Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr:

Größe: px
Ab Seite anzeigen:

Download "Proseminar Bernsteinpolynome Bézier-Flächen. Dana Eckhardt Matr.-Nr:"

Transkript

1 Proseminar Bernsteinpolynome Bézier-Flächen Dana Eckhardt Matr.-Nr:

2 Inhaltsverzeichnis 1 Einführung Grundidee und Darstellung Satz Konvexe Hülle der Bézier-Punkte Satz Partielle Ableitungen Die ersten partiellen Ableitungen Satz Glatte Zusammensetzung Berechnung eines Wertes x(s,t) 9 5 Gröÿere Flächen 10 6 Anwendung Anwendung von Bézier-Flächen Quellen 13 1

3 Kapitel 1 Einführung 1.1 Grundidee und Darstellung Dieses Thema der Bézier-Flächen knüpft an das vorherige Thema Bézier-Kurven an. Der Übergang ist leicht und erfolgt eigentlich nur über einen weiteren Parameter. Die Grundidee der Denition von Bézier-Flächen besteht darin, dass man von zwei räumlichen Kurven mit Bézier-Darstellung vom gleichen Grad m und demselben Parameterintervall ausgeht. Längs diesen Bézier-Kurven lässt man eine zweite Bézier- Kurve gleiten, die einen anderen Grad (n), jedoch dieselben Parameterwerte hat. Damit wird eine Fläche aufgespannt mit einer Parameterdarstellung, die als Produkt von Bernstein-Polynomen beschrieben werden kann: x(s, t) := i=0 P ij Bi n (s) Bj m (t), s, t [0, 1] Die dreidimensionalen Koordinatenvektoren P ij werden als die Bézier-Punkte der Bézier-Fläche x(s, t) bezeichnet und üblicherweise in einer Bézier-Punkte-Matrix zusammengefasst: P 00 P P 0m P 10 P P 1m P n0 P n1... P nm mit (n + 1)(m + 1) Bézier-Punkten P ij. Beispiel zur Berechnung und Darstellung einer Bézier-Fläche mit 16 Kontrollpunkten: 3 3 x(s, t) = P ij B i3 (s) B j3 (t), s, t [0, 1] i=0 = P 00 B 03 (s) B 03 (t) + P 01 B 03 (s) B 13 (t) P 33 B 33 (s) B 33 (t) = P 00 ((1 s) 3 (1 t) 3 ) + P 01 ((1 s) 3 3t(1 t) 2 ) P 33 (s 3 t 3 ) 2

4 1.2 Satz 3.20 Satz 3.20 Für eine Bézier-Fläche gelten Die Eckpunkte der Bézier-Fläche und somit der Bézier-Punktematrix: x(0, 0) = P 00, x(0, 1) = P 0m, x(1, 0) = P n0, x(1, 1) = P nm Die Randkurve der Bézier-Fläche und somit die Randzeilen bzw. -spalten der Bézier-Punktematrix: x(0, t) = P 0j Bj m (t), x(1, t) = P nj Bj m (t) x(s, 0) = P i0 Bi n (s), x(s, 1) = i=0 P in Bi n (s) i=0 3

5 Kapitel 2 Konvexe Hülle der Bézier-Punkte 2.1 Satz 3.21 Satz 3.21 Die Menge der Punkte der Bézier-Fläche M := {x(s, t) s, t [0, 1]} liegt in der konvexen Hülle ihrer (n + 1)(m + 1) Bézier-Punkte. Begriserklärungen zur konvexen Hülle: konvex: Konvex bedeutet im einfachen Sinne, dass in einer Menge je zwei Punkte durch einen einzigen Polygonzug verbunden werden können, ohne dass der Polygonzug die Menge verlässt. konvexe Hülle: Die konvexe Hülle ist die Menge aller Punkte. Verbindet man die äuÿersten Punkte mit Polygonzügen, so bekommt man die kleinstmögliche Hülle aller Punkte. 4

6 Konvexkombination: Jeder Punkt in dieser konvexen Hülle lässt sich als Konvexkombination der Form: α i x i i=1 darstellen. Mit x 1,..., x n und α 1,..., α n 0, wobei die Bedingung n i=1 α i = 1 gelten muss, was den Unterschied zur Linearkombination aufweist. v = u + (w u)µ w = λy + (1 λ)x v = u + (λy + (1 )x u)µ = (1 λ)u + λµy + (1 λ)µx 1 λ + λµ + (1 λ)µ = 1 Beweis von Satz 3.21 Es gilt 0 Bi n(s)bm j Des Weiteren gilt: (t) 1 s, t [0, 1]. i=0 Bi n (s)bj m (t) = Bi n (s) Bj m (t). Daher ist M in der Tat eine lineare Konvexkombination der Bézier-Punkte. B n i (λ) = α i i=0 5

7 Kapitel 3 Partielle Ableitungen 3.1 Die ersten partiellen Ableitungen Für die ersten partiellen Ableitungen gilt (nach Ableitungsregeln der Bernstein-Polynome): x(s, t) := i=0 Bi n (s)bj m (t) x s = n 1 i=0 n(p (i+1)j P ij )B n 1 i (s)bj m (t) (3.2) 6

8 Denn: x s = = = = i=0 n P ij ( s Bn i (s))bj m (t) np 0j B n 1 0 (s)b m j (t) i=0 + np ij (B n 1 i 1 np nj B n 1 n 1 (s)bm j (t) (s) Bn 1(s))Bj m (t) n(p 1j P 0j )B n 1 0 (s)b m j (t) n 1 + n 1 i=2 i=0 n(p 2j P 1j )B n 1 1 (s)b m j (t) n(p (i+1)j P ij )B n 1 i (s)bj m (t) n(p (i+1)j P ij )B n 1 i (s)bj m (t) i (3.-4) Analog für x t = 3.2 Satz 3.22 n m 1 i=0 j=o m(p i(j+1) P ij )Bi n (s)b m 1 j (t) Für die part. Ableitungen längs der Randkurve gelten: x(0,t) s = n(p 1j P 0j )Bj m (t) (3.-4) Denn: für i=0 gilt n(p 1j P 0j )B n 1 0 (s)b m j (t). 7

9 Damit dies der partiellen Ableitung x(0,t) s gleicht, muss B0 n 1 (s) = 1 sein. Dies erfolgt durch Auösen des Bernstein-Polynoms: ( ) n 1 B0 n 1 (s) = s 0 (1 s) n 0 = 1 0 x(1,t) s = n(p nj P (n 1)j )Bj m (t) (3.-4) Denn: für i=n+1 gilt n(p nj P (n 1)j )B n 1 n 1 (s)bm j (t). Damit dies wieder der partiellen Ableitung x(1,t) s (s) = 1 sein: B n 1 n 1 ( ) n 1 Bn 1 n 1 (s) = n 1 entspricht, muss s n 1 (1 s) n (n 1) = s n 1 = 1 Dies gilt analog für x(s,0) t, x(s,1) t. 3.3 Glatte Zusammensetzung Der vorangegangene Satz 3.22 ist bedeutsam für die glatte Zusammensetzung von Flächensegmenten. Glatt bedeutet in diesem Fall, dass die Flächensegmente genau aneinander passen, ohne Knick. Auÿerdem bedeutet es noch, dass die Flächensegmente an der Zusammensetzungsstelle dierenzierbar sein müssen. Daher beschreibt der Satz 3.22 auch die partiellen Ableitungen der Randkurve. 8

10 Kapitel 4 Berechnung eines Wertes x(s,t) Die Berechnung eines Wertes der Bézier-Fläche x(s,t) erfolgt durch zweimaligem Anwenden des Casteljau-Algorithmus'. Will man beispielsweise die Kurve mit s konstant ausrechnen, hat man x(s, t) = i=0 P ij Bi n (s) Bj m (t) =: Q j (s)bj m (t) damit erhält man ihre Bézier-Darstellung mit (m+1) von s abhängigen Bézier-Punkten. Diese erhält man dann, wenn man den de Casteljau-Algorithmus auf die (m+1)-spalten der Bézier-Punktematrix anwendet und den Wert s konstant lässt. Mit den berechneten Hilfspunkten Q j (s) ergibt sich dann die gesuchte Flächenkurve, indem man für jedes t den Algorithmus durchführt. Um die zweite Kurve für x(s, t) mit t konstant zu berechnen, erfolgt dies analog. 9

11 Kapitel 5 Gröÿere Flächen Gröÿere Flächen werden aus einzelnen Bézier-Flächensegmenten zusammengesetzt, wobei allgemeinere, rechteckigere, aneinandergrenzende Paramterbereiche nötig sind. Sei F 1 das erste Bézier-Fächensegment mit den Bézier-Punkten b ij und F 2 das zweite Bézier-Flächensegment mit den Bézier-Punkten c ij. Sie haben gleiche Grade der Parameterdarstellung. x 1 (u, v) = x 2 (u, v) = b ij Bi n (u)bj m (v), u [u 1, u 2 ], v [v 1, v 2 ] i=0 i=0 c 1j Bi n (u)bj m (v), u [u 2, u 3 ], v [v 1, v 2 ] (5.0) Wegen der Stetigkeitsforderung an den beiden Flächensegmenten an der Stelle u = u 2 folgt: b nj Bj m (v) = c 0j Bj m (v), v [v 1, v 2 ] Somit ist u = u 2 genau dann stetig, wenn b nj = c 0j ist, d.h. wenn die Bézier-Punkte der Randkurve zusammengefallen, also die letzte Zeile der Bézier-Punktematrix des ersten Flächensegments ist die erste Zeile der Bézier-Punktematrix des zweiten Flächensegments. Wenn an der gemeinsamen Randkurve auch noch C 1 -Stetigkeit wegen der Glattheit verlangt wird, ist zu untersuchen, ob u = u 2 C 1 -Stetigkeit besitzt: Seien h 1 := u 2 u 1 und h 2 := u 3 u 2 die Abstände des Intervalls [u 1, u 2 ] bzw. [u 2, u 3 ]. Somit gilt wegen Satz 3.22 die Bedingung m n h 1 (b nj b (n 1)j )B m j (v) = m n h 2 (c 1j c 0j )B m j (v), v [v 1, v 2 ]. 10

12 (5.0) Hier gilt nun wieder die Beziehung: für u = u 2 gilt C 1 -Stetigkeit 1 h 1 (b nj b (n 1)j ) = 1 h 2 (c 1j c 0j ). Setzen wir in der oben genannten Bedingung c 0j = b nj, so erhalten wir: 1 h 1 (b nj b (n 1)j ) = 1 h 2 (c 1j b nj ) b nj h 1 + b nj h 2 = c 1j h 2 + b (n 1)j h 1 b nj(h 1 + h 2 ) h 1 h 2 = c 1j h 2 + b (n 1)j b nj = h 1 h 2 h 1 + h 2 b (n 1)j + h 1 h 1 + h 2 c 1j (5.-3) 11

13 Kapitel 6 Anwendung 6.1 Anwendung von Bézier-Flächen Bézier-Flächen nden ihre Anwendung in der Computergrak. Dort werden sie im Rahmen von CAD (computer-aided design), bei Vektorgraken (z.b. SVG) und zur Beschreibung von Schriften (z. B. Postscript Type1, TrueType und CFF-Opentype) verwendet. Sie sind sehr nützlich im Bau, da man auch für komplexe, unförmige Bauten nur die Eck- und Randpunkte benötigt. 12

14 Kapitel 7 Quellen H.R. Schwarz. Numerische Mathematik. Teubner, Stuttgart, 1996 R. Schneider. Convex Bodies: The Brunn-Minkowski Theory

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) = Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

Polynome im Einsatz: Bézier-Kurven im CAD

Polynome im Einsatz: Bézier-Kurven im CAD Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe

Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe 5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Vektor-Additions-Systeme und Invarianten

Vektor-Additions-Systeme und Invarianten Vektor-Additions-Systeme und Invarianten http://www.informatik.uni-bremen.de/theorie/teach/petri Renate Klempien-Hinrichs Stellen- und Transitions-Vektoren T -Invarianten S-Invarianten Bezug zu erreichbaren

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Wir konstruieren eine Wasserrutsche!

Wir konstruieren eine Wasserrutsche! Wir konstruieren eine Wasserrutsche! Teilnehmer: Leo Graumann Anh Vu Ho Yiyang Huang Felix Jäger Charlotte Kappler Wilhelm Mebus Alice Wamser Gruppenleiter: René Lamour Caren Tischendorf Heinrich-Hertz-Oberschule,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 15. August 2008 Institut für Numerische Mathematik Dr. K. Eppler Klausur Mathematik I für Studierende der Fakultät Maschinenwesen (mit Lösungshinweisen) Name: Matrikelnummer.:

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Bild und Kern. Für eine lineare Abbildung L : V W bezeichnet man mit. Kern L = {v V : L(v) = 0} V. den Kern und mit

Bild und Kern. Für eine lineare Abbildung L : V W bezeichnet man mit. Kern L = {v V : L(v) = 0} V. den Kern und mit Bild und Kern Für eine lineare Abbildung L : V W bezeichnet man mit Kern L = {v V : L(v) = 0} V den Kern und mit Bild L = {w W : v V mit L(v) = w} W das Bild von L. Bild und Kern 1-1 Bild und Kern Für

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Proseminar Mathematik. Ungleichungen I Betreuung: Natalia Grinberg. Karlsruher Institut für Technologie

Proseminar Mathematik. Ungleichungen I Betreuung: Natalia Grinberg. Karlsruher Institut für Technologie Proseminar Mathematik Ungleichungen I 12.6.215 Betreuung: Natalia Grinberg Karlsruher Institut für Technologie Inhaltsverzeichnis 1 Young-Ungleichung 2 2 Hölder-Ungleichung 4 3 Minkowski-Ungleichung 5

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik

Bezier-Kurven. Hamid Fetouaki, Emma Skopin. 28. Januar 2009. Universität Kassel FB Mathematik/Informatik Ableitungen von Universität Kassel FB Mathematik/Informatik 28. Januar 2009 Ableitungen von Motivation Bis in den späten 50er Jahren: Zeichnung der Kurven am Papier Fertigung der Modelle aus Holz und Ton

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer

5 5 5 Abbildung : Raumkurve Abbildung 5: Tangente t existiert nur dann, wenn _ ~x(t ) = ist. Ein Punkt mit f _x; _y; _zg = f; ; g heißt ein regulärer 3 Differentialgeometrische Eigenschaften von Kurven und Flächen Ziel dieses Abschnittes ist es, eine kurze Einführung in die Anfangsgründe der mathematischen Theorie der Raumkurven und Flächen zu geben.

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Interpolation und Approximation

Interpolation und Approximation Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom Bernstein-Polynome Autor: Johannes Erath Schriftliche Ausarbeitung zum Vortrag vom 07.04.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Einführung 3 2.1 Etwas Geschichte........................... 3 2.2 Denition

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & &

Vektorprodukt. Institut für Mathematik Humboldt-Universität zu Berlin & & Vektorprodukt Institut für Mathematik Humboldt-Universität zu Berlin 18.02.2004 & 17.02.2005 & 11.07.2005 zu den Vorlesungen Lineare Algebra und analytische Geometrie I (L) im WS 2003/2004, Mathematik

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression

Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Interpolation, lineare Gleichungen (mit und ohne Lösungen) und lineare Regression Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.1 Einführung

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.1 Einführung Mathematik II Frühlingsemester 2015 Kap 9: Funktionen von mehreren Variablen 91 Einführung wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Wendepunkte. Jutta Schlumberger

Wendepunkte. Jutta Schlumberger Wendepunkte Jutta Schlumberger Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser Ausarbeitung

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam

um diese Formen spater (eventuell in einem vergroerten Mastab) rekonstruiren zu konnen (Modellruckfuhrung). Das Problem der Datenreduktion und der dam GRUNDLAGEN DER CAD/CAM ENTWICKLUNG MIT SPLINEKURVEN - EINE EINFUHRUNG - Dan - Eugen Ulmet Fachhochschule Esslingen - Hochschule fur Technik, Kanalstr. 33, 7378 Esslingen ZUSAMMENFASSUNG Splinekurven und

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr