1. Übungsblatt: Lineare Algebra I

Größe: px
Ab Seite anzeigen:

Download "1. Übungsblatt: Lineare Algebra I"

Transkript

1 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den. November 2. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B) (A C) b) (A \ B) (A \ C) = (A A) \ (B C) a) ist wahr. Beweis: (x, y) A (B C) x A und y B C x A und (y B und y C) (x A und y B) und (x A und y C) (x, y) (A B) (A C) Die Richtung = liefert A (B C) (A B) (A C), die Richtung = liefert (A B) (A C) A (B C), also gilt die Gleichheit. b) ist falsch. Gegenbeispiel: Setze A = B = {}, C = {2}. Dann folgt A\B =, also (A\B) (A\C) =, aber (A A)\(B C) = {(, )} \ {(, 2)} = {(, )}. Aufgabe 2 (je 4 Punkte) Es seien f : X Y und g : Y Z Abbildungen. Zeigen Sie: a) Ist f surjektiv und g f injektiv, so ist g injektiv. Geben Sie Abbildungen f und g an, so daß gilt: g f ist injektiv und g ist nicht injektiv. b) g f bijektiv = f injektiv und g surjektiv. Geben Sie ein Beispiel dafür an, dass g f bijektiv sein kann, obwohl weder f surjektiv, noch g injektiv ist. a) Seien y, y 2 Y mit y y 2. Da f surjektiv ist, gibt es zu y, y 2 Y Elemente x, x 2 X mit f(x ) = y und f(x 2 ) = y 2. Wegen y y 2 gilt x x 2. Da g f injektiv ist, folgt (g f)(x ) (g f)(x 2 ), also g(f(x )) g(f(x 2 )). Dies heißt aber g(y ) g(y 2 ), was zu zeigen war. Als Beispiel kann man wählen: X = Z = {, 2}, Y = {, 2, 3} f gegeben durch f(x) = x und g gegeben durch g() = g(3) = und g(2) = 2. b) Wir beweisen dies durch Umkehrschluss: Annahme: Es gilt nicht (f injektiv und g surjektiv). Dann ist f nicht injektiv oder g nicht surjektiv.. Fall: f ist nicht injektiv. Dann gibt es a, b X, a b, mit f(a) = f(b). Dann ist aber auch g f(a) = g(f(a)) = g(f(b)) = g f(b), also g f nicht injektiv und damit nicht bijektiv. 2. Fall: g nicht surjektiv. Dann gibt es ein c Z, so dass c g(y) für alle y Y. Dann ist auch c g(f(x)) = g f(x) für alle x X. Also ist g f nicht surjektiv und damit nicht bijektiv.

2 Beispiel: Sei X = Z = {} und Y = {, 2}. f : X Y sei definiert durch f() = und g : Y Z sei definiert durch g() = g(2) =. Dann ist f nicht surjektiv und g nicht injektiv, aber g f : X Z ist bijektiv. Aufgabe 3 (je 2 Punkte) Gegeben sind jeweils zwei Geraden A und B im IR n. Bestimmen Sie A B. a) A = (5,, 6) + IR(, 2, 2) B ist die Gerade durch die Punkte (, 6, 2) und (5, 6, 3). b) A = (,,,, ) + IR(2,,,, ) B ist die Gerade durch die Punkte ( 5, 4, 2, 7, 2) und (, 2,, 3, ). c) A = IR( 3,, 4, ), B = (, 2,, 3) + IR( 3,, 4, ) a) Für die Gerade B erhält man mit Lemma.2 z. B. B = (, 6, 2) + IR(,, ). Für einen Punkt x A B muß es µ, λ IR geben mit (5,, 6) + λ(, 2, 2) = (, 6, 2) + µ(,, ). Das sich daraus ergebende Gleichungssystem 5 + λ = µ, 2λ = 6, 6 + 2λ = 2 + µ besitzt die eindeutige Lösung λ = 3, µ = 2. Also gilt A B = {(2, 6, )}. b) Hier erhält man entsprechend für die Gerade B: B = ( 5, 4, 2, 7, 2) + IR(4, 2, 2, 4, 2) =: v + IRw. Es ist A = (,,,, ) + IR(2,,,, ). Der Ansatz ( 5, 4, 2, 7, 2) + α(4, 2, 2, 4, 2) = (,,,, ) + β(2,,,, ) liefert 5 + 4α = + 2β, 4 2α = β, 2 + 2α = + β, 7 4α = β, 2 + 2α = + β. Die letzten beiden Gleichungen liefern eindeutig α = 3 2 und β =. Diese Werte erfüllen auch die anderen drei Gleichungen. Also gilt A B = {(,,,, )}. c) Hier führt der Ansatz α( 3,, 4, ) = (, 2,, 3)+β( 3,, 4, ) auf das lineare Gleichungssystem 3α + 3β =, α β = 2, 4α 4β =, α β =. Die letzten beiden Gleichungen liefern den Widerspruch 4 =, d.h. das Gleichungssystem besitzt keine Lösung. Es ist A B =. (Die Geraden sind parallel.) Aufgabe 4 (5 Punkte) Das Parallelogramm ABCD sei von den linear unabhängigen Vektoren a, b IR 3 aufgespannt. E teile die Seite AD im Verhältnis 3 :, F teile die Seite DC im Verhältnis 4 : (siehe Skizze). In welchem Verhältnis teilt S die Strecke AF? Skizze siehe Originalblatt z.b. Aushang beim Institut Es ist AF = a b und b + BE = 3 4a, also BE = 3 4a b. Für S muss es also λ, µ IR geben mit λ(a b) = b + µ( 3 4a b). Hieraus erhält man die Gleichung Da a, b linear unabhängig sind, folgt hieraus (λ 3 4 µ)a + (4 5 λ + µ)b =. λ 3 4 µ = und 4 5 λ + µ =. Dieses Gleichungssystem hat die Lösung λ = 5 32, µ = 5 8. S teilt die Strecke AF also im Verhältnis 5 : 7.

3 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 8. November 2 2. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (2,2, Punkte) Gegeben sind die Punkte A = (, 5, 7), B = (, 3, 6) und C = (, 4, 5). Berechnen Sie im Dreieck ABC a) die Seitenlängen und die Winkel. b) die Fußpunkte der Höhen auf den Seiten. c) den Schnittpunkt der Seitenhalbierenden. a) Mit c = AB = ( 2, 2, ), a = BC = (,, ) und b = AC = (,, 2) folgt: c = 3, a = 3, b = 6. b, c cos α = b c = 6 liefert α 35, 26 b, a. cos γ = 3 a b = liefert γ = 9. Durch Ergänzung folgt β 54, 74. b) Da das Dreieck rechtwinklig ist mit rechtem Winkel γ, ist C der Fußpunkt von h A und h B. Der Fußpunkt von h C ergibt sich als Schnittpunkt der Geraden g durch A und B mit der Ebene E durch C senkrecht zu AB. Es ist g = (, 5, 7) + IR(2, 2, ) und E ist gegeben durch die Gleichung 2x + 2y + z = 3 (Normalenvektor von E ist (2, 2, )!). Durch Einsetzen der Darstellung von g in diese Gleichung ergibt sich 2( + 2λ) + 2(5 + 2λ) λ = 3 mit der Lösung λ = 2 und daher lautet der Fußpunkt: 3 (, 5, 7) 2 3 (2, 2, ) = ( 3, 3, 9 3 ). c) Benutzt man die Formel S = (A + B + C) für den Schnittpunkt der Seitenhalbierenden, 3 so erhält man sofort S = (, 4, 6). Kennt man die Formel nicht, so stellt man die Seitenhalbierende zu c auf, und zwar ist S c = (, 4, 5) + IR(,, 3) (Schulwissen liefert dann S = (, 4, 5) + 2(,, 3 ) = (, 4, 6)), ferner kann man noch die Seitenhalbierende zu b aufstellen; dies ist S b = (, 3, 6) + IR( 3, 3, ). Der 2 2 Schnittpunkt beider Seitenhalbierenden ist dann S = (, 4, 6). Aufgabe 2 (2,3,3 Punkte) Gegeben seien die Ebenen E = (, 2, 3) + IR (,, ) + IR (2,, ) und E 2 = {(x, y, z) ; 2x + 3y z + = }, die Gerade A = (5,, 6) + IR (, 2, 2) und der Punkt u = (3, 2, ). a) Stellen Sie E in der Darstellung des Satzes.6 der Vorlesung dar, und geben Sie für E 2 eine Parameterdarstellung an. b) Bestimmen Sie: A E, A E 2, E E 2. c) Berechnen Sie d(u, A), d(u, E ) und d(u, E 2 ).

4 2 a) Um eine Parameterdarstellung von E 2 zu erhalten, setzt man einfach zwei der Variablen x, y, z in 2x + 3y z + = als Parameter λ und µ an, und löst nach der dritten Variablen auf, z.b. x = λ, y = µ, also z = + 2λ + 3µ, d.h. E 2 = (λ, µ, + 2λ + 3µ) = (,, ) + IR(,, 2) + IR(,, 3) ist eine gesuchte Parameterdarstellung. Will man für E eine Darstellung gemäß Satz.6 aufstellen und nur die Theorie bis zu diesem Satz benutzen, so bestimmt man zunächst drei Punkte von E, die nicht auf einer Geraden liegen, z.b. (, 2, 3), (2, 3, 2) und (3,, 4) (sie liegen nicht auf einer Geraden, da die Vektoren (2, 3, 2) (, 2, 3) und (3,, 4) (, 2, 3) linear unabhängig sind!). Da E = {(x, y, z) ; ax + by + cz d = } mit gewissen a, b, c, d ist, lassen sich a, b, c, d durch Einsetzen der drei Punkte aus dem entstehenden Gleichungssystem a + 2b + 3c d = 2a + 3b + 2c d = 3a + b + 4c d = bestimmen. Wählt man z.b. d = 5, so folgt a =, b = c =. Es ist also b) Berechnung von A E : führt auf das Gleichungssystem E = {(x, y, z) ; y + z 5 = }. (, 2, 3) + λ(,, ) + µ(2,, ) = (5,, 6) + δ(, 2, 2) λ + 2µ δ = 4 λ µ + 2δ = 2 λ + µ 2δ = 3. Addition der letzten beiden Gleichungen ergibt den Widerspruch = ; es folgt A E =. (Benutzt man die unter a) berechnete Darstellung für E und setzt dort x = 5 + λ, y = 2λ, z = 6 + 2λ, so folgt 2λ λ 5 =, also sofort ein Widerspruch. Diese Methode führt i.a. schneller zur Berechnung des Schnittes von Gerade und Ebene.) Berechnung von A E 2 : Nach der letzten Bemerkung erhalten wir mit der angegebenen Darstellung von E 2 : 2(5 + λ) 6λ 6 2λ + =, also λ = 5 6. Damit ergibt sich A E 2 = { (25,, 26)}. 6 Berechnung von E E 2 : In der Darstellung von E 2 setzen wir x = + λ + 2µ, y = 2 + λ µ, z = 3 λ + µ. Es entsteht die Gleichung 2( + λ + 2µ) + 3(2 + λ µ) (3 λ + µ) + =,. Daraus folgt λ =, µ beliebig und es ergibt sich als Schnitt von E und E 2 eine Gerade, nämlich E E 2 = (, 2, 3) (,, ) + IR(2,, ) = (,, 4) + IR(2,, ).

5 3 c) Nach der Formel der Vorlesung folgt d(u, A) = (5,, 6) + = (, 34, 29) 5, 9. 9 ( 2, 2, 5), (, 2, 2) (, 2, 2) (3, 2, ) (, 2, 2) 2 Es ist E = {(x, y, z) ; y + z 5 = }. Also gilt nach Vorlesung d(u, E ) = = 6 4, Entsprechend folgt mit der angegebenen Darstellung für E 2 : d(u, E 2 ) =, d.h. u liegt in E 2. Aufgabe 3 (6 Punkte) Es seien v, v 2, v 3 drei Punkte im IR n, die nicht auf einer Geraden liegen. Zeigen Sie, daß es dann genau eine Ebene durch diese drei Punkte gibt. Zunächst zeigen wir: Liegen die Punkte v, v 2, v 3 IR nicht auf einer Geraden, so sind die Vektoren w := v 2 v und w 2 := v 3 v linear unabhängig. Beweis: Zunächst folgt v i v j für i j, also w und w 2. Annahme: w, w 2 sind linear abhängig. Dann gibt es nach Lemma.4 ein ρ mit w = ρw 2, also v 2 v = ρ(v 3 v ). Das bedeutet aber, daß v, v 2, v 3 auf der Geraden v + IR(v 2 v ) liegen. Widerspruch! Sind also v, v 2, v 3 drei Punkte im IR n, die nicht auf einer Geraden liegen, so sind v 2 v und v 3 v linear unabhängig, und v + IR(v 2 v ) + IR(v 3 v ) ist eine Ebene (die v, v 2 und v 3 enthält!). Zu zeigen bleibt die Eindeutigkeit. Dazu zeigen wir: Ist A = u + IRu 2 + IRu 3 eine Ebene, die die nicht auf einer Geraden liegenden Punkte v, v 2, v 3 enthält, so gilt A = v + IRw + IRw 2 mit w = v 2 v und w 2 = v 3 v. Beweis: Sei x v + IRw + IRw 2, d. h. es gibt λ, µ IR mit () x = v + λw + µw 2. Da v i A (i =, 2, 3), gibt es α i, β i IR mit v i = u + α i u 2 + β i u 3 (i =, 2, 3). Einsetzen in () ergibt: (Beachte w = v 2 v und w 2 = v 3 v!) x = u + α u 2 + β u 3 + λ(u + α 2 u 2 + β 2 u 3 u α u 2 β u 3 ) + +µ(u + α 3 u 2 + β 3 u 3 u α u 2 β u 3 ) = u + ru 2 + su 3 mit r, s IR (Sortieren!) A Sei x A, d. h. es gibt λ, µ IR mit (2) x = u + λu 2 + µu 3. Zunächst gilt: (Setze v i wie oben an!) (3) w = (α 2 α )u 2 + (β 2 β )u 3 (α 3 α ) (4) w 2 = (α 3 α )u 2 + (β 3 β )u 3 (α 2 α ) (5) (α 3 α )w (α 2 α )w 2 = ((α 3 α )(β 2 β ) (α 2 α )(β 3 β )) u 3 }{{} =:δ

6 4 Behauptung: δ Wäre δ =, so würde aus der linearen Unabhängigkeit von w und w 2 folgen: α 3 α = α 2 α =. Das liefert mit (3) und (4): w = (β 2 β )u 3, w 2 = (β 3 β )u 3, ein Widerspruch zur linearen Unabhängigkeit von w und w 2. (5) läßt sich damit nach u 3 auflösen. (6) u 3 = δ ((α 3 α )w (α 2 α )w 2 ) =: r 3 w + s 3 w 2. Aus dem Beweis für δ folgt insbesondere α 3 α oder α 2 α. (3) oder (4) läßt sich also nach u 2 auflösen und ergibt mit (6) eine Darstellung (7) u 2 = r 2 w + s 2 w 2 mit r 2, s 2 IR. Benutzt man nun noch u = v α u 2 β u 3 und ersetzt in (2) u hiernach und u 2 und u 3 gemäß (7) und (6), so folgt: also x v + IRw + IRw 2. Aufgabe 4 x = u + λu 2 + µu 3 = v + kw + lw 2 mit k, l IR ; (je 3 Punkte) Es sei A = u + IRv eine Gerade und E = {x ; n, x a = } eine Ebene im IR 3. Zeigen Sie: a) A E oder A E = v, n = n, a u b) v, n = = u + v A E n, v a) Beweis von = : Ist A E, so folgt u E, also n, u a =, d.h. n, u = n, a. Da jeder Punkt von A auch in E liegt, gilt für alle λ IR: n, u + λv a =. Die Rechenregeln für das Skalarprodukt liefern nun n, u + λ n, v n, a =. Mit n, u = n, a folgt λ n, v = für alle λ IR, und daher n, v = v, n =. Ist A E =, so schließen wir indirekt. Wäre v, n, so setzen wir λ := n,a u Es ist u + λv A nach Definition von A. Aber es n,v folgt auch u + λv E, denn n, u + λv a = n, u + λ n, v n, a = n, u + n, a u n, a =. Also folgt A E, und das ist ein Widerspruch zur Voraussetzung. Beweis von = : Es sei v, n = und x A, d.h. x = u + λv für ein λ IR. Es ist n, x a = n, u + λv a = n, u + λ n, v n, a = n, u n, a, da v, n =. Nun unterscheiden wir zwei Fälle:. Fall: u E Dann gilt für jedes x A: n, x a = n, u n, a = n, u a =,

7 5 also folgt A E. 2. Fall: u E: Dann gilt für jedes x A: also folgt A E =. n, x a = n, u n, a = n, u a =, b) Wir setzen x = u + n,a u n,v v. Es ist x A nach Definition von A. Zu zeigen bleibt: x E. Dazu muß n, x a = gezeigt werden. n, u + n, a u v a n, v = n, u + n, a u n, a = n, u + n, a n, u n, a =

8 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 5. November 2 3. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (4 Punkte) Es sei (G, ) eine Gruppe mit a a = e für alle a G, wobei e das neutrale Element in G ist. Zeigen Sie, dass G abelsch ist. Zu zeigen ist a b = b a für alle a, b G. Aus a a = e für alle a G folgt a = a für alle a G, da inverse Elemente in Gruppen eindeutig sind. Für das Element (a b) G gilt also auch (a b) = (a b). Nun schließen wir wie folgt: a b = (a b) = b a nach Lemma 2.3 = b a Aufgabe 2 (7 Punkte) { IR \ {, } IR Zeigen Sie: Die 6 Abbildungen h i : mit x h i (x) h (x) := x, h 2 (x) := x, h 3 (x) := x, h 4(x) := x x, h 5(x) := x, h 6(x) := x bilden bezüglich der Hintereinanderausführung eine Gruppe (G, ). Ist diese Gruppe abelsch? Zunächst muß gezeigt werden, daß eine Verknüpfung auf der Menge {h,..., h 6 } ist. Dazu wird eine Verküpfungstafel aufgestellt. Wie sie sich ergibt, erläutert das folgende Beispiel: Man erhält so: (h 4 h 6 )(x) = h 4 (h 6 (x)) = h 4 ( x ) = x x = x = h 2(x) h h 2 h 3 h 4 h 5 h 6 h h h 2 h 3 h 4 h 5 h 6 h 2 h 2 h h 6 h 5 h 4 h 3 h 3 h 3 h 5 h h 6 h 2 h 4 h 4 h 4 h 6 h 5 h h 3 h 2 h 5 h 5 h 3 h 4 h 2 h 6 h h 6 h 6 h 4 h 2 h 3 h h 5 Es liegt eine Gruppe vor, denn die Hintereinanderausführung von Funktionen ist nach Vorlesung assoziativ, h ist neutrales Element und jedes Element besitzt ein inverses Element, wie die Verknüpfungstafel zeigt. Aus der Verknüpfungstafel erkennt man z.b. h 2 h 3 h 3 h 2, also ist die Gruppe nicht abelsch.

9 Aufgabe 3 (3, 5 Punkte) a) Bestimmen Sie (bis auf Isomorphie) alle Körper mit genau 3 Elementen. b) Es sei A := {(a + b i ; a, b Z} C. Betrachten Sie (A, +, ), wobei + und wie in C definiert sind, und untersuchen Sie, welche der in der Vorlesung eingeführten Grundstrukturen (A, +, ) ist. a) Wir bezeichnen die Elemente eines Körpers mit 3 Elementen mit,, 2, wobei das existierende neutrale Element der Addition und das existierende neutrale Element der Multiplikation in K \ {} sein soll. Nach Stundenübung ist dann (K, +) bis auf Isomorphie eindeutig und zwar durch die Verknüpfungstafel gegeben. Nun muß {, 2} bezüglich noch eine Gruppe (mit neutralem Element ) sein. Also muß - wieder nach Stundenübung = sein. Die so definierte Struktur erfüllt aber auch das dritte Körpergesetz K3, nämlich das Distributivgesetz, wie man durch Betrachtung der einzelnen Fälle nachweist; hier nur für einen nichttrivialen Fall beispielhaft durchgeführt: ( + ) 2 = 2 2 = = = Daß auch 2 ( + ) = gilt, braucht nicht noch nachgewiesen zu werden. Dies folgt aus der Kommutativität von. Damit gibt es (bis auf Isomorphie) genau einen Körper mit 3 Elementen. b) Wie in der Vorlesung läßt sich A auffassen als Z Z. Die Addition auf A ist komponentenweise definiert. Da ( Z, +) eine kommutative Gruppe ist, ist daher auch (A, +) eine kommutative Gruppe mit neutralem Element (, ). Wegen A C, und da eine Verknüpfung auf A ist, ist (A, ) eine Halbgruppe; ist kommutativ und es gelten die Distributivgesetze. (Assoziativgesetz und Kommutativgesetz bzgl. und Distributivgesetze gelten in C und daher auch in der Teilmenge A von C.) Wegen = + i A ist (A, +, ) damit ein kommutativer Ring mit Einselement. (A, +, ) ist kein Körper, denn z.b. besitzt (2, ) (, ) kein inverses Element in A. Ein solches müßte nämlich gleich dem Inversen von (2, ) in C sein. Dieses ist (, ), aber (, ) A. 2 2 Aufgabe 4 (6 Punkte) Gegeben sind die komplexen Zahlen z = i und z 2 = 3 + i. z z 2 Berechnen Sie z z 2,,, z z 2 z 2, 9 sowie z und z 2. a) z z 2 = ( i)( 3 + i) = i z = i = ( i)( 3 i) z i ( 3 + i)( 3 i) z 2 3 i = z 3 3 3i = ( 3 i)( i) = 36 3 i Die Polarkoordinatendarstellung von z 2 lautet z 2 = 2e i π 6. Damit folgt = i + 9i = 3i Ferner gilt z = z 9 2 = 2 9 e i 9 π 6 = 52 e i 3 2 π = 52i (3 3) 2 = 6 und z 2 = = 2.

10 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 22. November 2 4. Übungsblatt: Lineare Algebra I Lösungssskizzen Aufgabe (je 3 Punkte) a) Lösen Sie die quadratische Gleichung 4iz 2 + (8 4i)z 2 3i =. b) Zeigen Sie: Ist z C, z, so gibt es genau zwei komplexe Zahlen w, w 2 mit w 2 = w 2 2 = z. a) 4iz 2 + (8 4i)z 2 3i = : (4i) z 2 ( + 2i)z + ( i) = (z + 2i ) 2 }{{ 2 } = 2i ( ) =:w Gesucht sind zunächst Zahlen w mit w 2 = 2i. Der Ansatz w = a + bi liefert w 2 = a 2 b 2 + 2abi, durch Koeffizientenvergleich also a 2 b 2 = und 2ab = 2. Die erste Gleichung ergibt a = b, die zweite Gleichung liefert ab =. Damit ergeben sich die beiden Zahlen w = + i und w 2 = i, die tatsächlich w 2 = 2i lösen. Mit ( ) ergeben sich daraus die Lösungen z = + 2i 2 der gegebenen quadratischen Gleichung. + ( + i) = 2 + 2i und z 2 = + 2i 2 + ( i) = 3 2 b) Es sei z = r(cos ϕ + i sin ϕ) mit r > (da z ). Wir setzen w := r(cos ϕ + i sin ϕ ). Es 2 2 ist w 2 = z nach Vorlesung. Damit ist die Existenz einer Lösung der Gleichung w 2 = z gezeigt. Ist w nun irgendeine komplexe Zahl mit w 2 = z, so gilt also w 2 = w 2, d.h. w 2 w 2 =, also (w w)(w + w) =. Daraus folgt w = w oder w = w. Wegen w ist w w, also gibt es genau zwei komplexe Zahlen w mit w 2 = z. Aufgabe 2 (7 Punkte) Es sei V = {(x, y) : x, y IR und y > }. Ferner seien und definiert durch (x, y ) (x 2, y 2 ) := (x + x 2, 2 y y 2 ) k (x, y ) := (kx, 2 ( y 2 )k ) für k Q. Untersuchen Sie, ob (V,, ) ein Vektorraum über Q ist. Hinweis zur Die Multiplikation in IR wird nur dort geschrieben, wo es sinnvoll erscheint. Es gilt (V):

11 Wir zeigen, dass (V, ) abelsche Gruppe mit neutralem Element (, 2) ist. ist Verknüpfung auf V, da aus y, y 2 > auch y 2 y 2 > folgt. ist assoziativ und kommutativ, da + und assoziativ und kommutativ in IR sind. Es gilt (x, y) (, 2) = (x+, y 2) = (x, y) = (, 2) (x, y), also ist (, 2) neutrales Element 2 in V. Zu (x, y) ist ( x, 4) invers, denn aus y > folgt auch 4 > und y y (x, y) ( x, 4 y ) = (x x, 2 y 4 y ) = (, 2) = ( x, 4 ) (x, y). y Es ist : Q V V, da für y > und k Q auch 2 ( y 2 )k > gilt. Es gilt (V2): Dazu ist zu zeigen: (i) r (s (x, y)) = (r s) (x, y) r (s (x, y)) = r (sx, 2 ( y 2 )s ) = (rsx, 2 (( y 2 )s ) r ) = (rsx, 2 ( y 2 )rs ) = (rs) (x, y) (ii) r ((x, y ) (x 2, y 2 )) = r (x, y ) r (x 2, y 2 ) r ((x, y ) (x 2, y 2 )) = r (x + x 2, 2 y y 2 ) = (r(x + x 2 ), 2 ( y y 2 4 )r ) (iii) (r + s) (x, y) = r (x, y) s (x, y) = (rx + rx 2, 2 ( y 2 )r ( y 2 2 )r ) = (rx, 2 ( y 2 )r ) (rx 2, 2 ( y 2 2 )r ) = r (x, y ) r (x 2, y 2 ) (r + s) (x, y) = ((r + s)x, 2 ( y 2 )r+s ) = (rx + ry, 2 ( y 2 )r ( y 2 )s ) = (rx, 2 ( y 2 )r ) (sx, 2 ( y 2 )s ) = r (x, y) s (x, y) (iv) (x, y) = (x, y) folgt direkt aus der Definition von. Damit ist (V,, ) ein Vektorraum über Q. Aufgabe 3 (6 Punkte) V sei ein K-Vektorraum, U, U 2 seien Unterräume von V. Zeigen Sie: U U 2 ist ein Unterraum von V U U 2 oder U 2 U. = Gilt U U 2, so ist U U 2 = U 2, gilt U 2 U, so ist U U 2 = U ; d. h. U U 2 ist ein Untervektorraum. = Beweis indirekt: Annahme U U 2 und U 2 U. Dann gibt es Vektoren x U \ U 2 und y U 2 \ U. Es ist x U U 2 und y U U 2, also auch x + y U U 2, da U U 2 nach Voraussetzung ein Untervektorraum ist. Ist x + y U, so ist auch x + y + ( x) = y U, da U ein Untervektorraum ist. Dies ist ein Widerspruch zu y U 2 \ U. Ist x + y U 2, so ist auch x + y + ( y) = x U 2, da U 2 ein Untervektorraum ist. Dies ist ein Widerspruch zu x U \ U 2.

12 Aufgabe 4 (je 2 Punkte) Welche der angegebenen Mengen sind Unterräume vom IR Vektorraum V? a) V = IR 2 {(x, x 2 ) ; 3x 4x 2 = a} (a IR fest vorgegeben) {(x, x 2 ) ; (x ) 2 x 2 2 = } b) V = Abb (IR, IR) {f V ; f(3) = a} (a IR fest vorgegeben) {f V ; f(x) = f( x) für alle x IR} c) V = IR[x] {p IR[x] ; Grad p 3} {} {p IR[x] ; a, a 2,..., a 2n IR mit p = a + a 2 x 2 + a 4 x a 2n x 2n } Hinweis zu c): Ist p = a + a x a n x n mit a n, so heißt n der Grad von p. a) {(x, x 2 ) ; 3x 4x 2 = a} ist für a = ein Untervektorraum, für a kein Untervektorraum (der Nullvektor gehört dann nicht dazu). A := {(x, x 2 ) ; (x ) 2 x 2 2 = } ist kein Untervektorraum. Z. B. gilt (2, ) A, aber 2 (2, ) A. b) A := {f V ; f(3) = a} ist für a kein Untervektorraum, da dann der Nullvektor (hier die Nullfunktion) nicht zu A gehört. Für a = ist A ein Untervektorraum. Beweis Es gilt (U), da A. Zu (U): Seien f, g A, also f(3) = g(3) =. Dann gilt: Zu (U2) (f + g)(3) = f(3) + g(3) = + =, also f + g A. Sei f A, also f(3) = und α IR. (αf)(3) = α f(3) = α =, also αf A. Entsprechend zeigt man, daß {f V ; f(x) = f( x) für alle x IR} ein Untervektorraum ist. c) A := {p IR[x] ; Grad p 3} {} ist kein Untervektorraum. Z. B. gilt für p = x 3 + x und p 2 = x 3 + x 2 : p, p 2 A, aber p + p 2 = x 2 + x A. A := {p IR[x] ; p = a + a 2 x a 2n x 2n } ist ein Untervektorraum. Das Nullpolynom liegt in A und mit p, q A treten auch in p + q und in αp (α IR beliebig) nur Potenzen mit geraden Exponenten auf, d.h. p + q A und αp A.

13 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 29. November 2 Aufgabe 5. Übungsblatt: Lineare Algebra I Lösungsskizzen (4 Punkte) Bestimmen Sie eine nicht-triviale Lösung (im IR 5 ) für das folgende homogene lineare Gleichungssystem. x 2 2x 3 x 4 + x 5 = 2x + 2x 2 x 3 = 3x + x 2 x 3 + x 4 + x 5 = Gehen Sie dabei bitte genau nach dem Beweis von Satz 4.2 der Vorlesung vor. Es wird der Induktionsbeweis zu Satz 4.2 nachvollzogen. Wir vertauschen die erste und zweite Gleichung, denken uns eine triviale Gleichung ( = ) hinzugefügt und subtrahieren als erstes das 3-fache der ersten Gleichung von dem 2-fachen der dritten Gleichung. Es ergibt sich das lineare Gleichungssystem 2x + 2x 2 x 3 = x 2 2x 3 x 4 + x 5 = 4x 2 + x 3 + 2x 4 + 2x 5 = = Mit den letzten drei Gleichungen wird das Verfahren iteriert, wir addieren das 4-fache der zweiten zur dritten Gleichung: 2x + 2x 2 x 3 = x 2 2x 3 x 4 + x 5 = 7x 3 2x 4 + 6x 5 = = Hier sind wir an der Stelle angelangt, wo wir die letzte Gleichung als eine Gleichung in den Variablen x 4, x 5 zu interpretieren haben, bei der alle Koeffizienten gleich Null sind, d.h. für diese Gleichung ist jedes x = (x 4, x 5 ) IR 2 Lösung. Wir wählen nun z.b. x 4 = 7 und x 5 = als nicht-triviale Lösung, und erhalten aus den ersten drei Gleichungen zugehörige x 3, x 2, x, also insgesamt eine nicht-triviale Lösung x IR 5 des homogenen linearen Gleichungssystems. Die Rechnung liefert 7x 3 4 =, also x 3 = 2, x =, also x 2 = 3 und schließlich 2x =, also x = 4, d.h. x = ( 4, 3, 2, 7, ) ist eine gesuchte nicht-triviale Lösung des gegebenen homogenen linearen Gleichungssystems. Aufgabe 2 (7 Punkte) Es sei V ein K Vektorraum und es seien A, B Teilmengen von V. Beweisen oder widerlegen Sie: a) A B {} = Span (A B) = Span A Span B b) A B oder B A Span (A B) = Span A Span B c) Span ( Span A Span B ) = Span A Span B d) Span (A B) = Span ( Span A Span B )

14 a) ist falsch. Setze z. B. V = IR 2, A = {(, ), (, )}, B = {(, ), (, )}. Dann gilt A B = {(, )}, Span (A B) = IR(, ), aber Span A = Span B = IR 2. b) ist falsch. Die Richtung = ist nämlich falsch, wie das Beispiel unter a) zeigt. Dagegen ist die Richtung = wahr. Ist nämlich A B, so gilt A B = B. Ferner folgt aus A B nach Regel 2 der Vorlesung Span A Span B, also insgesamt Span (A B) = Span B = Span A Span B. Der Fall B A wird entsprechend behandelt. c) ist wahr. Beweis: Span A Span B ist als Durchschnitt von Untervektorräumen ein Untervektorraum. Nach Regel 3 über die Erzeugnisse gilt: Span A Span B = Span ( Span A Span B) d) ist wahr. Beweis: Trivialerweise gilt A B Span A Span B. Regel 2 liefert damit: Span (A B) Span ( Span A Span B). Ferner gilt Span A Span (A B) und Span B Span (A B). Daraus folgt Wieder wird Regel 2 angewendet: Span A Span B Span (A B). Span (Span A Span B) Span ( Span (A B)) = Span (A B) nach Regel 4. Insgesamt ist damit Span (A B) = Span ( Span A Span B) gezeigt. Aufgabe 3 (9 Punkte) Untersuchen Sie die angegebenen Vektoren auf lineare Unabhängigkeit im K Vektorraum V. a) V = IR 4, K = IR (,,, 4), (, 2,, ), (, 2,, 9) b) V der Vektorraum aus Hausübung 4, Aufgabe 2, also K = Q (, ), (2, 2) c) α) V = C 3, K = C β) V = C 3, K = IR (i, i, ), (, i, i), (i, i, i ) d) V = Abb (IR, IR), K = IR f (t) = t + 4, f 2 (t) = t + 4, f 3 (t) = t + 4 a) (,,, 4), (, 2,, ), (, 2,, 9) sind linear abhängig, denn 2(,,, 4) + (, 2,, ) = (, 2,, 9). b) Die Vektoren sind linear unabhängig. Sei nämlich α (, ) β (2, 2) = (, 2) (der Nullvektor in V!). Es folgt (α, 2 ( 2 )α ) (2β, 2 β ) = (α + 2β, 2 2 ( 2 )α 2) = (α + 2β, 2 ( 2 )α ) = (, 2)

15 Aus α + 2β = und 2 ( 2 )α = 2 folgt zunächst ( 2 )α =, also α = und dann auch β =. c) α) Durch scharfes Hinsehen erkennt man (i, i, ) + (, i, i) = ( + i,, + i) = ( i) (i, i, i ). Damit sind die gegebenen Vektoren über K = C linear abhängig. β) Über K = IR sind reelle Koeffizienten α, β, γ gesucht mit ( ) α(i, i, ) + β(, i, i) + γ(i, i, i ) = (,, ). Komponentenweise gelesen ist dies ein homogenes lineares Gleichungssystem, bei dem die Differenz 2. Gleichung 3. Gleichung auf iα + γ = führt. Diese Gleichung kann bei reellem α und γ nur für α = γ = gelten. Aus der. Gleichung folgt dann noch β =. (*) ist also nur für α = β = γ = erfüllt, d. h. die Vektoren sind über K = IR linear unabhängig. d) Die Funktionen f, f 2, f 3 sind linear unabhängig, wenn aus αf + βf 2 + γf 3 = (Nullfunktion) folgt: α = β = γ =. Diese Gleichung über Funktionen besagt, daß für alle t IR gelten muß : (αf + βf 2 + γf 3 )(t) = (t) =. Wir spezialisieren z. B. der Reihe nach auf t = 4, t = und t = 5 und erhalten das Gleichungssystem 8γ = 4α + 4β + 4γ = α + β + 9γ =. Man erkennt sofort, daß dieses Gleichungssystem nur die Lösung α = β = γ = besitzt. Damit ist gezeigt, daß die Funktionen f, f 2, f 3 linear unabhängig sind. Aufgabe 4 (2, 3 Punkte) Bestimmen Sie für die folgenden Mengen S V jeweils eine Basis und die Dimension von Span S. Ergänzen Sie die von Ihnen angegebene Basis von Span S zu einer Basis von V. a) S = {(6, 2,, 3), (,,, ), (6,, 2, 3), ( 2, 3,, )}, V = IR 4 b) S = {x 2 + x 4, + x + x 5, x 2 + x 3 x 5, x x 3 x 4 + 2x 5 }, V ist der Vektorraum der Polynome vom Grad 5. a) Beh. (6, 2,, 3), (,,, ), ( 2, 3,, ) sind linear unabhängig. Sei α(6, 2,, 3)+β(,,, )+γ( 2, 3,, ) = (,,, ). Diese Gleichung ist äquivalent zum Gleichungssystem 6α 2γ = 2α + β + 3γ = β + γ = 3α γ = 2α + β + 3γ = β + γ = 3β γ = 2α+β+ 3γ= β+ γ= 4γ=, und das letzte System hat nur die Lösung α = β = γ =. Es folgt dim Span S 3. Wegen (6,, 2, 3) = (6, 2,, 3) (2(,,, ) folgt dim Span S 3, insgesamt also dim Span S = 3 und {(6, 2,, 3), (,,, ), ( 2, 3,, )} ist eine Basis von Span S. Diese läßt sich z.b. durch (,,, ) zu einer Basis des IR 4 ergänzen, denn (,,, ), (6, 2,, 3), (,,, ), ( 2, 3,, ) sind linear unabhängig. Dies folgt sofort aus dem Ansatz α(,,, ) + β(6, 2,, 3) + γ(,,, ) + δ( 2, 3,, ) = (,,, ).

16 Das zugehörige Gleichungssystem führt in den ersten drei Gleichungen wie oben auf α = β = γ = und die letzte Gleichung liefert dann noch δ =. b) Es sei U :=Span S. Es gilt x x 3 x 4 + 2x 5 = ( + x + x 5 ) (x 2 + x 4 ) ( x 2 + x 3 x 5 ), also ist dim U 3. Wir zeigen nun: { + x + x 5, x 2 + x 4, x 2 + x 3 x 5 } ist linear unabhängig. Sei also α( + x + x 5 ) + β(x 2 + x 4 ) + γ( x 2 + x 3 x 5 ) = (das Nullpolynom). Ein Koeffizientenvergleich bei x liefert α =, bei x 3 liefert er γ = und bei x 4 folgt β =. Also ist die angegebene Menge linear unabhängig. Damit folgt dim U = 3, und {x 2 + x 4, + x + x 5, x 2 + x 3 x 5 } ist eine Basis von U. Diese Basis läßt sich durch, x, x 2 zu einer Basis von V ergänzen. Dazu zeigen wir die lineare Unabhängigkeit der 6 Polynome. Sei a + a 2 x + a 3 x 2 + a 4 (x 2 + x 4 ) + a 5 ( + x + x 5 ) + a 6 ( x 2 + x 3 x 5 ) =. Umsortieren liefert (a + a 5 + a 6 ) + (a 2 + a 5 )x + (a 3 + a 4 a 6 )x 2 + a 6 x 3 + a 4 x 4 + (a 5 a 6 )x 5 =. Rechts steht das Nullpolynom. Wir machen einen Koeffizientenvergleich, der bei x 3 und x 4 sofort a 4 = a 6 = liefert. Koeffizientenvergleich bei x 5 ergibt dann a 5 =, bei x 2 liefert er a 3 =, bei x folgt a 2 = und schließlich bei der Konstanten a =. Da der Vektorraum der Polynome vom Grad 5 die Dimension 6 hat, haben wir eine Basis von V gefunden, die die drei Elemente x 2 + x 4, + x + x 5 und x 2 + x 3 x 5 enthält.

17 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 6. Dezember 2 6. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (6 Punkte) Zeigen Sie: Im IR Vektorraum V = Abb (IR, IR) ist die Menge {f c ; f c (x) = { x c falls x > c sonst, c IR} linear unabhängig. Zu zeigen ist: Jede endliche Teilmenge T von A := {f c ; f c (x) = { x c falls x > c sonst, c IR} ist linear unabhängig. Dies zeigen wir durch vollständige Induktion über die Anzahl der Elemente von T. Für T = sei T = {f c } und γ f c = (die Nullfunktion). Für ein x > c gilt dann f c (x) und aus γ f c (x) = folgt daher γ =. Sei nun jede Teilmenge T A mit T = n linear unabhängig. Wir betrachten n + paarweise verschiedene Funktionen f a, f a2,..., f an+ aus A und nehmen o.b.d.a. an, daß a n+ < a n <... < a gilt (sonst kann man die Funktionen umbenennen). Wählt man ein β mit a n+ < β < a n, so ist f aj (β) = für j =, 2,..., n. Aus dem Ansatz α f a α n+ f an+ = folgt daher (α f a α n+ f an+ )(β) = α f a (β) α n+ f an+ (β) = α n+ (β a n+ ) =. Da β a n+ ist, folgt α n+ =. Nach Induktionsvoraussetzung folgt dann aber weiter α =... = α n =. Damit ist {f a,..., f an+ } linear unabhängig. Aufgabe 2 (je 2 Punkte) Untersuchen Sie jeweils, ob es Homomorphismen f : IR n IR m mit den angegebenen Eigenschaften gibt. Wenn ja, wie viele? a) n = 4, m = 3, f(v i ) = w i für die folgenden Vektoren: v = (, 2,, ), v 2 = (,,, ), v 3 = (3, 8,, 5) w = (, 2, 3), w 2 = w 3 = (,, ). b) n = 4, m = 3, f(v i ) = w i für die folgenden Vektoren: v = (,,, ), v 2 = (,,, ), v 3 = (,,, ), v 4 = (,,, ), w i = (2,, 3) für i =,..., 4. c) n = m = 4, Ker f = Span {(,,, ), (,,, )} = Im f. d) n = 3, m = 4, Ker f = Span {(,, ), (,, )}, Im f = Span {(,,, ), (2,,, )}.

18 a) Es gilt 3 (, 2,, ) 2 (,,, ) = (3, 8,, 5). Für einen Homomorphismus f mit f(v i ) = w i muß also gelten: w 3 = f(v 3 ) = f(3, 8,, 5) = f(3 (, 2,, ) 2 (,,, )) = 3 f(, 2,, ) 2f(,,, ) = 3 f(v ) 2 f(v 2 ) Diese Bedingung ist wegen 3 f(v ) 2 f(v 2 ) = 3w 2w 2 = (, 6, 7) verletzt. Es gibt keinen Homomorphismus mit den angegebenen Eigenschaften. b) Die Vektoren v,..., v 4 sind linear unabhängig; sie bilden also eine Basis des IR 4. Nach Satz 4.6 ist durch Angabe der Bilder einer Basis eindeutig ein Homomorphismus definiert. Also gibt es genau einen Homomorphismus mit den angegebenen Eigenschaften. c) Es gibt unendlich viele Homomorphismen mit den angegebenen Eigenschaften: v := (,,, ), v 2 := (,,, ) sind linear unabhängig. Ergänzt man sie durch v 3, v 4 zu einer Basis des IR 4, so ist durch f mit f(v ) = f(v 2 ) =, f(v 3 ), f(v 4 ) Im f und f(v 3 ), f(v 4 ) linear unabhängig, eindeutig ein Homomorphismus mit den angegebenen Eigenschaften definiert. Für die Wahl von v 3 und v 4 gibt es aber beliebig viele Möglichkeiten. d) Für einen Homomorphismus f : V V gilt nach Satz 4.2: dim (Ker f) + dim (Im f) = dim V. Hier gilt: dim V = dim IR 3 = 3, dim (Ker f) = dim (Im f) = 2. Also kann kein Homomorphismus mit den angegebenen Eigenschaften existieren. Aufgabe 3 (je 2 Punkte) Es seien V und W K-Vektorräume, B sei eine Basis von V und f : V W sei ein Epimorphismus. Untersuchen Sie, welche der folgenden Aussagen wahr sind: a) Ist dim V = dim W, so ist f(b) eine Basis von W. b) Ist dim V = dim W <, so ist f(b) eine Basis von W. a) a) ist falsch. Wir wählen V = W = IR[x], B = {, x, x 2, x 3,...} und für f die Ableitung. Dann ist f ein Epimorphismus, da jedes Element aus IR[x] als Bild unter f (als eine Ableitung) auftritt und f linear ist (siehe auch Vorlesung). Aber f(b) = {,, 2x, 3x 2, 4x 3,...} ist linear abhängig, da f(b) den Nullvektor enthält. b) b) ist richtig. Ist dim V = dim W = n, so ist f(b) nach Vorlesung ein Erzeugendensystem von W mit n Elementen, also eine Basis von W. Aufgabe 4 (3, 4 Punkte) a) Der Homomorphismus f : IR 5 IR 4 sei gegeben durch f(x, x 2, x 3, x 4, x 5 ) = (2x x 2 + x 3 x 4, x 4 + x 5,, 2x x 2 + x 3 + x 5 ). Bestimmen Sie eine Basis von Ker f und von Im f. b) Es sei V =Abb(IN, IR) und ϕ : V V sei definiert wie folgt: ϕ(f) ist diejenige Abbildung aus V mit (ϕ(f))(n) = f(2n). Zeigen Sie, dass ϕ ein Endomorphismus von V ist, und bestimmen Sie Ker ϕ und Im ϕ.

19 a) (x, x 2, x 3, x 4, x 5 ) Ker f (2x x 2 + x 3 x 4, x 4 + x 5,, 2x x 2 + x 3 + x 5 ) = (,,, ) 2x x 2 + x 3 x 4 = x 4 + x 5 = 2x x 2 + x 3 + x 5 = Die dritte Gleichung ist die Summe der ersten beiden Gleichungen. Man erkennt, daß drei Variablen als freie Parameter wählbar sind. Mit x 5 = 2, x 2 = x 3 = erhält man: (,,, 2, 2) Ker f. Mit x 5 = x 3 =, x 2 = 2 erhält man: (, 2,,, ) Ker f. Mit x 5 = x 2 =, x 3 = 2 erhält man: (,, 2,, ) Ker f. {(,,, 2, 2), (, 2,,, ), (,, 2,, )} ist eine Basis von Ker f. Nach dem Kern-Bild-Satz folgt dim Im f = 2. Wegen f(e ) = (2,,, 2) und f(e 5 ) = (,,, ), und da (2,,, 2), (,,, ) linear unabhängig sind, ist {(,,, ), (,,, )} eine Basis von Im f. b) Wir zeigen die Homomorphiebedingungen (H) und (H2). ϕ(f + g) ist diejenige Funktion mit (ϕ(f + g))(n) = (f + g)(2n) = f(2n) + g(2n) = (ϕ(f))(n) + (ϕ(g))(n) = (ϕ(f) + ϕ(g))(n). Es folgt ϕ(f + g) = ϕ(f) + ϕ(g) und das ist die Homomorphiebedingung (H). Entsprechend zeigt man (H2): (ϕ(λf))(n) = (λf)(2n) = λf(2n) = λ((ϕ(f))(n)) = (λϕ(f))(n), also gilt ϕ(λf) = λϕ(f). Es ist Ker ϕ = {f V ; f(2n) = für alle n IN}, denn nur für solche Abbildungen f V ist ϕ(f) die Nullabbildung. Es ist Im{ ϕ = V, denn für f V ergibt die Abbildung g V mit falls n = 2k + g(n) = gerade ϕ(g) = f. f(k) falls n = 2k In anderen Worten: V ist der Vektorraum der reellen Folgen. Eine Folge (a,, a 3,,...) wird durch ϕ auf die Nullfolge abgebildet, die Folge (a, a 2, a 3,...) ist das Bild der Folge (, a,, a 2,, a 3,...) unter ϕ.

20 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 3. Dezember 2 7. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (6 Punkte) Im Vektorraum IR 3 seien Untervektorräume U, U 2, U 3 definiert durch U = Span {(, 2, ), (, 2, ), (2, 2, 5)} U 2 = Span {(, 3, ), (, 5, ), (, 4, ), (,, )} U 3 = Span {(,, )}. Bestimmen Sie jeweils die Dimension und eine Basis von U, U 2, U U 2 und U + U 2. Ist U i (i = 2, 3) ein Komplement von U in IR 3? Bei U erkennt man 2(, 2, ) 3(, 2, ) = (2, 2, 5). Da (, 2, ), (, 2, ) linear unabhängig sind, folgt dim U = 2 und die angegebenen beiden Vektoren bilden eine Basis von U. Bei U 2 erkennt man ebenfalls leicht (, 3, ) = (, 4, ) (,, ) und (, 5, ) = (, 4, ) + (,, ). Wie eben folgt dim U 2 = 2 und {(, 4, ), (,, )} ist eine Basis von U 2. Für Vektoren x U U 2 muß es α.β, γ, δ geben mit x = α(, 2, ) + β(, 2, ) = γ(, 4, ) + δ(,, ). Das sich daraus ergebende Gleichungssystem führt man wie üblich auf das Dreieckssystem α γ = 2α + 2β 4γ δ = α + β δ = α γ = β γ δ = δ =. Setzt man γ = t, so folgt β = t = α. Man erhält x = t(, 4, ), also Zur Bestimmung von U + U 2 benutzt man U U 2 = Span {(, 4, )}. U + U 2 = Span {(, 2, ), (, 2, ), (, 4, ), (,, )}, und da (, 4, ), (,, ), (, 2, ) linear unabhängig sind, folgt U + U 2 = IR 3. Aus Dimensionsgründen ist IR 3 U U 2, also ist U 2 kein Komplement von U in IR 3. Wegen (,, ) U ist U U 3 = {}, also gilt IR 3 = U U 3, und damit ist U 3 ein Komplement von U in IR 3.

21 Aufgabe 2 (6 Punkte) Es sei U = {A = (a ij ) Mat(n, m, K) ; i,j a ij = }. Zeigen Sie, dass U ein Untervektorraum von Mat(n, m, K) ist und bestimmen Sie die Dimension sowie eine Basis von U. Wir definieren f : Mat(n, m, K) K durch f(a) = a ij, falls A = (a ij ). f ist ein Homomorphismus, wie man sofort nachrechnet und U = Ker f. Also ist U ein Untervektorraum vom i,j Mat(n, m, K). Wegen dim Im f = und dim Mat(n, m, K) = nm folgt nach dem Kern-Bild- Satz dim Ker f = dim U = nm. Wir definieren für r {,..., n}, s {,..., m} und (r, s) (, ) die Matrix A rs = (a rs ij ) Mat(n, m, K) durch a rs =, a rs rs = und a rs ij = sonst. Diese nm Matrizen sind aus U und sie sind linear unabhängig; also liefern sie eine Basis von U. Aufgabe 3 (8 Punkte) Bestimmen Sie jeweils den Rang, sowie eine Basis des Zeilenraumes und eine Basis des Spaltenraumes für die folgenden Matrizen: + i a) A = b) A = i i 2i 2 i c) A = a) A = als Matrix über K = IR bzw. K = IF 2. EZ3 2 EZ3 EZ3 Es folgt: Rang A = 4. Die ersten vier Zeilen der letzten Matrix sind linear unabhängig, bilden also eine Basis des Zeilenraums, da Zeilenumformungen den Zeilenraum nicht ändern. Bezeichnet man die Spalten von A mit s,..., s 6, so gilt s 2 = s und s 6 = s 5. Also ist Span{s,..., s 6 } = Span {s, s 3, s 4, s 5 } und da der Spaltenraum auch die Dimension 4 hat, ist {s, s 3, s 4, s 5 } eine Basis des Spaltenraums von A. b) A = + i i i 2i 2 i EZ3 + i 2 i i 3i 2i i 3 EZ3 + i 2 i i 3i + i Rang A = 2. {(, +i,, ), (, 2 i, i, 3i)} ist eine Basis des Zeilenraums, { i, } 2 ist Basis des Spaltenraums, da diese Spalten linear unabhängig sind.

22 c) A = EZ3 Für K = IR ist Rang A = 3; die drei Zeilen von A bilden eine Basis des Zeilenraums, die ersten drei Spalten von A bilden eine Basis des Spaltenraums von A. Für K = IF 2 gilt =. Es ist dann Rang A = 2; die ersten beiden Zeilen von A bilden eine Basis des Zeilenraums von A, die ersten beiden Spalten von A bilden eine Basis des Spaltenraums von A. Aufgabe 4 (5 Punkte) Eine Matrix M Mat(m, n; K) habe die Gestalt M = Matrizen sind. Zeigen Sie: Rang M = Rang A + Rang B. ( A B ), wobei A, B und passende Durch elementare Zeilen und Spaltenumformungen bringe man A auf die Gestalt A ( ) := Er. Dann gilt Rang A = r. Führt man die gleichen elementaren Zeilen und Spaltenumformungen in M durch, so entsteht die Matrix M A ( ) :=, da die Umformungen B die oben rechts und unten links stehende ( Nullmatrix ) nicht verändern. Nun bringt man entsprechend B auf die Gestalt B Es :=. Es ist also Rang B = s. Führt man wiederum die entsprechenden Zeilen und Spaltenumformungen an M ( ) durch, so erhält man die Matrix A M :=, da wiederum die Nullmatrizen nicht verändert werden. Es folgt direkt: B Rang M = r + s = Rang A + Rang B.

23 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 2. Dezember 2 8. Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (4 Punkte) ( ) a a Es sei A = Mat(2, K). Berechnen Sie A n für alle n IN. Lösung Es ist A 2 = ( a a ) ( a a ) = ( a 2 a( a) + ( a) ) ( a 2 a 2 ( a Behauptung: A n n a = n ) Beweis durch vollständige Induktion. Für n = ist nichts zu zeigen. Induktionsschluss: ( a A n+ = A n n a A = n ) ( ) ( a a a n+ a = n+ ) Aufgabe 2 (, 2, 3 Punkte) Ein Homomorphismus f : IR 4 IR 3 ist gegeben durch f( t (x, x 2, x 3, x 4 )) = t (x x 3 2x 4, ax + x 3 + ( a)x 4, 2x + x 2 + x 3 x 4 ). a) Bestimmen Sie diejenige Matrix A mit f = h A. b) Für welche a IR ist f surjektiv, für welche a injektiv? c) Bestimmen Sie - in Abhängigkeit von a - Ker f und Im f. Lösung a) Wegen f(x) = h A (x) = Ax gilt f(e i ) = Ae i. Ae i ist aber die i te Spalte von A. Die Bilder der Standardbasis {e, e 2, e 3, e 4 } vom IR 4 müssen also die Spalten von A sein. Man erhält A = 2 a a 2 b) Wegen dim Kerf+ dim Im f = 4 und dim Im f 3 ist Ker f {}, also kann f nie injektiv sein. f ist genau dann surjektiv, wenn dim Im f = Rang A = 3. Mittels elementarer Zeilenumformungen folgt A = 2 a a a + a Für a ist Rang A = 3, also ist f surjektiv genau dann, wenn a. c) Wir können die Rechnung unter b) benutzen. Für a ist Im f = IR 3 und Ker f ergibt sich als Lösungsraum von Ax = aus der letzten Matrix unter b) zu Ker f = Span { t (,,, )}.. ).

24 Für a = ist dim Im f = 2 und die ersten beiden Spalten von A bilden z.b. eine Basis von Im f, also Im f = { t (,, 2), t (,, )}. Ker f ergibt sich wieder aus der letzten Matrix unter b), und zwar zu Ker f = Span{ t (2, 3,, ), t (, 3,, )}. Aufgabe 3 (7 Punkte) Die Unterräume U = {(x, y, z) ; 2x y z = } und W = Span{( 2,, )} erfüllen U W = IR 3 (kein Beweis nötig!). Für i =, 2 sei f i : IR 3 IR 3 definiert durch f i (v) = v i, wobei v = v +v 2 die eindeutige Darstellung von v mit v U und v 2 W ist. Zeigen Sie, dass f und f 2 Homomorphismen sind, und bestimmen Sie die eindeutig bestimmten Matrizen A, A 2 mit f i = h Ai (i =, 2). Berechnen Sie A A 2 und interpretieren Sie das Ergebnis im IR 3. Lösung Seien v, w IR 3 und v = v + v 2, w = w + w 2 die eindeutigen Darstellungen von v, w mit v, w U und v 2, w 2 W. Dann ist v + w = v + w + v 2 + w 2 =: z + z 2 mit z U und z 2 W, da U und W UVRe sind. Also folgt f i (v + w) = f i (v + w + v 2 + w 2 ) = f i (z + z 2 ) = z i = f i (v) + f i (w) für i =, 2. Entsprechend gilt f i (αv) = f i (α(v + v 2 )) = f i (αv + αv 2 ). Dabei ist αv U und αv 2 W, da U und W UVRe sind. Also gilt weiter f i (αv + αv 2 ) = αv i = αf i (v) für i =, 2. Damit ist nachgewiesen, dass f und f 2 Homomorphismen sind. Es ist B = {(, 2, ), (,, )} eine Basis von U und B = {( 2,, )} eine Basis von W. Die Vektoren e, e 2, e 3 der Standard-Basis des IR 3 stellen wir durch diese Vektoren dar: e = (,, ) = ( 2,, ) + (, 2, ) + (,, ) e 2 = (,, ) = ( 2,, ) + (, 2, ) (,, ) e 3 = (,, ) = ( 2,, ) + (, 2, ) + 5 (,, ) Es folgt f (,, ) = (, 2, ) + (,, ) = (,, ) f (,, ) = (, 2, ) (,, ) = (2, 5, ) f (,, ) = (, 2, ) + 5(,, ) = (2,, 5) f 2 (,, ) = ( 2,, ) = (4, 2, 2) 3 6 f 2 (,, ) = ( 2,, ) 6 f 2 (,, ) = ( 2,, ) 6 Die Spalten von A i sind die Bilder von e, e 2, e 3 unter f i, also gilt A = , A 2 = Es ist A A 2 = (die Nullmatrix). Dies ist nicht verwunderlich, denn: U ist eine Ebene durch den Ursprung im IR 3, W die darauf senkrecht stehende Gerade durch den Ursprung. f 2 ist die orthogonale Projektion auf W, f die orthogonale Projektion auf U. Projiziert man zunächst auf W, dann auf U, wird der ganze IR 3 auf den Ursprung abgebildet und das gibt die Gleichung A A 2 = wieder..

25 Aufgabe 4 (2, 3, 3 Punkte) Eine quadratische Matrix A über K heißt nilpotent, wenn es ein r IN gibt mit A r =. Es seien A, B K (n,n). Zeigen Sie: a) Sind A, B symmetrisch, so gilt: A B = B A A B symmetrisch Geben Sie symmetrische Matrizen A, B an, so dass AB nicht symmetrisch ist. b) Sind A, B nilpotent und ist A B = B A, so sind A B und A + B nilpotent. Kann hier auf die Voraussetzung A B = B A verzichtet werden? c) Ist A invertierbar, B nilpotent und A B = B A, so ist A + B invertierbar. Hinweis: Zeigen Sie zunächst den Hilfssatz: Ist C nilpotent, so ist C + E invertierbar. Lösung a) = = t (A B) = t B ta = B A = A B A B = t (A B) = t B ta ( ) = B ( A und B = Die Matrizen A = nicht symmetrisch. ) sind symmetrisch, aber AB = ( 2 b) Da A, B nilpotent sind, gibt es r, k IN mit r, k und A r = B k =. Dann gilt ) ist (A B) r = (A B) (A B)... (A B) }{{} r-mal = A r B r da A B = B A = da A r = Also ist A B nilpotent. Bemerkung für Teil c) dieser Aufgabe: Der Beweis zeigt übrigens, dass hier als Voraussetzung reicht, dass eine der Matrizen A, B nilpotent ist. ( ) ( ) r + k r + k (A + B) r+k = A r+k + A r+k B AB r+k + B r+k r + k ( ) r+k r + k = A r+k i B i da A B = B A i i= Für i mit i r + k ist i k oder r + k i r. Also ist A r+k i = oder B i =, d.h. (A + B) r+k =. A + B ist also nilpotent. Auf die Voraussetzung kann nicht verzichtet werden. Gegenbeispiel: A = ( ), B = ( und weiter (A + B) 2 = E, also (A + B) n für alle n. c) Zunächst wird der Hilfssatz bewiesen. Sei etwa C k =. Dann gilt (geometrische Reihe!) ), A 2 = B 2 =, A + B = ( (E + C)(E C + C ( ) k C k ) = E + ( ) k C k = E. damit ist C + E invertierbar. Nun wird wie folgt geschlossen: Wegen AB = BA gilt auch A B = BA. Da B nilpotent ist, folgt nach der Bemerkung in b), dass A B nilpotent ist. Nach dem Hilfssatz ist damit E + A B invertierbar, und da A invertierbar ist, dann auch A(E + A B) = A + B. ),

26 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den. Januar Übungsblatt: Lineare Algebra I Lösungsskizzen Aufgabe (6 Punkte) Untersuchen Sie, ob die folgenden Matrizen invertierbar sind über IR, und berechnen Sie gegebenenfalls die inverse Matrix , , Lösung Wir beginnen stets mit der gegebenen Matrix A und danebenstehend der Einheitsmatrix E. Durch elementare Zeilenumformungen versuchen wir, die gegebene Matrix zur Einheitsmatrix umzuformen. Dabei entsteht aus der Matrix E die gesuchte inverse Matrix A. Läßt sich nicht die Einheitsmatrix erzeugen, hat die gegebene Matrix nicht vollen Rang, ist also nicht invertierbar = A Führt man dieses Verfahren bei der zweiten Matrix durch, erhält man Rang = 3. (3 4. Zeile + 3. Zeile =. Zeile) Diese Matrix ist nicht invertierbar.

27 ( ) B Bei der dritten Matrix überlegt man sich zunächst, dass für A = mit quadratischen Matrizen B, C gilt: A ( ) C B = C, falls B und C invertierbar sind. Dies folgt ( ) 3 3 sofort durch Kästchenmultiplikation bei der Produktbildung AA. Nun ist = 3 4 ( ) Die Matrix C = 2 5 haben wir (fast) als erste Matrix invertiert Die dritte Zeile von C ist nur die negative dritte Zeile der schon invertierten Matrix C. Hier folgt durch Produktbildung sofort, dass C gerade diejenige Matrix sein muß, die man 2 aus (C ) durch Übergang zur negativen dritten Spalte bekommt, also 2 5 = Damit folgt: = Aufgabe 2 (6 Punkte) Untersuchen Sie, ob A = und B = bestimmen Sie gegebenenfalls invertierbare Matrizen P, Q mit P AQ = B. äquivalent sind, und Lösung Wir werden A und B durch elementare Zeilen- und Spaltenumformungen auf Normalform bringen und sehen, daß beide Matrizen die Normalform N = haben. Bei dem üblichen Verfahren erzeugen wir invertierbare Matrizen R, S sowie T, U mit RAS = T BU = N. Es folgt dann B = T RASU, und damit liefern P = T R und Q = SU Matrizen der gesuchten Art.

28 R T S 2 2 U Nun berechnet man und T = U = 2 = =

29 Weiter erhält man nun gesuchte Matrizen 5 P = T R = und Q = SU = Aufgabe 3 (3, 3 Punkte) Bestimmen Sie alle Lösungen x IR 5 der folgenden linearen Gleichungssysteme: 2x x + x 3 = 3 x 2 + x 3 x 4 + x 5 = 5 x a) x 2 x 5 = b) x 2 + x 4 = 3 x x + x 5 = + x 2 3x 3 + 2x 5 = 6 x + 2x 2 2x 3 x 4 x 5 = Lösung Wir bringen auf Zeilenstufenform: Nicht an den Stufenrändern stehen die Variablen x 4 und x 5. Dafür werden also Parameter λ und λ 2 gesetzt. Die Auflösung der Gleichungssystems durch Rückwärtssubstitution liefert dann noch x 3 = 4 + λ 2, x 2 = + x 5 = + λ 2 und x = 3 x 3 = λ 2. Die Lösungen sind 4 + λ + λ 2, λ, λ 2 IR. b) Wir schreiben Gleichung als dritte Gleichung und beginnen mit der Umformung auf Zeilenstufenform: Man setzt x 4 = λ als Parameter und erhält von unten nach oben x 5 =, x 3 = x 5 + 3x 4 x 3 = + 2λ und x = 3 x 4 + x 2 = 2 + λ, d.h. die Lösungen sind gegeben durch 2 + λ 2, λ IR.

30 Aufgabe 4 (7 Punkte) sei lösbar im IR a x + a 2 x 2 + a 3 x 3 = b a Das Gleichungssystem 3 x 2 + a 2 x 3 = b 2 a 3 x a x 3 = b 3 a 2 x + a x 2 = b 4 Zeigen Sie, daß es dann nur folgende zwei Möglichkeiten gibt: (i) Jedes x IR 3 ist Lösung. (ii) Es gibt genau eine Lösung. Lösung Die Koeffizientenmatrix des Gleichungssystems lautet a a 2 a 3 a 3 a 2 a 3 a =: A. a 2 a. Fall: a = a 2 = a 3 = Dann muß b := t (b, b 2, b 3, b 4 ) = sein, da nach Voraussetzung das Gleichungssystem lösbar sein soll. Es folgt L = IR Fall: a oder a 2 oder a 3 Sei a. Wir betrachten zunächst nur die Gleichungen, 3 und 4 und bringen auf Zeilenstufenform. Man erhält: a a 2 a 3 b a 3 a b 3 a 2 a b 4 a a 2 a 3 b a 2a 3 a a a2 3 a a + a2 2 a a 2 a 3 a 3. Es ist a2 + a 2 2 und vier): mit a, da a. Damit rechnet man weiter (vertausche zunächst die Zeilen drei a a 2 a 3 b a 2 +a2 2 a 2 a 3 a a C C = a a2 3 a 2 + 2a 2 3 a a (a 2 + a 2 2) = (a 2 + a 2 3 a2 2a 2 3 ) = a a 2 + a 2 2 = ( a2 (a 2 + a 2 2) + a 2 3(a 2 + a 2 2) a 2 2a 2 3 ) = a a a 2 + a 2 a2 + a a a 2 + a 2 2 Also ist wegen a auch C. Das Gleichungssystem ist damit auf Dreiecksform gebracht, d. h. es existiert eine eindeutige Lösung. Da das gegebene Gleichungssystem nach Voraussetzung lösbar sein soll, muß dann beim Rechnen mit dem Gesamtsystem die vierte Zeile der Matrix (A b) in die Nullzeile übergegangen sein. Die Fälle a 2 und a 3 behandelt man entsprechend.

31 Zusatzaufgabe ( Punkte) Es sei K ein endlicher Körper mit K = k. Zeigen Sie: GL(n, K) = k (n 2) n (k i ) Lösung Nach Satz 5.5 der Vorlesung ist A GL(n, K) genau dann, wenn die Spalten (oder Zeilen) von A eine Basis des K n bilden. Also ist GL(n, K) = der Anzahl der geordneten Basen vom K n. Beachte zunächst K n = k n. Es sei b (i) :=Anzahl der i-tupel von Vektoren aus K n, bei denen die Vektoren linear unabhängig sind. Für b (i) werden wir nun die folgende Rekursionsformel beweisen: b (i + ) = b (i) (k n k i ) (i ) b(n) ist dann gerade GL(n, K). Aus der Definition von b (i) ergibt sich b (i) = {(a,..., a i ) ; {a,..., a i } K n und a,..., a i linear unabhängig } b (i + ) = {(a,..., a i, a i+ ) ; {a,..., a i } K n und a i+ K n \ Span (a,..., a i ) und a,..., a i linear unabhängig } Aus K n = k n und dim Span (a,..., a i ) = i folgt: K n \ Span (a,..., a i ) = k n k i Damit erhält man die angegebene Rekursionsformel. Wegen b () = k n (beachte, dass nur der Nullvektor als einzelner Vektor linear abhängig ist), folgt nun durch Induktion nach i sofort: i n b (i) = (k n k j ) speziell b (n) = (k n k j ). j= Klammert man aus den Faktoren jeweils k j aus, so folgt j= j= n n n GL(n, K) = b (n) = k j (k n j ) = k j j= j= i= n (k i ). n und wegen j = (n ) = ( ) n 2 n(n ) = ergibt sich die angegebene Formel. 2 j= i=

32 Institut für Mathematik Universität Hannover Prof. Dr. K. Hulek, Dr. D. Wille Hannover, den 7. Januar 22 Aufgabe. Übungsblatt: Lineare Algebra I Lösungsskizzen (2, 3 Punkte) Zeigen Sie für das Vektorprodukt und Spatprodukt [a, b, c] := a b, c im IR 3 die folgenden Regeln: a) (a b) c = a, c b b, c a a, a a, b a, c b) [a, b, c] 2 = b, a b, b b, c c, a c, b c, c Lösung a) (a b) c = = a 2 b 3 a 3 b 2 a 3 b a b 3 a b 2 a 2 b c c 2 c 3 = (a 2 c 2 + a 3 c 3 )b (b 2 c 2 + b 3 c 3 )a (a c + a 3 c 3 )b 2 (a c + b 3 c 3 )a 2 (a c + a 2 c 2 )b 3 (b c + b 2 c 2 )a 3 (a 3 b a b 3 )c 3 (a b 2 a 2 b )c 2 (a b 2 a 2 b )c (a 2 b 3 a 3 b 2 )c 3 (a 2 b 3 a 3 b 2 )c 2 (a 3 b a b 3 )c In den Komponenten wird jeweils addiert und zwar in der i ten Komponente in der Form a i c i b i b i c i a i (i =, 2, 3). Verteilt man dies auf die beiden Klammern, so steht in der ersten Klammer jeweils a, c, in der zweiten Klammer jeweils b, c. Aufspaltung liefert dann: (a b) c = a, c b b, c a b) Es ist [a, b, c] 2 = a b, c 2 und a, a a, b a, c b, b b, c b, a b, b b, c = a, a b, a c, b c, c c, a c, b c, c a, b a, c c, b c, c + c, a a, b a, c b, b b, c = a, a b, b c, c a, a b, c 2 a, b 2 c, c + a, b a, c b, c + a, c a, b b, c a, c 2 b, b, so dass zu beweisen ist: ( ) a b, c 2 = a, a b, b c, c + 2 a, b a, c b, c a, a b, c 2 b, b a, c 2 c, c a, b 2 Nach a) folgt (a b) c 2 = a, c b b, c a 2 = b, b a, c 2 + a, a b, c 2 2 a, b a, c b, c. Nach 7.2 ist (a b) c = a b c sin <) (a b, c), also (a b) c 2 = a b 2 c 2 ( cos 2 <) (a b, c)) = a b 2 c 2 a b, c 2 = ( a b sin <) (a, b)) 2 c 2 a b, c 2 = a 2 b 2 ( cos 2 <) (a, b)) c 2 a b, c 2 = a, a b, b c, c a, b 2 c, c a b, c 2 Gleichsetzen der beiden rechten Seiten von (a b) c 2 und Auflösen nach a b, c 2 liefert ( ).

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette

3 Definition: 1. Übungsblatt zur Vorlesung Lineare Algebra I. im WS 2003/2004 bei Prof. Dr. S. Goette 1. Übungsblatt zur Vorlesung Abgabe Donnerstag, den 30.10.03 1 Finden 2 Sei Sie reelle Zahlen a, b, c, so dass a (2, 3, 1) + b (1, 2, 2) + c (2, 5, 3) = (3, 7, 5). (V,, ) ein euklidischer Vektorraum. Zeigen

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

2.5 Gauß-Jordan-Verfahren

2.5 Gauß-Jordan-Verfahren 2.5 Gauß-Jordan-Verfahren Definition 2.5.1 Sei A K (m,n). Dann heißt A in zeilenreduzierter Normalform, wenn gilt: [Z1] Der erste Eintrag 0 in jeder Zeile 0 ist 1. [Z2] Jede Spalte, die eine 1 nach [Z1]

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

5. Matrizen und Determinanten

5. Matrizen und Determinanten technische universität dortmund Dortmund, im Januar 01 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 1 und Matrizen und

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Übungen zur Diskreten Mathematik I Blatt 6

Übungen zur Diskreten Mathematik I Blatt 6 1 Blatt 6 Aufgabe 19 Es sei M := {n N : n 2} und R := {(n, m) M M : n teilt m}. a) Zeigen Sie, dass R eine Ordnungsrelation auf M ist. b) Überprüfen Sie, ob R eine totale Ordnung auf M ist. c) Zeigen Sie,

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

17. Das Gauß-Verfahren

17. Das Gauß-Verfahren 7 Das Gauß-Verfahren 95 7 Das Gauß-Verfahren Nachdem wir jetzt viele Probleme der linearen Algebra (z B Basen von Vektorräumen zu konstruieren, Morphismen durch lineare Abbildungen darzustellen oder den

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Übungen zum Vorkurs Mathematik Blatt 1 W.S.2009/2010 - Ernst Bönecke Aufgaben zur Aussagenlogik 1.) Seien A, B, C Aussagen. Beweisen Sie mit Hilfe von Wahrheitstafeln, dass folgende Aussagen stets wahr

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr