Zahlentheorie, Arithmetik und Algebra II

Größe: px
Ab Seite anzeigen:

Download "Zahlentheorie, Arithmetik und Algebra II"

Transkript

1 . Zahlentheorie, Arithmetik und Algebra II. Malte Meyn. Juni Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

2 Inhalt. Große Zahlen java.math.biginteger. Lineare Rekurrenzen. Simultane Kongruenzen und Chinesischer Restsatz. Der RSA-Algorithmus Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

3 Inhalt. Große Zahlen java.math.biginteger. Lineare Rekurrenzen. Simultane Kongruenzen und Chinesischer Restsatz. Der RSA-Algorithmus Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

4 Javas BigInteger import java.math.biginteger; beliebig große ganze Zahlen verhält sich wie Zweierkomplement-Integer, aber ohne Überlauf immutable, d. h. für jede Operation wird ein neues Objekt angelegt Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

5 Wichtige Methoden I mangels Operatorenüberladung: add, xor, equals,... Bitmanipulation: int bitlength() shiftleft(int) setbit(int)... Konvertierung: valueof(long) BigInteger(String) tobytearray()... weitere wie max, signum, abs, pow etc. Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

6 Wichtige Methoden II Zufall: BigInteger(int bits, Random rand) Primzahlen: BigInteger(int bits, int certainty, Random rand) probableprime(int bits, Random rand) nextprobableprime() isprobableprime(int cert) Zahlentheorie: gcd(biginteger other) modinverse(biginteger mod) modpow(biginteger exp, BigInteger mod) Richtig gute Zufallszahlen kriegt man nur mit java.security.securerandom, welches von java.util.random erbt. Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

7 Darstellung von großen Zahlen Array oder Liste aus Ziffern eines primitiven Datentyps Basis: m, wenn man die Ziffern voll ausnutzt oder n, wenn man Ausgabe braucht Vorteil Array: einfacher zu implementieren, kein Overhead Vorteil Liste: dynamisch wachsend Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

8 Inhalt. Große Zahlen java.math.biginteger. Lineare Rekurrenzen. Simultane Kongruenzen und Chinesischer Restsatz. Der RSA-Algorithmus Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

9 Rekursiv definierte Folgen Viele Zahlenfolgen (a n ) n N = (a, a, a,...) können rekursiv definiert werden. O handelt es sich dabei um homogene lineare Rekurrenzen: k Startwerte s,..., s k k Konstanten c,..., c { k s n a n = c a n + c a n + + c k a n k n k n > k Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

10 Rekursiv definierte Folgen Viele Zahlenfolgen (a n ) n N = (a, a, a,...) können rekursiv definiert werden. O handelt es sich dabei um homogene lineare Rekurrenzen: k Startwerte s,..., s k k Konstanten c,..., c { k s n a n = c a n + c a n + + c k a n k n k n > k Wie berechnet man nun die ersten n Elemente? nur das n-te Element? Malte Meyn Zahlentheorie, Arithmetik und Algebra II. Juni /

11 Beispiel: F -Zahlen Die Folge (f n ) n N der F -Zahlen ist wie folgt definiert: n = f n = n = f n + f n n > Hier sind also k =, s = s = und c = c =.

12 Naiver Ansatz Folgender Ansatz berechnet fast alle Werte mehrfach, Laufzeit O(Φ n ): function F N (n) if n = n = then return return F N (n ) + F N (n )

13 Naiver Ansatz Folgender Ansatz berechnet fast alle Werte mehrfach, Laufzeit O(Φ n ): function F N (n) if n = n = then return return F N (n ) + F N (n ) Entrekursivierung hil und beantwortet unsere Frage nach den n ersten Elementen: function F I (n) f = f = for i,..., n do f i = f i + f i return f

14 Einzelne Werte einer Folge Wenn wir nun die. Fibonacci-Zahl wissen wollen, müssen wir dafür erst andere berechnen O(n). Geht das nicht besser?

15 Einzelne Werte einer Folge Wenn wir nun die. Fibonacci-Zahl wissen wollen, müssen wir dafür erst andere berechnen O(n). Geht das nicht besser? Doch, durch Lösung der linearen Differenzengleichung f n f n f n = : Problem: ( ( f n = ) n ( ) n ) + Polynomgleichung k-ten Grades muss gelöst werden für k > nicht trivial Genauigkeit bei großen n fehlt

16 Matrix für rekursiven Schri Schreibt man die Konstanten c,..., c k wie folgt in eine Matrix M, dann kann man den rekursiven Berechnungsschri durch eine Matrixmultiplikation ausdrücken: c... c k c k... a n a n. a n k = a n a n. a n k+

17 Mehrfaches Anwenden der Multiplikation liefert weitere Werte: M M M } {{ } m-mal a n. a n k+ = Aufgrund der Assoziativität der Matrixmultiplikation ist also auch M m a n. a n k+ = a n+m. a n k+ +m a n+m. a n k+ +m

18 Daraus folgt c... c k c k... n k s ḳ. s = a n. a n k+

19 Daraus folgt c... c k c k... n k s ḳ. s = a n. a n k+ Die Potenz der Matrix M kann mi els fast exponentiation berechnet werden: function M (M, m) if m = then return 1 k if m (mod ) then return M (M, m ) else return M (M, m ) M Aufwand von O(log m k ), für kleine k also O(log n) sta O(n).

20 Beispiel: f Für die Fibonacci-Zahlen ist (c,..., c k ) = (, ), also ( ) M = und Um f zu ermi eln, berechnet man M ( s s ) ( = ) s ḳ. s = ( ) = ( ) ( ) ( ) f = f

21 Inhomogene lineare Rekurrenzen Inhomogene lineare Rekurrenzen haben zusätzlich noch eine Funktion b in ihrer Definition: k Startwerte s,..., s k k Konstanten c,..., c { k s n a n = c a n + c a n + + c k a n k + b(n) n k n > k

22 Inhomogene lineare Rekurrenzen Inhomogene lineare Rekurrenzen haben zusätzlich noch eine Funktion b in ihrer Definition: k Startwerte s,..., s k k Konstanten c,..., c { k s n a n = c a n + c a n + + c k a n k + b(n) n k n > k Für konstantes b(n) = B kann man wieder Matrizen verwenden: c... c k c k B a n a n.... = a n k a n a n. a n k+

23 Inhalt. Große Zahlen java.math.biginteger. Lineare Rekurrenzen. Simultane Kongruenzen und Chinesischer Restsatz. Der RSA-Algorithmus

24 Eier zählen Eine alte Frau geht über den Marktplatz. Ein Pferd tri auf ihre Tasche und zerbricht die gekau en Eier. Der Besitzer des Pferdes möchte den Schaden ersetzen und fragt die alte Frau, wie viele Eier in ihrer Tasche waren. Sie weiß die exakte Zahl nicht mehr, aber sie erinnert sich, dass genau ein Ei übrig bleibt, wenn sie beim Auspacken die Eier immer zu zweit aus der Tasche nimmt. Das Gleiche geschieht, wenn sie die Eier immer zu dri, zu viert, zu fün und zu sechst aus der Tasche nimmt. Nur wenn sie die Eier zu siebt aus der Tasche nimmt, bliebt kein Ei übrig. Was ist die kleinste Zahl an Eiern, welche die alte Frau in ihrer Tasche haben kann? [ ]

25 Eier zählen Eine alte Frau geht über den Marktplatz. Ein Pferd tri auf ihre Tasche und zerbricht die gekau en Eier. Der Besitzer des Pferdes möchte den Schaden ersetzen und fragt die alte Frau, wie viele Eier in ihrer Tasche waren. Sie weiß die exakte Zahl nicht mehr, aber sie erinnert sich, dass genau ein Ei übrig bleibt, wenn sie beim Auspacken die Eier immer zu zweit aus der Tasche nimmt. Das Gleiche geschieht, wenn sie die Eier immer zu dri, zu viert, zu fün und zu sechst aus der Tasche nimmt. Nur wenn sie die Eier zu siebt aus der Tasche nimmt, bliebt kein Ei übrig. Was ist die kleinste Zahl an Eiern, welche die alte Frau in ihrer Tasche haben kann? [ ] Antwort: Es sind mindestens Eier.

26 Simultane Kongruenzen Eine simultane Kongruenz ist ein System von linearen Kongruenzen. a a (mod n ) a a (mod n ). a a k (mod n k ) Ein a, welches für gegebene a,..., a k und n,..., n k alle k Kongruenzen erfüllt, heißt Lösung der simultanen Kongruenz.

27 Der Chinesische Restsatz Seien n,..., n k paarweise teilerfremd und N = k i= n i. Dann hat die simultane Kongruenz modulo N genau eine Lösung a. a a (mod n ). a a k (mod n k )

28 Der Chinesische Restsatz Seien n,..., n k paarweise teilerfremd und N = k i= n i. Dann hat die simultane Kongruenz modulo N genau eine Lösung a. a a (mod n ). a a k (mod n k ) Anmerkung: Es gibt verschiedene Versionen des Satzes, bei Cormen [ ] ist dies z. B. nur ein Korollar aus dem eigentlichen Satz. Erste Erwähnung im Sūn Zǐ Suànjīng (Sūn Zǐs Handbuch der Arithmetik),. Jhd. n. Chr.?

29 Finden einer Lösung. Berechne N i = N n i = n n i n i+ n k.. Berechne M i mit N i M i (mod n i ). erweiterter E. Berechne a = k i= a in i M i. Dann ist a eine Lösung der simultanen Kongruenz.

30 Warum funktioniert das? Da n i N j für i j, ist auch n i N j M j, also Insgesamt ist also N j M j (mod n i ) und N i M i (mod n i ). a a N M + + a i N i M i + a i N i M i + a i+ N i+ M i+ + + a k N k M k a + + a i + a i + a i+ + + a k a i (mod n i )

31 Beispiel (Tafel) Gegeben sei die simultane Kongruenz a (mod ) a (mod ) Diese hat die Lösung a (mod ).

32 Was, wenn die n i nicht paarweise teilerfremd? Eine Lösung existiert genau dann, wenn i, j : ggt(n i, n j ) (a i a j ) und alle Lösungen sind kongruent mod kgv(n,..., n k ).

33 Lösung durch sukzessive Substitution I.. Schreibe die erste Kongruenz als a = a + n q. Setze dies in die zweite Kongruenz ein und forme um:. Teile durch t := ggt(n, n ): a + n q a (mod n ) = n q a a (mod n ) q n t a a t (mod n t ) Dies ist möglich, weil ggt(n, n ) (a a ).

34 Lösung durch sukzessive Substitution II... Berechne Inverse i von n t mod n t und multipliziere mit ihr: q i a a t (mod n t ) Schreibe dies als q = i a a t + r n t. Setze in a = a + n q ein und schreibe als Kongruenz: ( ) a = a + n i a a + r n t t = a a + n t i (a a ) (mod n n ) t

35 Lösung durch sukzessive Substitution III. Ersetze die ersten beiden Kongruenzen im System durch die neue.. Falls nun k = : fertig. Sonst: gehe zu. Kurzfassung:. Berechne t = ggt(n, n ) und prüfe, ob t (a a ) (falls nicht, gibts keine Lösung). Berechne i = ( n ) t (mod n t )... Ersetze die ersten beiden Kongruenzen durch a a + n t i (a a ) (mod n n t ).

36 Beispiel (Tafel) Gegeben sei die simultane Kongruenz a (mod ) a (mod ) Diese hat die Lösung a (mod ).

37 Beispiel (Tafel) Gegeben sei die simultane Kongruenz a (mod ) a (mod ) Diese hat die Lösung a (mod ). Dagegen ist a (mod ) a (mod ) unlösbar.

38 Inhalt. Große Zahlen java.math.biginteger. Lineare Rekurrenzen. Simultane Kongruenzen und Chinesischer Restsatz. Der RSA-Algorithmus

39 Security

40 Symmetrische Kryptosysteme symmetrisches Kryptosystem: Nachrichten werden mit demselben Schlüssel ver- und entschlüsselt alle Teilnehmer müssen den selben Schlüssel verwenden unvermeidliche Schwachstelle ist also die Schlüsselübertragung, die nicht abgehört werden darf Beispiel: C -Chiffre, Advanced Encryption Standard

41 Asymmetrische Kryptosysteme Wenn jeder seinen eigenen Schlüssel verwendet, braucht man keinen zu übertragen. Entschlüsseln: privater Schlüssel, den die anderen Teilnehmer nicht kenne Verschlüsseln: öffentlicher Schlüssel, von dem man nicht auf den privaten schließen kann Beispiel für ein asymmetrisches Kryptosystem: RSA

42 RSA von R. R, A. S, L. A entwickelt als sehr sicher eingeschätzt langsam, deshalb zum Verschlüsseln von Schlüsseln schnellerer symmetrischer Vefahren eingesetzt

43 E sche φ-funktion Zur Erinnerung: Für p P ist φ(p) = (p ). Außerdem gilt für p, q P φ(pq) = pq p q + = (p )(q ) Alle p Vielfachen von q und alle q Vielfachen von p werden gestrichen, aber pq darf nicht doppelt gestrichen werden.

44 Satz von E Seien m, n N teilerfremd. Dann gilt m φ(n) (mod n) und damit für alle k N m kφ(n)+ k m m (mod n).

45 Satz von E Seien m, n N teilerfremd. Dann gilt m φ(n) (mod n) und damit für alle k N m kφ(n)+ k m m Für verschiedene Primzahlen p, q mit pq = n ist also (mod n). m kφ(pq)+ m (mod pq)

46 Sonderfall: ggt(m, n) Was, wenn n = pq und m, n nicht teilerfremd, aber m n?

47 Sonderfall: ggt(m, n) Was, wenn n = pq und m, n nicht teilerfremd, aber m n? Dann muss m durch p oder q teilbar sein. Sei also o. B. d. A. p m und q m. m kφ(pq)+ m (mod p) m kφ(pq)+ m k(p )φ(q)+ m (mod q) Mit dem Chinesischen Restsatz ergibt sich m kφ(pq)+ m (mod pq)

48 Schlüsselerzeugung.. Wähle zwei verschiedene große Primzahlen p, q. Berechne n = pq.. Berechne φ(n) = (p )(q ).. Wähle e mit ggt(e, φ(n)) =. z. B. e = + P. Berechne d mit ed (mod φ(n)). erweiterter E öffentlicher Schlüssel: (e, n) privater Schlüssel: (d, n) geheimzuhalten bzw. zu vergessen: p, q, φ(n) Geht nicht immer, aber o. Gut für fast exponetiation.

49 Ver- und Entschlüsseln Gegeben: Klartext m < n, öffentlicher und privater Schlüssel (e, n) und (d, n). Berechne Geheimtext c als m e mod n. Berechne entschlüsselten Text m als c d mod n.

50 Warum funktioniert das? Es ist m c d (m e ) d m ed (mod n). Weil ed (mod φ(n)), existiert ein k mit ed = kφ(n) +. Mit dem Satz von E und unseren Ergänzungen ergibt sich m m kφ(n)+ m (mod n)

51 Beispiel I Alice hat die Antwort gefunden ( ) und will sie erstmal nur Bob mi eilen, um viel Geld mit der Programmierung von D T verdienen zu können. Eve, Alice Chefin, soll nichts davon erfahren. function D T sleep(. a) say( ) Bob sucht sich zwei Primzahlen p =, q = und berechnet n = und φ(n) = =. Dann wählt er e = und berechnet mithilfe des erweiterten E ischen Algorithmus d =.

52 Beispiel II Alice berechnet mod = und schickt die Nachricht Ich hab die Antwort gefunden: (RSA-verschlüsselt!) an Bob. Ziemlich dumm, wär sicherer gewesen, auch den Rest der Nachricht zu verschlüsseln. Aber Alice hat Glück: Eve ist gegen jede Form der Gewalt und wartet lieber ein paar Millionen Jahre (sie ist nämlich leider nicht in der Lage, zu faktorisieren). Naja, Bob rechnet nun jedenfalls mod = und freut sich für Alice.

53 Sicherheit von RSA Um d zu berechnen, müsste man φ(n) = (p )(q ) kennen. Und dazu müsste man n faktorisieren. Faktorisierung wird als schwierig angesehen, ist aber nicht bewiesen! Ebenfalls nicht bewiesen: Ist das die einzige Schwachstelle?

54 Literatur I Douglas Adams. Per Anhalter durch die Galaxis. Wilhelm Heyne Verlag, München,. Aufl.,. Albrecht Beutelspacher. Kryptologie Eine Einführung in die Wissenscha vom Verschlüsseln, Verbergen und Verheimlichen. Vieweg, Wiesbaden,. Aufl.,. BigInteger (Java Platform SE ). /docs/api/java/math/biginteger.html,. Juni. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, rd edition,.

55 Literatur II Daniel Laffling. Zahlentheorie, Arithmetik und Algebra II,. Juli. Chinesischer Restsatz. Juni. Eieraufgabe des Brahmagupta. Juni. Method of successive substitution. Juni. xkcd Security. /,. Juni.

56 Vielen Dank für eure Aufmerksamkeit! Fragen?

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra II Benjamin Fischer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Lineare Rekursion BigInteger Chinesischer

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2 Zahlentheorie, Arithmetik und Algebra I Felix Teufel 26.07.2017 Hallo Welt! -Seminar - LS 2 Überblick Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen Eulersche Φ-Funktion RSA Quellen 26.07.2017

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra II Florin Cristian Ghesu Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Rechnen mit großen Zahlen BigInteger

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

Asymmetrische Kryptographie u

Asymmetrische Kryptographie u Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Kryptografie Die Mathematik hinter den Geheimcodes

Kryptografie Die Mathematik hinter den Geheimcodes Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4 Public Key Kryptographie mit RSA 1. Ver- und Entschlüsselung 2. Schlüsselerzeugung und Primzahltests 3. Angriffe auf das RSA Verfahren 4. Sicherheit von RSA Probleme

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Anwendungen der Linearen Algebra: Kryptologie

Anwendungen der Linearen Algebra: Kryptologie Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Zahlentheorie, Arithmetik und Algebra

Zahlentheorie, Arithmetik und Algebra Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp

Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel

Mehr

3. Vortrag: Das RSA-Verschlüsselungsverfahren

3. Vortrag: Das RSA-Verschlüsselungsverfahren Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 3. Vortrag: Das RSA-Verschlüsselungsverfahren Hendrik

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

RSA Äquivalenz der Parameter

RSA Äquivalenz der Parameter RSA Kryptosystem Wurde 1977 von Rivest, Shamir und Adleman erfunden. Genaue Beschreibung im PKCS #1. De-facto Standard für asymmetrische Kryptosysteme. Schlüsselerzeugung: Seien p, q zwei verschiedene,

Mehr

Übungsblatt 2: Ringe und Körper

Übungsblatt 2: Ringe und Körper Übungsblatt 2: Ringe und Körper 1. RINGE 1.1. Zeigen Sie, dass die Menge R n n der n n-matrizen über einem Ring R mit den üblichen Operationen einen Ring bildet. Lösungshinweise: Man kopiert die Beweise

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

IT-Sicherheit Kapitel 4 Public Key Algorithmen

IT-Sicherheit Kapitel 4 Public Key Algorithmen IT-Sicherheit Kapitel 4 Public Key Algorithmen Dr. Christian Rathgeb Sommersemester 2014 1 Einführung Der private Schlüssel kann nicht effizient aus dem öffentlichen Schlüssel bestimmt werden bzw. die

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

PRIMZAHLEN UND DIE RSA-VERSCHLÜSSELUNG

PRIMZAHLEN UND DIE RSA-VERSCHLÜSSELUNG PRIMZAHLEN UND DIE RSA-VERSCHLÜSSELUNG FLORIAN KRANHOLD Kurfürst-Salentin-Gymnasium Andernach Zusammenfassung. Verschlüsselungstechniken und -mechanismen sind aus unserem alltäglichen Leben nicht mehr

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Dresden, Wintersemester 2017/2018 Die revolutionäre Idee Diffie und Hellman

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

INFORMATIONSSICHERHEIT

INFORMATIONSSICHERHEIT Fakultät Informatik/Mathematik Professur Informatikrecht/Informationssysteme Modulare Reduktion INFORMATIONSSICHERHEIT Prof. Dr. Andreas Westfeld Die basiert auf einer festen ganzen Zahl m > 1, die Modulus

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH

SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über

Mehr

Elementare Zahlentheorie II

Elementare Zahlentheorie II Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra 1 Florian Habur Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Modulare Arithmetik Rechenregeln Fast Exponentiation

Mehr

MGI Exkurs: RSA-Kryptography

MGI Exkurs: RSA-Kryptography MGI Exkurs: RSA-Kryptography Prof. Dr. Wolfram Conen WS 05/06, 14.+17.10.2005 Version 1.0 Version 1.0 1 Angenommen, Sie heißen ALICE...... haben Geheimnisse......und wollen mit einem Bekannten namens BOB

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

2011W. Vorlesung im 2011W Institut für Algebra Johannes Kepler Universität Linz

2011W. Vorlesung im 2011W  Institut für Algebra Johannes Kepler Universität Linz und Was ist? Mathematik und Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml und Was ist? Inhalt Was ist? und Was ist? Das ist doch logisch!

Mehr

Kommunikationsalgorithmus RSA

Kommunikationsalgorithmus RSA Kommunikationsalgorithmus RSA Herr Maue Ergänzungsfach Informatik Neue Kantonsschule Aarau Früjahrsemester 2015 24.04.2015 EFI (Hr. Maue) Kryptographie 24.04.2015 1 / 26 Programm heute 1. Verschlüsselungsverfahren

Mehr

Folien der 14. Vorlesungswoche

Folien der 14. Vorlesungswoche Folien der 14. Vorlesungswoche Ein Beispiel: Z 6 Im allgemeinen ist der Ring Z m kein Körper. Wie uns aus der allerdings nichtkommutativen Situation der Matrixringe M n (R) schon bekannt ist, kann das

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems Paul-Klee-Gymnasium Facharbeit aus der Mathematik Thema: Asymmetrische Verschlüsselungsverfahren am Beispiel des RSA-Kryptosystems Verfasser : Martin Andreas Thoma Kursleiter : Claudia Wenninger Abgegeben

Mehr

AES und Public-Key-Kryptographie

AES und Public-Key-Kryptographie Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert

Mehr

Großer Beleg. Arithmetische Optimierung eines kryptographischen Algorithmus für moderne FPGA-Architekturen. Peter Heinzig. 17.

Großer Beleg. Arithmetische Optimierung eines kryptographischen Algorithmus für moderne FPGA-Architekturen. Peter Heinzig. 17. Großer Beleg Arithmetische Optimierung eines kryptographischen Algorithmus für moderne FPGA-Architekturen Peter Heinzig 17. Januar 2011 1/23 Peter Heinzig Großer Beleg Überblick Einleitung 1 Einleitung

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

4 Diskrete Logarithmen und Anwendungen

4 Diskrete Logarithmen und Anwendungen Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 4 Diskrete Logarithmen und Anwendungen 4.1 Diskrete Logarithmen Wir betrachten eine endliche zyklische Gruppe (G,, e)

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

7 Asymmetrische Kryptosysteme

7 Asymmetrische Kryptosysteme 10 7 Asymmetrische Kryptosysteme 7 Asymmetrische Kryptosysteme Diffie und Hellman kamen 1976 auf die Idee, dass die Geheimhaltung des Chiffrierschlüssels keine notwendige Voraussetzung für die Sicherheit

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Elementare Zahlentheorie. Jörn Steuding (Uni Würzburg) Wintersemester 2016/17

Elementare Zahlentheorie. Jörn Steuding (Uni Würzburg) Wintersemester 2016/17 Elementare Zahlentheorie Jörn Steuding (Uni Würzburg) Wintersemester 2016/17 D C E A B Literaturempfehlungen J. Appell, K. Appell: Mengen - Zahlen - Zahlbereiche, Spektrum 2005 K. Reiss, G. Schmieder:

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 16 Der Chinesische Restsatz für Z Satz 16.1. Sei n eine positive natürliche Zahl mit anonischer Primfatorzerlegung 1 p r 2 2 p r (die

Mehr

Public-Key-Verschlüsselung und Diskrete Logarithmen

Public-Key-Verschlüsselung und Diskrete Logarithmen Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln

Mehr

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin.

Kryptographie. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin. Kryptographie Teilnehmer: Kevin Huber Philippe Gruse Vera Koldewitz Philipp Jakubahs Julian Zimmert Maximilian Werk Hermann-Hesse-Oberschule Heinrich-Hertz-Oberschule Gruppenleiter: Ulf Kühn Humboldt-Universität

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen.

Der RSA-Algorithmus. 2. Anschließend ist n = p q und ϕ (n) = (p 1) (q 1) zu berechnen. Kapitel 4 Der RSA-Algorithmus Der RSA-Algorithmus ist das heute bekannteste Verfahren aus der Familie der Public-Key-Kryptosysteme. Es wurde 1978 der Öffentlichkeit vorgestellt und gilt bis heute als der

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

KRYPTOSYSTEME & RSA IM SPEZIELLEN

KRYPTOSYSTEME & RSA IM SPEZIELLEN KRYPTOSYSTEME & RSA IM SPEZIELLEN Kryptosysteme allgemein Ein Kryptosystem ist eine Vorrichtung oder ein Verfahren, bei dem ein Klartext mithilfe eines Schlüssels in einen Geheimtext umgewandelt wird (Verschlüsselung)

Mehr