Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klasse 9: Lösungen. Der Term ist ein Quotient. Der Dividend ist eine Differenz mit dem Minuenden"

Transkript

1 . Beschreibe den Ter : unter Verwendung der atheatischen Fachbegriffe. Berechne den Terwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was an unter Erweitern und Kürzen eines Bruches versteht. Klasse 9: Lösungen Der Ter ist ein Quotient. Der Dividend ist eine Differenz it de Minuenden und de Subtrahenden. Der Divisor ist eine Sue it de. Suanden und de. Suanden.. = : : Erweitern: Zähler und Nenner it derselben Zahl ultiplizieren Kürzen: Zähler und Nenner durch dieselbe Zahl dividieren. Berechne die Größen der Winkel, und ε. Begründe jeweils deine Überlegungen. Allgeein: Winkelsue i Dreieck ist 0 Dreieck ABC gleichschenklig: Dreieck DFC gleichschenklig: (0 ) : (0 ) :, ADG 0, 0 ADG Dreieck AGD: Winkel,. Zeichne zwei verschiedene Parallelograe, deren Flächeninhalte jeweils c betragen. Welchen Radius hat ein flächengleicher Kreis ungefähr? Bei richtigen Parallelograen gilt: Grundfläche zugehörige Höhe = c² Zu Kreis: r c (Fläche Kreis = r² it c ) A o D C ε F ε B G. a) Gib jeweils einen öglichst einfachen Ter für die Kantenlänge K() und den Oberflächeninhalt O() der Schachtel an. Berechne K (). K() = ( ) = ( + 0) K() = ( + 0) = 0 O() = ( ) (00 0) 0 0 b) Die Schachtel ist auf der rechten Seite vollständig, auf der Vorderseite nur teilweise grau angestrichen. Gib für = 0 an, zu wie viel Prozent die Schachteloberfläche nicht angestrichen ist. O(0) = (0 0 0, 0 0) 00 gesuchter Prozentsatz =, %. Bestie jeweils die Lösungsenge der Gleichung über der Grundenge Z bzw. Q: a) 0 b) c)

2 zu a) 0 = + ( ) 0 = + -0 = 0 falsche Behauptung Also: L = { } für beide Grundengen zu b) ( ) = (-) + ² = -² + 0 = 0 allgeeingültige Aussage Also: L = G zu c) ( )( ) = -( ² - = + ² - + = - = ) = Also: L = { } in Z und L = {- } in Q. Laura kauft für 0 insgesat Tafeln Schokolade. Die Sorte Molka kostet je Tafel 9 ct, die Sorte Tritter Sport ct. Finde it Hilfe einer Gleichung heraus, wie viele Tafeln sie von jeder Sorte gekauft hat. Begründe, welche Grundenge für diese Gleichung sinnvoll ist. 0,9 + ( ) 0, = 0 0, , = 0 0, + 9 = 0 0, = = ist natürliche Zahl, da ganze Tafeln! Also Tafeln Molka zu je 9 ct und Tafeln Tritter Sport zu ct. a) In welchen Größen (Seitenlängen, Innenwinkeln) üssen zwei Dreiecke indestens übereinstien, dait sie kongruent sind? sss-satz (Länge aller drei Seiten) sws-satz (Länge zweier Seiten und Zwischenwinkel) wsw-satz (Länge einer Seite und die beiden dieser Seite anliegenden Winkel) Ssw-Satz (Länge zweier Seiten und Winkel, der der längeren Seite gegenüberliegt) b) Erkläre, worin ähnliche Dreiecke übereinstien und worin sie sich unterscheiden. Ähnliche Dreiecke stien ier in ihren Winkeln überein. Die Seitenlängen üssen nur i Verhältnis übereinstien d. h. die Längen üssen nicht übereinstien.. Zeichne ein stupfwinkliges Dreieck ABC (Ɣ > 90 o ) sowie diese Dreieck a, w α und h b. Begründe, dass sowohl α als auch β spitze Winkel sein üssen. Berechne die Dreiecksfläche. siehe Unterricht 9. Erkläre unter Verwendung einer Skizze den sog. Thaleskreis sowie die zugehörige Beweisidee.

3 0. Der trapezförige Grundriss eines Raues hat die in der Skizze angegebenen Maße. In der Ecke P steht ein Scheinwerfer. Er beleuchtet den Teil des Bodens, der in der Skizze hell dargestellt ist. Berechne auf zwei verschiedene Arten, wie viel Prozent der Bodenfläche des Raues nicht beleuchtet werden. Fläche Trapez = ( ) 0. Art:,% 0. Art: -,% 0 P. Frau Fleißig hat in der ersten Woche des Monats 0 verdient und dafür Stunden gearbeitet. Berechne, wie lange sie bei gleiche Stundenlohn für Verdienst arbeiten üsste. Erkläre deine Rechnung. direkte Proportionalität, also ; = (0 Stunden). a) Die in der Tabelle erfassten Größen und y sollen direkt proportional sein. Bei eine Wertepaar hat sich allerdings ein Fehler eingeschlichen. Korrigiere den Fehler und ergänze die fehlenden Einträge. Beschreibe den Verlauf des zugehörigen Funktionsgraphen. -, y -,, 9, - /, y -,,, (y-wert geteilt durch -Wert ergibt Proportionalitätsfaktor q =,) Funktionsgraph: y =, ist Ursprungsgerade it der Steigung =, b) Erkläre an eine selbst gewählten Beispiel, die indirekte Proportionalität. Wie kann an rechnerisch nachweisen, dass zwei Größen indirekt proportional sind? Gib den Naen des zugehörigen Funktionsgraphen an und skizziere seinen Verlauf. Zwei Bagger brauchen Stunden für das Ausheben einer großen Baugrube vier Bagger würden hingegen nur noch Stunden für diese Grube brauchen Es uss gelten: -Wert ultipliziert it y-wert ist konstant. Graphen sind Hyperbeln:. a) Die Abbildung zeigt die Graphen von vier linearen Funktionen. Gib jeweils die zugehörigen Funktionsgleichungen an. b) Bestie die Koordinaten des Schnittpunktes S der Graphen G k ( ) und G n( ). G g( ) y G f ( ) G n( ) G k ( )

4 , ; =, ; = zu a) zu G f() : y = zu G g() : y = - + zu G k() : y = zu G n() : y =, - zu b) Schnittpunkt S: Also: S und y = -. a) Gegeben sind die Punkte A( / - ) und B( / - 0). Bestie rechnerisch die Funktionsgleichung der linearen Funktion h, deren Graph G h( ) die beiden gegebenen Punkte enthält. b) Gegeben ist die lineare Funktion f,. (I) Prüfe durch Rechnung, ob der Punkt Q (-/ ) über, auf oder unter de Graph G f ( ) liegt. (II) Gib den Funktionster G parallel und durch den Punkt /, f ( ) g an, deren Graph G g( ) zu A verläuft. (III) Der Graph G f ( ) schließt zusaen it den Koordinatenachsen ein Dreieck ein. Bestie den Flächeninhalt dieses Dreiecks. (IV) Gib an, welche Bedingung die Paraeter und t erfüllen üssen, dait der Graph G der linearen Funktion k( ) t nicht durch den II. Quadranten des k ( ) Koordinatensystes verläuft. zu a) y = + t I: - = + t II: -0 = + t t = -0 in I - = + (-0 ) - = 0 - = 0 - = Also: t = -0 = 0 h() = zu b) (I) f(-) =, (-) + = -0, also: y-wert von Q ist und soit größer als -0, Folgerung: Q liegt über G f (II) Parallel d. h. gleiche Steigung: g() =, + t durch A( -,): -, =, + t -, =, + t t = -, also: g() =,, (III) y-achsenabschnitt ist also: Länge der einen Kathete ist Nullstelle:, + = 0, = - = - also: Länge der anderen Kathete ist Fläche rechtwinkliges Dreieck:, (IV) Steigung 0 und t 0

5 . Gib die Ufangslänge der getönten Fläche (vgl. Abbildung, ein Kästchen ist c lang) an. Wie viel Prozent der Quadratfläche sind getönt? U getönte Fläche = c + c (c) (c),c (c) getönte Fläche in Prozent = 0,%. Erittle rechnerisch die Lösungsenge des linearen Gleichungssystes: (I) y ( II ) y I: y = I : y = II: y + = I + II: y + y + = + + = + = = in II: y + = ; y = - ; y = -0, L = {(;-0,}. Bestie jeweils die Definitonsenge sowie die Lösungsenge: a) b) c) zu a) D = R \ {-} also: L = {-} zu b) D = R \ {0} zu c) D = R \ {-;} 0 ; = ( + ) ; = + 0 ; - = ; = - Hauptnenner: - = 0 = 0 = L = { } (siehe Definitionsenge!) HN: (² - 9) = ( - )( + ) ( ) 0 9 ( + ) 0 ( ) = = = 0 = = also: L = {}. Vereinfache die Tere jeweils soweit wie öglich und schreibe dein Ergebnis ohne negative Eponenten. zu a) zu b) a) : ( ) : () k a n 0 n a k ka k a n b) a b c) 0b : 0 n a k 0c c a ( ) () ( ) ( ) n a k a n k n

6 zu c) a b 0b a b 0 b a b c a : : 0c c a 000c c a 000c 0 b a c 0 c 000b a b c b 9. a) An eine Tanzturnier nehen acht Tanzpaare teil. Erittle, wie viele verschiedene Möglichkeiten es für die ersten drei Plätze gibt. b) Die fünf Plätze für die Teilnahe an einer Reise werden unter Personen verlost. Wie viel verschiedene Auswahlöglichkeiten gibt es? c) Lucas wählt aus 9 verschiedenen Pralinen aus. Wie viele verschiedene Möglichkeiten gibt es, wenn die Reihenfolge keine Rolle spielt? zu a) Möglichkeiten:!!! 9 9!!! zu b) zu c) 0. Berechne die Längen der Strecken a, b, c und d. d c, a, b,,,,,,, ; d =, ; c = ; a = ; b =. U die Breite AB eines Flusses zu essen, steckt Frau Meier die Punkte B und C a Ufer sowie die Punkte D und E etwas weiter entfernt ab (vgl. Abbildung). Erkläre kurz, worauf Frau Meier unbedingt achten uss. Berechne nun die Breite des Flusses, wenn bekannt ist: BC 0, DE und BD. 0 = 0( + ) = = 90 = 0 Voraussetzungen: HN: (+) [CB] und [ED] sind parallel Antwort: die Flussbreite beträgt 0 Lage der Geraden BD so gewählt, dass Strecke [AB] Flussbreite d. h. kürzeste Weg bei Flussüberquerung entspricht

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Lineare Funktionen und Funktionenscharen

Lineare Funktionen und Funktionenscharen . Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Grundwissen 8 - Aufgaben Seite 1

Grundwissen 8 - Aufgaben Seite 1 Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2016 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g.

8.1 Proportionalität. 8.2 Funktionen Proportionale Zuordnungen Funktion. P = x y ist der Vorrat von 6000g. Gmnasium bei St. Anna, Augsburg Seite Grundwissen 8. Klasse 8. Proportionalität 8.. Proportionale Zuordnungen Gehört bei einer Zuordnung zweier Größen zu einem Vielfachen der einen Größe das gleiche Vielfache

Mehr

Lösungen Ferienaufgaben Mathematik 8

Lösungen Ferienaufgaben Mathematik 8 Dietrich-Bonhoeffer-Gymnasium Oerasach Lösungen Ferienaufgaen Mathematik 8 8.A Funktionen 8.A. Begriff ) Entscheide in den folgenden Fällen, o eine Funktion vorliegt und egründe Deine Antwort! Jeder Zahl

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.

Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert. Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer

Mehr

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.

Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt. FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

Ferienaufgaben Mathematik 8. Klasse

Ferienaufgaben Mathematik 8. Klasse Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet.

Mehr

Eingangstest Mathematik Jgst.11

Eingangstest Mathematik Jgst.11 SINUS-Set Projekt F3 Erfinden Sie zu dem abgebildeten Graphen eine Sachsituation, die durch den Graphen dargestellt wird. Gehen Sie dabei auch auf den Verlauf des Graphen ein! Zeit in F4 In der Abbildung

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Aufgabe 1: Vektorgeometrie (12 Punkte)

Aufgabe 1: Vektorgeometrie (12 Punkte) Mathematik schriftlich Klassen: 4IM, 4S, 4Wa, 4WZ, 5KSW Bemerkungen: Hilfsmittel: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner TI-Nspire CAS Der

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

min km/h

min km/h Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Lösungen zum Arbeitsblatt: y = mx + b Alles klar???

Lösungen zum Arbeitsblatt: y = mx + b Alles klar??? I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

Üben. Lineare Funktionen. Lösung. Lineare Funktionen

Üben. Lineare Funktionen. Lösung. Lineare Funktionen Zeichne die drei Graphen jeweils in dasselbe Koordinatensstem und beschreibe, worin sich die Graphen jeweils gleichen und worin sie sich unterscheiden. a) b) f : x x f : x x f f f : x : x : x x x x 0,

Mehr

Eingangstest aus der Mathematik

Eingangstest aus der Mathematik Staatliche Fachoberschule und Berufsoberschule Coburg FOS: Technik Wirtschaft, Verwaltung und Rechtspflege Sozialwesen BOS: Technik - Wirtschaft REGIOMONTANUS-SCHULE C O B U R G Eingangstest aus der Mathematik

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Rudolf Brinkmann Seite und W = {x 3 x 6}

Rudolf Brinkmann Seite und W = {x 3 x 6} Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine

Mehr

Grundwissen Mathematik 8.Jahrgangsstufe G8

Grundwissen Mathematik 8.Jahrgangsstufe G8 Grundwissen Mathematik 8.Jahrgangsstufe G8 Funktionale Zusammenhänge Direkte Proportionalität Entspricht bei zwei einander zugeordneten Größen und y dem -, -, -, k-fachen der einen Größe das -, -, -, k-fache

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Fit für die E-Phase?

Fit für die E-Phase? Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)

Mehr

A2.2 Lineare Funktionen

A2.2 Lineare Funktionen A2.2 Lineare Funktionen Funktionen Beispiel: Ein estiter Strotarif erechnet den Stropreis P aus der Zähleriete M und de Areitspreis aus Kosten K je kwh und Anzahl N der verrauchten Einheiten: P = K N +

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

1. Schularbeit 3.E/RG Gruppe A Name:

1. Schularbeit 3.E/RG Gruppe A Name: Beachte: Wenn das Beispiel nicht händisch berechnet wird müssen alle Formeln und wesentlichen Teile im Heft angeschrieben werden. Die Rechnung mit dem TI-92 (Eingabezeile) muss mit einer Farbe im Heft

Mehr

Anzahl der Fahrschüler Bild 1

Anzahl der Fahrschüler Bild 1 Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,

Mehr

WADI 7/8 Aufgaben A17 Terme. Name: Klasse:

WADI 7/8 Aufgaben A17 Terme. Name: Klasse: WADI 7/8 Aufgaben A17 Terme 1 Berechne den Wert für x = -1,5. x x + x x + x 1000x c) 10. (10x) d) 100(x 2x) 2 Welche Terme sind äquivalent zu 4x? x + 2(x+1) 2 + 2x c) x + x+ x + x d) 2. (2 x) 3 Sind beim

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Bohner Ott. Vorbereitung zur. Abschlussprüfung Mathematik. an der Berufsfachschule und der Berufsaufbauschule. Merkur.

Bohner Ott. Vorbereitung zur. Abschlussprüfung Mathematik. an der Berufsfachschule und der Berufsaufbauschule. Merkur. Bohner Ott Vorbereitung zur Abschlussprüfung Mathematik an der Berufsfachschule und der Berufsaufbauschule Merkur M Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet

Mehr

MW-E Mathematikwettbewerb der Einführungsphase

MW-E Mathematikwettbewerb der Einführungsphase MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g Themenbereich : Proportionalitätszuordnungen Benzinmenge in Abhängigkeit von dem Preis: Proportionale Zuordnungen Wenn eine Größe verdoppelt wird, führt dies zur Verdoppelung der Anderen Die Zuordnungsvorschrift

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

Neue Aufgaben, Oktober

Neue Aufgaben, Oktober Neue Aufgaben, Oktober 2006 2 1. Auf wie viele Nullen endet 10! und 20!? Lösung: Die Nullen ergeben sich durch Faktorenpaare, die jeweils 10 ergeben. In 10! kommt der Faktor 5 zweimal vor, der Faktor 2

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 9..8 Linearen Funktion Aus der Sekundarstufe I sind Ihnen die Graphen linearer Funktionen als Geraden bekannt und deren Funktionsgleichungen als Geradengleichungen.

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7

Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Diagnose-Bogen Mathematik Erich Kästner Schule Seite 1 von 7 Im Mathematikunterricht der Oberstufe muss man auf mathematisches Handwerkszeug aus der Sekundarstufe I zurückgreifen. Wir wollen deshalb deine

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Basiswissen Mathematik Klasse 7 / 8 Seite 1 von 11 1 Berechne 12% von 73. 12% 73=0,12 73=8,76 2 Wie viel Prozent sind 9 von 34? 9 =9 :34=0,2647...=26,5 % 34 3 Eine CD kostet netto 12,43. Dazu kommen 19%

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr