Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler"

Transkript

1 Friederike Goerigk (Autor) Mathematik nicht nur für Wirtschaftswissenschaftler Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, Göttingen, Germany Telefon: +49 (0) , Website:

2 Kapitel 1:Grundlagen Zahlenmengen 2 natürliche Zahlen rationale Zahlen irrationale Zahlen reelle Zahlen 1.2 Rechenarten Rechenregeln Vorzeichenregeln Teiler und Teilermengen Potenzgesetze Binomische Formeln Faktorisieren von Termen Bruchrechnung Wurzelgesetze Logarithmen Der Betrag Intervalle und ihre Schreibweisen Summen Zahlendarstellung Pascalsches Dreieck und der Binomialkoeffizient 23 Aufgaben mit Lösungen Kapitel 2: Aussagenlogik und Mengen Aussagenlogik Aussagen und Aussageformen Und/Oder-Verknüpfung Negation Implikationen Hinreichend und Notwendig Bijunktionen 38

3 2.2 Mengen Darstellung von Mengen Leere Menge Vereinigung und Durchschnitt Mengengesetze Produktmengen Potenzmengen Venndiagramme Wahrheitstafeln Tautologie/Kontradiktion Exklusive Disjunktion Äquivalenz Morgansche Gesetze Implikation 52 Aufgaben mit Lösungen Kapitel 3: Gleichungen 1. Begegnung Polynomgleichungen Gleichungen 2. Grades Kubische Gleichungen Gleichungen, die sich auf quadratisch Gleichungen zurückführen lassen Bruchgleichungen Wurzelgleichungen Anwendungen in der Ökonomie Parametergleichungen 69

4 Kapitel 4:Ungleichungen 1. Begegnung Ungleichungen der Form ax gerade < a Ungleichungen der Form ax ungerade < a Ungleichungen der Form ax² + bx + c < komplexere Ungleichungen Graphisches Lösen von Ungleichungen Betragsungleichungen 87 Kapitel 5: Funktionen Definition, Eigenschaften und Darstellung von Funktionen Was ist eine Funktion? Darstellungsarten von Funktionen. 101 Aufgaben, Fragen und Lösungen 5.2 Wichtige Bezeichnungen bei Funktionen 107 Aufgaben, Fragen und Lösungen 5.3 Einige wichtige Eigenschaften von Funktionen Definitions- und Wertebereiche Beschränktheit Spiegelungen, Verschiebungen und Stauchungen Verkettung von Funktionen

5 Kapitel 6: Funktionsarten Lineare Funktionen Einführung Proportionalitäten Von der proportionalen Zuordnung zur linearen Funktion 131 Aufgaben, Fragen und Lösungen 6.2 Potenzfunktionen Eigenschaften y = ax n mit aus Z + ={1,2,3,4,5 } y = ax n mit n aus Z - (Hyperbeln) y = ax n n aus Q 6.3 Rationale Funktionen Einführung Eigenschaften Quadratische Funktionen Scheitelpunktsform der quadratischen Funktion Eigenschaften der quadratischen Funktion Ökonomische Anwendungen Ermittlung von Funktionsgleichungen Gebrochenrationale Funktionen 160 Aufgaben, Fragen und Lösungen 6.4 Exponentialfunktionen Eigenschaften Exponentialfunktionen und Wachstum Die natürliche Exponentialfunktion e x Logarithmusfunktionen 168 Aufgaben, Fragen und Lösungen

6 Kapitel 7 : Gleichungen und Ungleichungen: Begegnung der zweiten Art Gleichungen der zweiten Art 174 Exponential- und Logarithmusgleichungen 7.2 Ungleichungen, Begegnung der zweiten Art: 177 Ungleichungen mit Logarithmen und geraden Wurzeln Kapitel 8 :Differentialrechnung Hinführung und Motivation Differenzen und Differentialquotient Ableitungsregeln Produktregel Quotientenregel Kettenregel Schreibweisen Logarithmisches Differenzieren 196 Kapitel 9: Anwendungen der Differentialrechnung Tangente an eine Funktion in einem Punkt Relative Änderungsrate Grenzwerte von Funktionen Grenzwert von Funktionen für x + bzw. x Regel von L`Hospital Grenzwerte von Betragsfunktionen Grenzwerte gegen eine Zahl a Grenzwerte von verketteten Funktionen 217

7 9.4 Stetigkeit Stetigkeit an einer Stelle x = a Links-und rechtsseitig stetig Differenzierbarkeit Approximationen 227 Lineare- quadratische- polynominale Approximationen. Das Taylorpolynom 9.7 Anwendungen der Differentialrechnung in der Ökonomie Das Differential 235 Anschauliche Darstellung Bedeutung und Anwendung 9.9 Implizites Differenzieren Differenzieren von Umkehrfunktionen Elastizitäten 241 Bedeutung Berechnung 9.12 Zwischenwertsatz Newton Verfahren 244 Kapitel 10: Kurvendiskussion Einführung Polstellen Nullstellen Symmetrie Monotonie Krümmungsverhalten (konvex, konkav) Hoch- und Tiefpunkte Notwendige und hinreichende Bedingungen Bestimmung der Art der Extrema mit Hilfe der ersten Ableitung Lokale und globale Extrema

8 Extrema von Wurzelfunktionen und Betragsfunktionen 10.8 Ökonomische Anwendungen Extrema in Intervallen Wendepunkte 270 Aufgaben Kapitel 11: Funktionseigenschaften, zweite Begegnung Surjektivität und Injektivität Umkehrfunktion 290 Aufgaben mit Lösungen Kapitel 12: Integralrechnung Einführung Definition Stammfunktion Unbestimmtes und bestimmtes Integral Allgemeine Integrationsregeln Flächenberechnung zwischen dem Graph einer Funktion und der x-achse Flächenberechnung zwischen 2 Funktionen Integration durch Substitution Produktintegration Uneigentliche Integrale Ökonomische Anwendungen 316 Aufgaben 316

9 Kapitel 13: Funktionen mehrerer Veränderlicher und ihre Anwendungen Darstellung Höhenlinien Isoquanten Definitionsbereiche Partielle Ableitungen Partielle Ableitungen 2. Ordnung und die Hesse-Matrix Totale Ableitung Partielle Elastizitäten Umgebung einespunktes Beschränktheit Homogenität Eulersche Homogenitätsrelation relative Änderungsrate Imlizites Differenzieren Steigungen von Höhenlinien Grenzrate der Substitution Substitutionselastizität lineare Approximation und Tangentialebenen totales Differential Absoluter und relativer Fehler 357

10 Kapitel 14:Extrema mit und ohne Nebenbedingungen bei Funktionen mit mehreren Variablen Extrema ohne Nebenbedingungen Extrema mit Nebenbedingungen g(x) = c (Lagrange) Bedeutung des λ Extremwertsatz Extrema mit Nebenbedingungen g(x) c (Kuhn-Tucker-Bedingungen) Envelope Theorem 384 Kapitel 15: Vektoren Einführung Darstellung von Vektoren Rechnen mit Vektoren Addition von Vektoren S-Multiplikation Äquivalenz und Gleichheit von Vektoren Länge von Vektoren Linearkombination von Vektoren Lineare Abhängigkeit Einheitsvektoren Dimension und Basis Skalarprodukt = Inneres Produkt Normalenvektoren Abstand zwischen 2 Punkten Kreis-(Kugel) Gleichung Die Geradengleichung Darstellung Gerade durch 2 Punkte 408

11 Parallele Geraden Punkt auf der Geraden Lagebeziehung von 2 Geraden Die Ebene Von der Koordinatenform zur Parameterform Lagebeziehung zwischen Gerade und Ebene Lagebziehung zwischen 2 Ebenen Schnittwinkel 423 Kapitel 16:Matrizen Definition Arten von Matrizen Transponierte Nullmatrix Quadratische Matrizen spezielle quadratische Matrizen symmetrische Matrix schiefsymmetrische Matrix Rechnen mit Matrizen Multiplikation von Matrizen mit einem Skalar Addition und Subtraktion von Matrizen Regeln zur Matrizenaddition Multiplikation von Matrizen Regeln zur Matrizenmultiplikation Potenzen von Matrizen Invertierbare Matrizen Elementare Umformungen von Matrizen Gaußsches Eliminationsverfahren Rang einer Matrix Spur einer Matrix Linearkombination und Matrizen 440

12 16.8 Matrizen als Lösung von Polynomen 442 Aufgaben mit Lösungen Kapitel 17: Determinanten Definition Berechnung von Determinanten Determinanten von 2x2-Matrizen 448 geometrische Bedeutung Determinanten von 3x3-Matrizen (Sarrus) 449 geometrische Bedeutung 17.3 Determinanten höherer Matrizen Entwicklung nach Laplace Co-Faktoren Determinanten besonderer Matrizen Regeln für Determinanten Invertieren von Matrizen mit Hilfe von Determinanten Determinantenkriterium zur Definitheit Determinanten der Ordnung n X n 461 Aufgaben Kapitel 18: Gleichungssysteme Darstellung von Gleichungssystemen mit Hilfe von Matrizen Bezeichnungen Freiheitsgrade Lösbarkeit von Gleichungssystemen 471 Übersicht über die Lösbarkeit 18.5 Verfahren zur Lösung von inhomogenen Gleichungssystemen Gaußsches Eliminationsverfahren Cramersche Regel 478

13 Lösung mit Hilfe der Inversen Grafische Bedeutung Homogene Gleichungssysteme Lösbarkeit von homogenen Gleichungssystemen 480 Aufgaben mit Lösungen

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4

Inhalt 1 GRUNDLAGEN Zahlen Natürliche Zahlen Ganze Zahlen Rationale Zahlen Reelle Zahlen 4 Inhalt 1 GRUNDLAGEN 1 1.1 Zahlen 1 1.1.1 Natürliche Zahlen 1 1.1.2 Ganze Zahlen 2 1.1.3 Rationale Zahlen 3 1.1.4 Reelle Zahlen 4 1.2 Rechnen mit reellen Zahlen 8 1.2.1 Grundgesetze der Addition 8 1.2.2

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Brückenkurs Mathematik für Wirtschaftswissenschaftler

Brückenkurs Mathematik für Wirtschaftswissenschaftler VlEWEG+ TIUBNER Walter Purkert Brückenkurs Mathematik für Wirtschaftswissenschaftler Z, aktualisierte Auflage STUDIUM Inhaltsverzeichnis 1 Das Rechnen mit reellen Zahlen 1.1 Grundregeln des Rechnens....

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

0 Einleitung I. 1 Elementarmathematik 1

0 Einleitung I. 1 Elementarmathematik 1 Inhaltsverzeichnis 0 Einleitung I i Das Team ist der Primus............................... II ii Eingangstest...................................... III iii Wolfis Welt.......................................

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Walter Purkert 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Brückenkurs Mathematik für Wirtschaftswissenschaftler.

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Inhaltsverzeichnis.

Inhaltsverzeichnis. Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Definition 1 1.2 Mengenoperationen 2 1.3 Potenzmenge 3 1.4 Mengensysteme 3 1.5 Mengengesetze 4 1.6 Geordnetes Paar 4 1.7 Relation 5 1.8 Äquivalenzrelation 5 2 Inferenzregeln

Mehr

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen von Heinrich Holland, Doris Holland 11., durchgesehene und korrigierte Auflage Springer Gabler Wiesbaden 2014 Verlag C.H. Beck im Internet:

Mehr

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation 7 Division mit Rest 7 Teiler und Primzahlen 9 Der ggt und das kgv 11 2. Rechnen mit Brüchen

Mehr

Kernkompetenz Mathematik (Teil Analysis)

Kernkompetenz Mathematik (Teil Analysis) Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 2. Auflage

Mehr

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra

Inhaltsverzeichnis. Inhalt. Einleitung Vektoralgebra Inhalt 3 Inhaltsverzeichnis Einleitung...9 1 Vektoralgebra 1.1 Geometrische Darstellung von Vektoren... 14 1.1.1 Begriff des Vektors... 14 1.1.2 Inverser Vektor und Nullvektor... 17 1.1.3 Addition von

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 1: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen Mit 300

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Mathematik für BWL-Bachelor

Mathematik für BWL-Bachelor Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor Schritt für Schritt mit ausführlichen Lösungen 2., überarbeitete Auflage STUDIUM VIEWEG+ TEUBNER {Inhaltsverzeichnis 1 Analysis 17 1.1 Funktionen

Mehr

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51 Inhaltsverzeichnis 1 1 Analysis...17 1.1 Funktionen...17 1.1.1 Begriff...17 1.1.2 Nutzen von Funktionen...19 1.1.3 Graph der Funktion...19 1.2 Aufgaben der Analysis...21 1.3 Vorschau...22 2 Elementares

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Formelsammlung für Wirtschaftswissenschaftler

Formelsammlung für Wirtschaftswissenschaftler Fred Böker Formelsammlung für Wirtschaftswissenschaftler Mathematik und Statistik PEARSON.. ;. ; ; ; *:;- V f - - ' / > Щ DtUClllirn ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Helge Röpcke Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Mit 84 Bildern, 113 durchgerechneten Beispielen und 94 Aufgaben mit ausführlichen Lösungen im Internet Fachbuchverlag

Mehr

Inhaltsverzeichnis. xiii. Vorworte

Inhaltsverzeichnis. xiii. Vorworte Inhaltsverzeichnis Vorworte xiii I Einführung 1 I.1 Ein paar Beispiele............................... 1 I.2 Interpretation von Schaubildern....................... 3 I.3 Mathematische Beschreibung von Abhängigkeiten.............

Mehr

Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007)

Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007) Modul Mathematik Grundlagen I (BA) Dr. Andreas Harder / Hugo Krause 1. Semester (Januar- März 2007) 1. grundlagen I: gleichungen 1.1. nullstellen von polynomen 1.1.1. lineare gleichungen 1.1.1.1. form

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

- Zusammenhang lineare, quadratische Funktion betonen

- Zusammenhang lineare, quadratische Funktion betonen Curriculum Mathematik JS 11/ Eph Kernlehrplan Methodische Vorgaben/ Koordinatengeometrie - Gerade, Parabel, Kreis - Lineare Gleichungssysteme zur Bestimmung von Geraden und Parabeln - Zusammenhang lineare,

Mehr

Mathematik für Sozial- und Wirtschaftswissenschaftler

Mathematik für Sozial- und Wirtschaftswissenschaftler Mathematik für Sozial- und Wirtschaftswissenschaftler Von Dr. Gerhard Marineil o. Universitätsprofessor Fünfte, erweiterte Auflage R. Oldenbourg Verlag München Wien Inhalt Inhalt Vorwort V XIII I Mengenlehre

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Inhaltsverzeichnis. Teil I Grundlagen

Inhaltsverzeichnis. Teil I Grundlagen Inhaltsverzeichnis Teil I Grundlagen 1 Mengenlehre und Aussagenlogik... 3 1.1 Vorbemerkung... 3 1.2 Mengen... 4 1.2.1 Mengenoperationen..... 7 1.2.2 Mengengesetze... 10 1.2.3 Zahlenmengen... 12 1.3 Aussagenlogik...

Mehr

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Auf Zeitangeben wurde bewusst verzichtet, da im kommenden Schuljahr 2010/2011 zum ersten Mal der Übergang von Klasse 10 ins Kurssystem

Mehr

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13

Mathematische Zeichen und Abkürzungen 11. Grundlagen der Aussagenlogik und der Mengenlehre 13 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 11 Grundlagen der Aussagenlogik und der Mengenlehre 13 1 Grundbegriffe der Aussagenlogik und ihre Verwendung in der Datenverarbeitung 13 1.1 Aussagen

Mehr

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen)

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen) Jahrgangsstufe 11 1. Koordinatengeometrie Geraden und Geradengleichungen ( Steigungswinkel, Parallelität, Orthogonale, Schnittpunkt zweier Geraden) Parabeln und quadratische Funktionen Lagebeziehungen

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Stoffverteilungsplan Sek II

Stoffverteilungsplan Sek II Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Teil 3 -Analysis TEIL 3: ANALYSIS

Teil 3 -Analysis TEIL 3: ANALYSIS Mathematik Workshop TEIL 3: ANALYSIS Basis Funktionen Funktionsuntersuchung Nullstellen pq-formel, Diskriminanten Polynomdivision Mehrere Veränderliche Differenzieren Idee Regeln zum Rechnen Anwendung

Mehr

Heinrich Holland / Doris Holland Mathematik im Betrieb

Heinrich Holland / Doris Holland Mathematik im Betrieb Heinrich Holland / Doris Holland Mathematik im Betrieb HOLLAND/ HOLLAND MATHEMATIK IMBETRIEB PRAXISBEZOGENE EINFOHRUNG MIT BEISPIELEN GRUNDLAGEN. FUNKTIONEN. DIFFERENTIAL RECHNUNG INTEGRALRECHNUNG MATRIZEN

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Mathematik für BWL-Bachelor

Mathematik für BWL-Bachelor Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor Schritt für Schritt mit ausführlichen Lösungen 3., überarbeitete und erweiterte Auflage STUDIUM 4y Springer Gabler Inhaltsverzeichnis Teil

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

2 Lineare Gleichungen und Gleichungssysteme

2 Lineare Gleichungen und Gleichungssysteme 1 Zahlenbereiche und Zahlensysteme Eigenschaften der Zahlenbereiche N,Z,Q,R,I,C Mengen(operationen), VENN-Diagramme Aussagen in mathematischer Schreibweise Rechengesetze, Abgeschlossenheit der Zahlenbereiche

Mehr

Einführung in die angewandte Wirtschaftsmathematik

Einführung in die angewandte Wirtschaftsmathematik Jürgen Tietze Einführung in die angewandte Wirtschaftsmathematik Das praxisnahe Lehrbuch - inklusive Brückenkurs für Einsteiger 17., erweiterte Auflage Mit 500 Abbildungen und mehr als 1700 Übungsaufgaben

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

(Hoch)Schulmathematik

(Hoch)Schulmathematik Tobias Glosauer (Hoch)Schulmathematik Ein Sprungbrett vom Gymnasium an die Uni ~ Springer Spektrum Inhalt..2 2 2. 2.2 2. 2.4..2 Formales Fundament Ein wenig Logik. Aussagenlogik.... Aussagen...2 Junktoren..

Mehr

Grundkompetenzen (Mathematik Oberstufe)

Grundkompetenzen (Mathematik Oberstufe) Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage

Mathematik. für das Ingenieurstudium HANSER. Jürgen Koch Martin Stärrlpfle. 2., aktualisierte Auflage Jürgen Koch Martin Stärrlpfle Mathematik für das Ingenieurstudium 2., aktualisierte Auflage Mit 609 Abbildungen, 456 durchgerechneten Beispielen und 313 Aufgaben mit ausführlichen Lösungen im Internet

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Mathematik im Studium

Mathematik im Studium Mathematik im Studium Brücken kurs für Wirtschaftsund Naturwissenschaften Von Diplom-Physiker Jan Gehrke Duale Hochschule Baden-Württemberg Stuttgart 01 den bourg Verlag München Inhaltsverzeichnis Vorwort

Mehr

Holland/Holland. Mathematik im Betrieb

Holland/Holland. Mathematik im Betrieb Holland/Holland. Mathematik im Betrieb HEINRICH HOLLAND/ DORIS HOLLAND Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 4., überarbeitete Auflage LEHRBUCH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Mathematik für Fachoberschulen

Mathematik für Fachoberschulen Dr. Kuno Füssel, Reinhard Jansen, Dr. William Middendorf, Dietmar Mrusek Mathematik für Fachoberschulen 13. Auflage Bestellnummer 0234 Haben Sie Anregungen oder Kritikpunkte zu diesem Produkt? Dann senden

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Elemente der Mathematik für Pharmazeuten

Elemente der Mathematik für Pharmazeuten Hans-Heinrich Körle Richard Hirsch Elemente der Mathematik für Pharmazeuten Womit ein Pharmazeut rechnen muß Mit 54 Bildern und 101 Übungsaufgaben mit ausführlichen Lösungen vieweg IX Inhaltsverzeichnis

Mehr

HollandIHolland. Mathematik im Betrieb

HollandIHolland. Mathematik im Betrieb HollandIHolland. Mathematik im Betrieb HEINRICH HOLLAND/ DORIS HOLLAND Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 5. r überarbeitete Auflage LEHRBUCH Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

MATHEMATIK. Einleitung

MATHEMATIK. Einleitung MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden

Mehr

Rtattiematische Zenchem) und Abkürzungen 11

Rtattiematische Zenchem) und Abkürzungen 11 Inhaltsverzeichnis Rtattiematische Zenchem) und Abkürzungen 11 1 Grundbegriffe der Mengenlehre 13 1.1 Mengen und Elemente von Mengen 13 1.2 Beziehungen zwischen Mengen 16 1.2.1 Gleiche und gleichmächtige

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen AG AG 1 AG 1.1 AG 1.2 AG 2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3 AG 3.1 AG 3.2 AG 3.3 AG 3.4 AG 3.5 AG 4 AG 4.1 AG 4.2 Inhaltsbereich Algebra und Geometrie Grundbegriffe der Algebra Wissen über die Zahlenmengen

Mehr

Bezüge zu den Bildungsstandards

Bezüge zu den Bildungsstandards Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards

Mehr

Jahrgangscurriculum 11.Jahrgang

Jahrgangscurriculum 11.Jahrgang Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)

Mehr

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)

Mehr