Σ = (z; c : z, f : z z) Σ = (z; c : z, f : z z) ( ; 17, x -x) ( ; 17, pred) ( ; true, neg) ( ; 0, suc) ({a,b} + ; a, xa xb und xb xa)

Größe: px
Ab Seite anzeigen:

Download "Σ = (z; c : z, f : z z) Σ = (z; c : z, f : z z) ( ; 17, x -x) ( ; 17, pred) ( ; true, neg) ( ; 0, suc) ({a,b} + ; a, xa xb und xb xa)"

Transkript

1 METHODEN UND MODELLE DES SYSTEMENTWURFS 3. Algebraische Spezifikation mit CASL 3.1 Spezifikationen 3.2 CASL 3.1 SPEZIFIKATIONEN JAN SÜRMELI u.hu-berlin.de/mms-13 ZUR ERINNERUNG 2 DAS ZIEL 3 Signatur charakterisiert eine Menge von Strukturen Charakterisiere eine bestimmte Klasse von Σ-Strukturen NOCHMAL ETWAS ABSTRAKTER 4 LÖSUNG: SPEZIFIKATION 5 Σ Spezifikation = def Signatur Σ + Eigenschaften Ziel: Charakterisiere Beispiele + erzeugt + eindeutig + f ist selbst-invers 1

2 BEISPIELE 6 BEISPIELE 7 + erzeugt BEISPIELE 8 + eindeutig BEISPIELE 9 + erzeugt + eindeutig BEISPIELE 10 EIGENSCHAFTEN HINSCHREIBEN 11 + f ist selbst-invers Beispiel: f ist selbst-invers x. x = f(f(x)) semantische Gleichheit Quantor Variable Terme mit Variablen Variablen reden über beliebige Elemente aus dem Träger Auch über nicht erzeugte 2

3 WEITERE BEISPIELE 12 KONSISTENZ EINER SPEZIFIKATION 13 Es existiert ein Element x,, so dass f(x) = x Geg.: Spezifikation x. x = f(x) Frage: Gibt es ein Modell? f ist surjektiv (rechts-total) total) x. y. x = f(y) f ist injektiv (links-eindeutig) x. y. ( f(x) = f(y) x = y ) Beispiel für Inkonsistenz: + x. ( f(x) = c x = f(x) ) Konsistenz ist unentscheidbar für einige Unterklassen entscheidbar Für Gleichungen besonders schön lösbar MOTIVATION FÜR GLEICHUNGEN 14 GLEICHUNGEN 15 Beispiel:, B = true = neg(neg(true)) = neg(neg(neg(neg(true)))) = c B = f(f(c)) B = f(f(f(f(c)))) B Nicht eindeutig! Aber trotzdem schöne Struktur Idee: Spezifiziere erlaubte Mehrdeutigkeit mit Gleichungen x 1. x m. ( ψ 1 ψ n ) ψ i ist ein Vergleich zweier Terme Gleichung: x. x = f(f(x)) Keine Gleichung: x. y. ( f(x) = f(y) x = y ) x. y. x = f(y) MODELLE FÜR GLEICHUNGS-SPECSSPECS 16 + x. x = f(f(x)) SCHÖNE MODELLE Idee: Es gelten nur die spezifizierten Gleichungen + alle daraus ableitbaren Gleichungen 17 ({ };, ) Beispiel: In B = gilt nur die Selbst- Inversität In U = ({ };, ) gilt zusätzlich: c U = f(c) U 3

4 TERM-ÄQUIVALENZ 18 QUOTIENTEN-TERM-STRUKTUR 19 Eine Gleichung induziert eine Äquivalenz auf den (Grund-)Termen Gegeben: Signatur Σ,, Gleichung G Quotienten-Term-Struktur Beispiel: G= x. x =f(f(x)) Äquivalenzklassen: [c] = {c, f(f(c)), f(f(f(f(c)))), f(f(f(f(f(f(c)))))), } [f(c)] = {f(c), f(f(f(c))), f(f(f(f(f(c))))), }, G = def x. x = f(f(x)) = def ( {[c], [f(c)]} ; [c], g ) mit g([c]) = def [f(c)] und g([f(c)]) = def [c] QUOTIENTEN-TERM-STRUKTUR 20 MODELLE FÜR GLEICHUNGS-SPECSSPECS 21 Gegeben: Signatur Σ,, Gleichung G Quotienten-Term-Struktur, G = def x. x = f(f(x)) = def ( {[c], [f(c)]} ; [c], g ) mit g([c]) = def [f(c)] und g([f(c)]) = def [c] + x. x = f(f(x)) ({ };, ) EINFÜHRENDES BEISPIEL + x. x = f(f(x)) 23 32CASL 3.2 spec Involution = sort z op c : z op f : z -> z axioms forall x : z. x = f(f(x)) 4

5 MEHRERE SORTEN Σ = (z, b; c : z, t : b, f : z z b) + x. f(c,x) = t spec ManySorts = sorts z,b ops c : z; t : b op f : z * z -> b axioms forall x : z. f(c,x) = t 24 STACK spec Stack = sorts stacks, elems op empty : stacks; op push : stacks,elems -> stacks op pop : stacks -> stacks axioms for all s:stacks, a:elems. pop(empty) = empty && pop(push(s,a)) = s 25 ERWEITERUNG 26 KONSTRUKTOREN 27 spec ManySorts = sorts z,b ops c : z; t : b op f : z * z -> b axioms forall x : z. f(c,x) = t spec ManySortsExt = ManySorts then op n : b -> b axioms forall x : b. not(n(x)= x) spec Nats = type n ::= 0 suc(n) op add : n * n -> n axioms forall x,y : n. ( add(x,suc(y)) = suc(add(x,y)) /\ add(x,y) = add(y,x) /\ add(x,0) = x ) STACK REVISITED Stack-Beispiel schöner: spec StackK = sort elems type stacks ::= empty push(stacks,elems), pop(stacks) axioms for all s:stacks, a:elems. pop(empty) = empty && pop(push(s,a)) = s 28 FREE TYPES (BIS AUF GLEICHUNGEN) spec StackF = sort elems free { type stacks ::= empty, push(stacks,elems), } 29 pop(stacks) axioms for all s:stacks, a:elems. pop(empty) = empty && pop(push(s,a)) = s 5

6 30 ALGEBRAISCHE SPEZIFIKATION 31 Σ Ziel: Charakterisiere ZUSAMMENFASSUNG Spezifikation i = def Signatur Σ + Eigenschaften Konsistenz ist unentscheidbar Für Gleichungs-Specs: Quotienten-Term-Struktur METHODEN UND MODELLE DES SYSTEMENTWURFS 3. Algebraische Spezifikation mit CASL 3.1 Spezifikationen 3.2 CASL JAN SÜRMELI u.hu-berlin.de/mms-13 6

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 8 Abstrakte Datentypen A&P (WS 14/15): 08 Abstrakte Datentypen 1 Überblick Abstrakte Datentypen Signaturen und Algebren Spezifikation von ADTs Umsetzung von ADTs

Mehr

Formale Spezifikationund Induktion

Formale Spezifikationund Induktion Formale Spezifikationund Induktion 91 Was ist ein SW-System mathematisch? 1. Sicht: Operational Ein SW-System ist ein Automat mit Zustand, Zustandsübergängen und mit Abläufen. 2. Sicht: Algebraisch Ein

Mehr

Strukturierte Spezifikationen: Umbenennung und Parameter

Strukturierte Spezifikationen: Umbenennung und Parameter Strukturierte Spezifikationen: Umbenennung und Parameter 149 Strukturierte Spezifikationen: Umbenennung Umbenennung: Benennt die Operationen einer Spezifikation um Nützlich um 2 Kopien zu erhalten Syntax:

Mehr

Formale Spezifikationund Induktion

Formale Spezifikationund Induktion Formale Spezifikationund Induktion 1 Was ist ein SW-System mathematisch? 1. Sicht: operational Ein SW-System ist ein Automat mit Zustand, Zustandsübergängen und mit Abläufen. 2. Sicht: algebraisch Ein

Mehr

12. Interpretation von PVS-Theorien

12. Interpretation von PVS-Theorien 12. Interpretation von PVS-Theorien Vorspann zu allgemeinen Begriffen: Konsistenz usw. Äquivalenz und Quotienten Theorie-Interpretation Maschinelles Beweisen mit PVS 12 1 Vorspann: Interpretation, Modell,

Mehr

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe

Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Automaten, Formale Sprachen und Berechenbarkeit I Wichtige Begriffe Eine partielle Funktion ist eine Relation f A B; für jedes x dom(f) gibt es ein y range(f) mit x f y; wir schreiben statt f A B und x

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Abstract Data Type and the Development of Data Structures

Abstract Data Type and the Development of Data Structures Abstract Data Type and the Development of Data Structures John Guttag, 1976 2. Mai 2006 Inhalt 1 Motivation 2 3 4 Motivation - Komplexe Probleme lösen Dekomposition Problem Abstraktion Komplexität reduzieren

Mehr

Strukturierte Spezifikation: Freie Datentypen

Strukturierte Spezifikation: Freie Datentypen Strukturierte Spezifikation: Freie Datentypen 113 Wie spezifiziert man Datentypen? Vorgehen: Definiere benötigte Sorten Letzte Vorlesung: Datentypen auf Rechnern sind generiert Definiere Konstruktoren

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010 Informatik I 9. Nachweis von Programmeigenschaften Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 2. Dezember 2010 Jan-Georg Smaus (Universität Freiburg) Informatik I 2. Dezember 2010 1 / 30 Informatik

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik Mathematische Logik Vorlesung 6 Alexander Bors 30. März & 6. April 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) 2 Erinnerung Letztes Mal haben wir begonnen, ein

Mehr

5. Induktive Strukturen und Induktion

5. Induktive Strukturen und Induktion 5. Induktive Strukturen und Induktion Übersicht über den geplanten Inhalt: Motivation: weshalb braucht man Induktion? Induktive Strukturen und strukturelle Induktion Gleichungstheorie und induktive Theorie

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V8, 5.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Formale Methoden der Softwaretechnik 1 Vorlesung vom : Grundlage von Isabelle

Formale Methoden der Softwaretechnik 1 Vorlesung vom : Grundlage von Isabelle 1 Formale Methoden der Softwaretechnik 1 Vorlesung vom 16.11.09: Grundlage von Isabelle Christoph Lüth, Lutz Schröder Universität Bremen Wintersemester 2009/10 2 Fahrplan Teil I: Grundlagen der Formalen

Mehr

Zusammenfassung des Bisherigen

Zusammenfassung des Bisherigen Zusammenfassung des Bisherigen Ziel ist die Ableitung von Gleichungen aus gegebenen Gleichungen Gilt eine Gleichung in der von den gegebenen Gleichungen definierten Theory? Beispiel: Ist eine bestimmte

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik Prädikatenlogiken Mathematische Logik Vorlesung 7 Alexander Bors 6. & 27. April 2017 1 Prädikatenlogiken Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) (Abgeleitete) Axiome

Mehr

10 Formale Grundlagen

10 Formale Grundlagen 95 10 Formale Grundlagen 10.1 Mengentheorie Die Aussagen hierzu sind aus [?, S.13-21] und [?, S.75-136]. In [?] sind die nötigsten Aussagen zusammengefaßt. In [?] sind insbesondere Links und Rechtsinverse

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Deklarative Semantik

Deklarative Semantik 7. Deklarative Semantik 7-1 Deklarative Semantik Bisher: Prolog als Programmiersprache. Operationale Semantik : Wie wird ein Programm ausgeführt? Welche Antworten werden berechnet? Jetzt: Prolog als logischer

Mehr

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist.

Übungsaufgaben. 1. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten Topologie ist. Prof. Dr. Annette Werner Algebraische Geometrie I (alias Algebra II) SS 05 Übungsaufgaben. Ein topologischer Raum T ist genau dann noethersch und hausdorffsch, wenn T eine endliche Menge mit der diskreten

Mehr

2.3 Spezifikation von Abstrakten Datentypen

2.3 Spezifikation von Abstrakten Datentypen Abstrakte Datentypen (ADT) 2.3 Spezifikation von Abstrakten Datentypen Sichtbare Schnittstelle: Typbezeichner Signaturen der Operationen Spezifikation der Operationen Abstraktionsbarriere Implementierung

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Algebraische Spezifikation von Software und Hardware II

Algebraische Spezifikation von Software und Hardware II Algebraische Spezifikation von Software und Hardware II Markus Roggenbach Mai 2008 3. Signaturen 3. Signaturen 2 Grundlegende Frage Wie lassen sich Interfaces beschreiben? Signaturen = Sammlung aller bekannten

Mehr

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik 4. Abbildungen (Funktionen) MGS 4-1 08.10.02 Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik Rolf Linn Berechnung Ralf Linn Produkt * Kaufpreis MGS 4-5 08.10.02 1950.- 500000.- 495.- 4. Abbildungen

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Seminar: Algorithmisches in der Geometrie Ausarbeitung zum 8. Vortrag: Fast freie Gruppen sind kontextfrei

Seminar: Algorithmisches in der Geometrie Ausarbeitung zum 8. Vortrag: Fast freie Gruppen sind kontextfrei Seminar: Algorithmisches in der Geometrie Ausarbeitung zum 8. Vortrag: Fast freie Gruppen sind kontextfrei Michael Hamann 11. Juni 2010 Diese Ausarbeitung beweist die Aussage, dass fast freie Gruppen kontextfrei

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 18: Logik Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/35 Überblick Formeln in Prädikatenlogik erster Stufe Theorien und

Mehr

Qualitätssicherung von Software

Qualitätssicherung von Software Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Humboldt-Universität zu Berlin und Fraunhofer FIRST 2.4 OO-Test 26.11.2004 Folie 2 Kapitel 2. Testverfahren 2.1 Testen im SW-Lebenszyklus 2.2

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

- Theorie der uninterpretierten

- Theorie der uninterpretierten Theorie der uninterpretierten Funktionen Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 13. Universität Mai 2013 des S.

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

Algebraische Spezifikation

Algebraische Spezifikation top(pop(push(42,empty))) =? http://shemesh.larc.nasa.gov/fm/fm-humor.html Algebraische Spezifikation OOPM, Ralf Lämmel 610 Wie beschreiben wir das erwartete Verhalten von einem ADT? public class IntStack

Mehr

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5 Teil 2: FO Syntax und Semantik FO 2 Spielsemantik Semantik-Spiel Satz: A = ψ[a] V hat Gewinnstrategie in Position (ψ, a. Teil 2: FO Syntax und Semantik FO 2 das Konzept der Gleichung in der Algebra Robert

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

Daten mit Typetikett Abstrakter Datentyp (ADT) 4-Stufen-Modell Generische Operationen Datengesteuerte Programmierung.

Daten mit Typetikett Abstrakter Datentyp (ADT) 4-Stufen-Modell Generische Operationen Datengesteuerte Programmierung. Datenabstraktion Prof. Dr. Christian Wagenknecht Prof. Dr. Christian Wagenknecht Datenabstraktion 1 von 36 Daten mit Typetikett Programmiersprachen mit Deklarationszwang von Variablen Schlüsselworte, wie

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme Mod - 3.1 In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen

Mehr

3 Terme und Algebren 3.1 Terme

3 Terme und Algebren 3.1 Terme 3 Terme und Algebren 3.1 Terme In allen formalen Kalkülen benutzt man Formeln als Ausdrucksmittel. Hier betrachten wir nur ihre Struktur - nicht ihre Bedeutung. Wir nennen sie Terme. Terme bestehen aus

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Schriftliche Leistungskontrolle (ZK-N)

Schriftliche Leistungskontrolle (ZK-N) TheGI 1: Grundlagen und Algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 4. April 2011 Schriftliche Leistungskontrolle (ZK-N) Studentenidentifikation: Nachname Vorname Matrikelnummer Studiengang Tutor

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me

Addition: ( 1 ; : : : ; n ) + ( 1 ; : : : ; n ) = ( ; : : : ; n + n ). Skalare Multiplikation: ( 1 ; : : : ; n ) = ( 1 ; : : : ; n ). II. Die Me x 3 VEKTOR AUME In Kapitel 2 betrachteten wir wichtige Raume, die durch unsere Raumvorstellung motiviert waren { die zwei- und dreidimensionalen Raume R 2 und R 3. Jetzt untersuchen wir hoher dimensionale

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Frage, Fragen und nochmals Fragen

Frage, Fragen und nochmals Fragen Frage, Fragen und nochmals Fragen Berthold Hoffmann Universität Bremen and DFKI Bremen hof@informatik.uni-bremen.de In diesem Text stehen einige Fragen, die man sich zu den Folien der Veranstaltung Funktionales

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Beachte: Mit n = 0 sind auch Konstanten Terme.

Beachte: Mit n = 0 sind auch Konstanten Terme. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.2 Prädikatenlogik ohne Gleichheit Syntax und Semantik 107 Terme Ab sofort wird Signatur τ als festgelegt angenommen. Sei V = {x, y,...} Vorrat

Mehr

Typklassen. Natascha Widder

Typklassen. Natascha Widder Typklassen Natascha Widder 19.11.2007 Motivation Typklassen fassen Typen mit ähnlichen Operatoren zusammen ermöglichen überladenen Funktionen Definition Typklassen Deklarationsschema class Name Platzhalter

Mehr

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet.

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Rückschau 12.11.04 Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Wir haben das Prinzip der Diagonalisierung eingeführt und mit DIAG eine erste nicht rek. aufz. Sprache

Mehr

Reduzierbarkeit und das Post'sche Korrespondenzproblem

Reduzierbarkeit und das Post'sche Korrespondenzproblem Reduzierbarkeit und das Post'sche Korrespondenzproblem Agenda Motivation Reduzierbarkeit Definition Bedeutung Post'sches Korrespondenzproblem (PKP) Modifiziertes Post'sches Korrespondenzproblem (MPKP)

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Wie viel Mathematik kann ein Computer?

Wie viel Mathematik kann ein Computer? Wie viel Mathematik kann ein Computer? Die Grenzen der Berechenbarkeit Dr. Daniel Borchmann 2015-02-05 Wie viel Mathematik kann ein Computer? 2015-02-05 1 / 1 Mathematik und Computer Computer sind schon

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

3.2 Beschreibung der Funktionalität von Datentypen

3.2 Beschreibung der Funktionalität von Datentypen 3.2 Beschreibung der Funktionalität von Datentypen Ziel: Entwicklung einer Methode zur Beschreibung (Spezifikation) dessen, was ein Datentyp an Funktionalität leisten soll, ohne dabei schon festzulegen,

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen.

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen. Universität Bielefeld AG Praktische Informatik 5. Januar 2015 Themen-Vorschau Module In der Software-Entwicklung unterscheidet zwei Arten von : konkrete beziehen sich auf eine konkrete Repräsentation in

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

1.4 Die Ackermannfunktion

1.4 Die Ackermannfunktion a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) =

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Rev. 1152 1 [23] Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Christoph Lüth & Dennis Walter Universität Bremen Wintersemester 2010/11

Mehr

6 Datenstrukturen und abstrakte Datentypen. Datenstrukturen = Werkzeuge für die Buchhaltung

6 Datenstrukturen und abstrakte Datentypen. Datenstrukturen = Werkzeuge für die Buchhaltung Überblick 6 Datenstrukturen und abstrakte Datentypen 6.1 Datenstrukturen - alt und neu 6.2 Abstrakte Datentypen: Grundlagen 6.3 ADTs für Paare und Listen in Scheme 6.4 Stack und First-In-First-Out Queue

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Formale Grundlagen der Informatik II

Formale Grundlagen der Informatik II Formale Grundlagen der Informatik II FO: Axiome und Theorie (de-)motivierendes Beispiel: S=(+,0) Strukturen ({0,1}*,,ε) Strukturen (P(X),, ) Formale Grundlagen der Informatik II Interessieren uns für alle

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

KAPITEL 0. Zur Vorbereitung

KAPITEL 0. Zur Vorbereitung KAPITEL 0 Zur Vorbereitung 1. Grundbegriffe aus der Mengenlehre Es soll hier kurz auf die aus der Schule teilweise bekannte elementare Mengenlehre eingegangen werden, da wir deren Schreib und Sprechweise

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Warum Programme Verträge schließen sollten

Warum Programme Verträge schließen sollten 1 Warum Programme Verträge schließen sollten RALF HINZE Institut für Informatik, Lehrstuhl Softwaretechnik, Universität Freiburg Georges-Köhler-Allee, Gebäude 079, 79110 Freiburg i. Br. Email: ralf@informatik.uni-bonn.de

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

3.2 Prädikatenlogik. WS 06/07 mod 321

3.2 Prädikatenlogik. WS 06/07 mod 321 3.2 Prädikatenlogik WS 06/07 mod 321 Prädikatenlogik umfasst Aussagenlogik mit atomaren Aussagen, Variablen, Junktoren. Zusätzliche Konzepte: A = (τ, Σ) sei die so genannte Termalgebra (mit Variablen,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 01/13 Hochschule Augsburg Mathematik : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren

Mehr

4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia ]

4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia ] 4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia 536-539 ] Funktionen sind spezielle binäre Relationen bzw. spezielle bbildungen und damit nichts anderes als spezielle Mengen. Funktionen werden gewöhnlich

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 17 Isomorphie und elementare Äquivalenz im endlichen Fall Beispiel 17.1. Das Symbolalphabet S bestehe (neben Variablen)

Mehr