH. Hans Benker. Arbeitsbuch für Studierende, Ingenieure und Naturwissenschaftler. Springer

Mathematik mit MATH. Hans Benker. Arbeitsbuch für Studierende, Ingenieure und Naturwissenschaftler. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Benker Mathematik mit MATH Arbeitsbuch für Studierende, Ingenieure

Mehr

Modulnummer Modulname Verantwortliche/r Dozent/in

Modulnummer Modulname Verantwortliche/r Dozent/in Anlage 13. Politikwissenschaft (35 ) Modulnummer Modulname Verantwortliche/r Dozent/in POL-BM-THEO Einführung in das Studium der Prof. Dr. Hans Vorländer politischen Theorie und Ideengeschichte Dieses

Mehr

Jürgen Hausen Lineare Algebra I

Jürgen Hausen Lineare Algebra I Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Hinweis: Diese Prüfungsordnung gilt für alle Studierenden, die Ihr Studium ab dem Wintersemester 2010/2011 aufnehmen werden.

Hinweis: Diese Prüfungsordnung gilt für alle Studierenden, die Ihr Studium ab dem Wintersemester 2010/2011 aufnehmen werden. Der Text dieser Fachstudien- und Prüfungsordnung ist nach dem aktuellen Stand sorgfältig erstellt; gleichwohl ist ein Irrtum nicht ausgeschlossen. Verbindlich ist der amtliche, beim Prüfungsamt einsehbare

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Inhaltsverzeichnis. Analysis 16

Inhaltsverzeichnis. Analysis 16 Inhaltsverzeichnis Analysis 16 Differentialrechnung 16 Produktregel 17 Hohere 18 Quotientenregel 18 Kettenregel 19 Anwendung der Kettenregel 20 Einige wichtige Ableitungen 21 Integralrechnung 22 Partielle

Mehr

Studienordnung für das Fach Mathematik im Studiengang Lehramt an Mittelschulen

Studienordnung für das Fach Mathematik im Studiengang Lehramt an Mittelschulen Technische Universität Dresden Fakultät Mathematik und Naturwissenschaften Studienordnung für das Fach Mathematik im Studiengang Lehramt an Mittelschulen Vom #Ausfertigungsdatum# Aufgrund von 36 Abs. 1

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Abschlussbericht Mathematik-Online

Abschlussbericht Mathematik-Online Abschlussbericht Mathematik-Online 1 Zusammenfassung. Im November 2001 riefen die Universitäten Stuttgart und Ulm das von dem Ministerium für Wissenschaft, Forschung und Kunst geförderte Projekt Mathematik-

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Curriculum für das Fach: Mathematik

Curriculum für das Fach: Mathematik Curriculum für das Fach: Mathematik Prinzipien der Unterrichtsgestaltung und Bewertung. Prinzipien der Unterrichtsgestaltung. Ziel des Mathematikunterrichts ist, die Kollegiatinnen und Kollegiaten auf

Mehr

Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel Fachprüfungsordnung (Satzung) für Studierende des Faches Wirtschaftswissenschaft mit dem Abschluss Master of Science oder Master of Arts im Rahmen der Zwei-Fächer-Bachelor- und Masterstudiengänge der Christian-Albrechts-Universität

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lehramtstudium Physik für Gymnasien. Modulhandbuch Sommersemester 2009

Lehramtstudium Physik für Gymnasien. Modulhandbuch Sommersemester 2009 Lehramtstudium Physik für Gymnasien Modulhandbuch Sommersemester 2009 Unvollständiger Entwurf, 25.01.2009 Fachsemester 2 SS 2009 Experimentalphysik 2 1 EPL-2 (Lehramt für Gymnasien) 2 Lehrveranstaltungen

Mehr

Studienordnung des Bachelor of Arts-Studiengangs Sozialwissenschaften

Studienordnung des Bachelor of Arts-Studiengangs Sozialwissenschaften Universität Rostock Wirtschafts- und Sozialwissenschaftliche Fakultät Studienordnung des Bachelor of Arts-Studiengangs Sozialwissenschaften vom Aufgrund des 2 Abs. 1 in Verbindung mit 38 Abs. 1 des Gesetzes

Mehr

Modulhandbuch. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für das Fach Mathematik. im Studiengang Bachelor of Arts

Modulhandbuch. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für das Fach Mathematik. im Studiengang Bachelor of Arts Modulhandbuch der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln für das Fach Mathematik im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil für die Studienprofile

Mehr

Crashkurs Mathematik für Ökonomen

Crashkurs Mathematik für Ökonomen Crashkurs Mathematik für Ökonomen Thomas Zörner in Kooperation mit dem VW-Zentrum Wien, Oktober 2014 1 / 12 Outline Über diesen Kurs Einführung Lineare Algebra Analysis Optimierungen Statistik Hausübung

Mehr

Studienordnung für den Master-Studiengang Wirtschaftsmathematik

Studienordnung für den Master-Studiengang Wirtschaftsmathematik Studienordnung Master-Studiengang Wirtschaftsmathematik Stand: 10.06.2009 Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät Institut für Mathematik Studienordnung für den Master-Studiengang

Mehr

Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK

Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK 1 von 5 Anlage 1 für Cluster 1b (allgemeine technische Mathematik) ANGEWANDTE MATHEMATIK I. J a h r g a n g : - kennen den Mengenbegriff und können die grundlegenden Mengenoperationen zur Darstellung von

Mehr

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 9. Differentialrechnung für Funktionen mehrerer Variablen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 9. Differentialrechnung für Funktionen mehrerer Variablen Prof. Dr. Gunar Matthies Sommersemester

Mehr

Modulhandbuch für die Bachelorstudiengänge. Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft) WS 2007/08

Modulhandbuch für die Bachelorstudiengänge. Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft) WS 2007/08 WS 2007/08 Mathematik, Technomathematik, Wirtschaftsmathematik (FAU) 1 Modulhandbuch für die Bachelorstudiengänge Mathematik Technomathematik Wirtschaftsmathematik Lehramt (vertieft) Lehramt (nicht vertieft)

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Prüfungstrainer Mathematik - mit vollständigen Musterlösungen

Prüfungstrainer Mathematik - mit vollständigen Musterlösungen Claus Wilhelm Turtur Prüfungstrainer Mathematik - mit vollständigen Musterlösungen Klausur- und Übungsaufgaben Teubner Inhalt Vorwort - Zum richtigen Gebrauch dieses Buches Inhalt f1 g 1 Mengenlehre I

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine Einführung unter besonderer Berücksichtigung der Anwendungen Von Dr. phil. Dr. h. c. mult. Lothar Collatz em. o. Professor an der Universität Hamburg 6., überarbeitete und

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik BBS Gerolstein Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik für die Berufsoberschule II www.bbs-gerolstein.de/cms/download/mathematik/vorkurs-mathe-bos-.pdf bzw. www.p-merkelbach.de/bos/mathe/vorkurs-mathe-bos-.pdf

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)

Mehr

Mathematik verständlich

Mathematik verständlich Robert Müller-Fonfara Wolf gang Scholl Mathematik verständlich Arithmetik und lineare Algebra Mengenoperationen Gleichungen und Ungleichungen Ebene und räumliche Geometrie Vektorrechnung Kaufmännisches

Mehr

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik

Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Übersicht über die mathematischen Module der Bachelor- und Masterstudiengänge Mathematik, Wirtschaftsmathematik und Technomathematik Modul LP Prüfungsform 1 Pflichtmodule Bachelor Mathematik, Wirtschaftsmathematik

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS Matrizenrechnung am Beispiel linearer Gleichungssystemer für GeoGebraCAS Letzte Änderung: 08/ April 2010 1 Überblick 1.1 Zusammenfassung Lösen von linearen Gleichungssystemen mit Hilfe der Matrizenrechnung.

Mehr

Modulverzeichnis - Mathematik Anlage 2

Modulverzeichnis - Mathematik Anlage 2 1 Modulverzeichnis - Mathematik Anlage 2 : Grstrukturen Einführung, Reflexion Vertiefung grlegender mathematischer Begriffe Strukturen keine Abschlussklausur 6 240 8.1: Einführung in Grstrukturen.2: Seminar

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Index. charakteristische Funktion Charakteristisches Polynom f Collatz-Folge

Index. charakteristische Funktion Charakteristisches Polynom f Collatz-Folge Index A Abbildung... 25 bijektiv... 25 Einschränkung... 26 injektiv... 25 Komposition... 26 surjektiv... 25 Umkehrabbildung... 26 Ableitungsregeln...176 Kettenregel... 176 Produkregel...176 Quotientenregel...

Mehr

Georg-August-Universität Göttingen. Modulverzeichnis

Georg-August-Universität Göttingen. Modulverzeichnis Georg-August-Universität Göttingen Modulverzeichnis für den Bachelor-Teilstudiengang "Mathematik" (zu Anlage II.27 der Prüfungs- und Studienordnung für den Zwei-Fächer-Bachelor-Studiengang) (Amtliche Mitteilungen

Mehr

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation) 1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr