Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Größe: px
Ab Seite anzeigen:

Download "Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr"

Transkript

1 Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche Ergänzungen) Lineal und Schreibmaterial (nur dokumentenecht, => keinen Bleistift verwenden, kein TIPP-Ex) mitgebrachtes Papier Andere Hilfsmittel, insbesondere: alte Klausuren Übungen der Vorlesung Handy, Laptop, Fachbücher, programmierbarer Taschenrechner sind nicht zugelassen. Weitere Hinweise: Ergebnisse sind durch einen Rechenweg zu begründen und nur mit einer Einheit richtig. Die zu verwendenden Indizes sind (soweit gegeben) den Skizzen zu entnehmen, ansonsten in die Skizzen einzutragen. Aufgabe Punkte 1. Verständnisfragen 15. Kurzrechnungen Inkompresible Strömung 18 Gesamt 44 Name, Vorname:... Matrikelnummer:... Wir wünschen Ihnen viel Erfolg! Jun.-Prof. K. Mulleners B. Drechsel, V. Köpplin!!Alle Aufgabenteile (X.X) sind unabhängig voneinander lösbar!!

2 1. Verständnisfragen (16 Punkte) 00 Kreuzen Sie richtige Aussagen an. Es können pro Frage mehrere Antworten richtig sein. (Nur vollständig richtig beantwortete Fragen werden gewertet.) Fluideigenschaften (1) Der Druck in einem Fluid wirkt stets...aufwärts....abwärts....in Strömungsrichtung....in alle Richtungen. Strömungsvisualisierung (1) Wann fallen Stromlinien, Bahnlinien und Streichlinien zusammen? Nie. Wenn die Strömung zweidimensional ist. Wenn die Strömung laminar ist. Wenn die Strömung stationär ist. Hydrostatik (1) Der Druck 1m unterhalb des Meeresspiegels ist ungefähr Pa Pa Pa Pa. Venturidüsen (1)...sind nur mit kompressiblen Medien verwendbar....messen den dynamischen Druck....dienen zur Massenstrombestimmung....sind frei von Reibungsverlusten. Seite 1 von 16

3 Ausfluss aus Behälter (1) Der Behälter ist geschlossen und unendlich groß. Der Untergrund ist reibungsfrei. p amb p I c 1 > c. Das Gefäß bewegt sich in positive x-richtung. c 1 (Fluid=Wasser) > c 1 (Fluid=Ethanol) Interne Strömungen () Rohr A Länge: L, Dicke: D Rohr B Länge: L, Dicke: D Rohr C Länge: L, Dicke: D Geben Sie >,< oder = an. c 1 c Fluid Der Druckverlust in Rohr A > der Druckverlust in Rohr B Der Druckverlust in Rohr A, laminar > der Druckverlust in Rohr C, laminar Der Druckverlust in Rohr A, laminar < der Druckverlust in Rohr A, turbulent Der Druckverlust in Rohr A, glatt < der Druckverlust in Rohr A, rau Hydrodynamik 1 () Geben Sie >,< oder = an. u 1 > u p 1 < p ρ a < ρ b V ρ b ρ a 1 D 1 D V y g x λ D1 > λ D Seite von 16

4 Klausur Strömungsmechanik 1 Sommersemester 01 Name, Vorname:... Matrikelnummer:... Lavaldüse (1) Ordnen Sie die Geschwindigkeitsverläufe den entsprechenden Lavaldüsen A bis D zu. B Lö su ng A C D A D B C Seite 3 von 16

5 Prandtl-Sonde (1) Massenstrom durch Öffnung A ist Null. An B wird der statische Druck gemessen. B ist der Staupunkt der Sonde. Dynamischer Druck = Druck A - Druck B Zylinderumströmung () A Bei welchen Punkten A bis E stellen sich die dargestellten Strömungen ein? C B B A E D Seite 4 von 16

6 Oberflächenspannung (1) Der sich einstellende Kontaktwinkel eines Fluidtropfens auf einer festen Oberfläche hängt ausschließlich von den Eigenschaften des Fluids und der Luft ab. Der Kontaktwinkel kann nur Werte zwischen 0 und 90 annehmen. Die Oberflächenspannung wirkt in der Grenzfläche zweier Fluide. Für eine Seifenblase ist die Differenz zwischen Innen und Außendruck gleich 4σ R, wobei σ die Oberflächenspannung und R der Radius der Seifenblase ist. Umströmte Platte (1) Geben Sie >,< oder = an. x 1 x x 1 x Wandschubspannung τ W : > Grenzschichtdicke: < Re x : < Navier-Stokes-Gleichung (1) u +u u +v u +w u = g x 1 p + µ u }{{} t }{{} x y z }{{}}{{}}{{} ρ x ρ x }{{}}{{} + u y }{{} + u }{{} z A B C D E für stationäre Strömungen ist A = 0. für den Fall einer laminaren, geschichteten Strömung zwischen zwei ebenen Platten in x-richtung ist C = D = 0. C beschreibt die Fluidzusammensetzung. Die Navier-Stokes-Gleichungen sind Impulsgleichungen. F Hydrodynamik (1) G H I Die Bernoulli-Gleichung in der Form 1 ρu 1 + p 1 + ρgh 1 = 1 ρu + p + ρgh darf nicht verwendet werden, wenn die Strömung...turbulent ist....instationär ist....reibungsfrei ist....kompressible ist. Seite 5 von 16

7 Grenzschicht an umströmtem Zylinder (1) Ordnen Sie die dargestellten Geschwindigkeitsprofile den Positionen A bis F zu. C B E D Seite 6 von 16

8 . Kurzrechenaufgaben (11 Punkte) 00 Hinweis: Die Ergebnisse der Kurzaufgaben (mit Einheiten) sind in die dafür vorgesehenen Kästen einzutragen. Geben Sie zusätzlich den Rechenweg an..1. Schalenkreuzanemometer (4 Punkte) 00 Gegeben ist ein Schalenkreuzanemometer zur Messung von Windgeschwindigkeiten. Es besteht aus 4 Halbschalen, die jeweils mit dem Abstand R mit einer Welle verbunden sind. Die Welle dreht mit der Winkelgeschwindigkeit ω. c Hinweis c c w = 1.4 c w = 0.38 Berechnen Sie die Winkelgeschwindigkeit ω in Abhängigkeit der Strömungsgeschwindigkeit c. Gegeben: R, c c Hinweis: Die Umströmung der Halbschalen III und IV kann vernachlässigt werden. Auch die Gewichtskraft ist nicht zu berücksichtigen. I R IV III Drehrichtung x ω = c R 0,318 c II M recht = M links,summe aller Momente gleich null, rotierendes aber nicht beschl. System Seite 7 von 16

9 F W c w,i = ρ w A M rechts = R 1 ρ (ω R c ) A c w,1, Relativgeschw. w einsetzen M links = R 1 ρ (ω R + c ) A c w,, Relativgeschw. w einsetzen c w,1 (c ω R) = c w, (c + ω R) mit c w,1 = 3,74 c w, 3,74 (c ω R) = (c + ω R) ± 3,74 (c ω R) = (c + ω R) ( ω R 1 + ± ) ( 3,74 = c ± ) 3,74 1 ω = c (± 3,74 1 ) R (1 + ± 3,74 ) Das negative Vorzeichen vor der Wurzel macht physikalisch keinen Sinn. ω R kann nicht größer als c sein. ω = c ( 3,74 1 ) R (1 + c ) = 0,318 3,74 R Seite 8 von 16

10 .. Ausströmen aus einem Druckbehälter (7 Punkte) 00 An einem Druckbehälter, in dem sich Luft unter einem Druck von p I = 1.5bar und einer Temperatur von T I = 300K befindet, ist eine Laval-Düse angeschlossen. Der Außendruck beträgt p A = 1bar.R = 87JK/kg und κ = 1.4 (a) welches Druckverhältnis liegt vor? (b) Wie groß ist die Dichte der Luft im Drückbehälter? (c) Welche Geschwindigkeit c A herrscht am Austritt der Düse? (d) Welche Temperatur T A herrscht am Austrittsquerschnitt? Bestimmen des kritischen Druckverhältnisses: Vorliegendes Druckverhältnis: p A pi = 3 (1) ρ I = 1.74kg/m 3 (1) c A = 56.78m/s () T A = 67.18K (3) ( pa p I ) ( ) κ κ 1 = = 0,58 (1) κ + 1 ( pa p I ) = 1 1,5 = 3 Es liegt eine unterkritische Strömung vor > im engsten Querschnitt gilt Ma < 1. Bestimmung der Dichte im Behälter nach dem idealen Gasgesetz: ρ I = p I = 1,74 kg R T I m 3 (3) Bestimmen der Geschwindigkeit am Austritt über Gleichung in der Formelsammlung auf Seite 6: ( p A = 1 κ 1 ρ 1 ( c p 1 κ p A c ) ) κ 1 κ 1 1 () (4) mit c 1 = 0. [ c A = 1 ( pa p I ) κ 1 ] κ κ p I (5) κ 1 ρ 1 c A = 56,78 m s (6) Seite 9 von 16

11 Bestimmung der Temperatur am Austritt über: mit T I = 1 + κ 1 T A Ma (7) und Einsetzen und nach T A auflösen führt auf: Ma = c a a = κrt (9) c A T A = T I κ 1 = 67.18K (10) κr (8) Seite 10 von 16

12 3. Rohrsystem (18 Punkte) 00 In einem Rohrsystem wird Wasser mit einer Pumpe gefördert. Am U-Rohr-Manometer (gefüllt mit Quecksilber) wird bei der eingestellten Strömung eine Höhendifferenz von h abgelesen. In den Steigrohren am Anfang und am Ende des Rohrleitungs-Systems wird jeweils die gleiche Füllhöhe abgelesen. Die beiden Krümmer haben jeweils einen Verlustbeiwert ξ K. Hinweise: Verluste durch Strömungserweiterungen und -verengungen werden nicht berücksichtigt. Verluste durch Rohrreibung werden nur in den Rohren mit dem kleinern Durchmesser d berücksichtigt. Druckverlust in Rohrströmungen: ) Gegeben: p = ρ ( u ξ i + i k λ k L k d 1 = 1m d = 0.5m L = 4m h = 0.3m h 1 = 1.8m h = 0.8m g = 9.81m/s η = 0.95 ξ K = 0. ρ W = 1000kg/m 3 ρ Hg = 13500kg/m 3 ν W = m /s λ laminar = 0.03 λ turbulent = 0.0 (a) Berechnen Sie die Änderung des statischen Druckes p 1 p 9 mit Hilfe des Höhenunterschiedes der Quecksilbersäule. Der Druckverlust durch Reibung zwischen den Punkten 9 und 1 kann vernachlässigt werden. D k Symbolschreibweise Wert p 1 p 9 g h(ρhg ρ W ) 36.8kPa (b) Bestimmen Sie die Strömungsgeschwindigkeit u. Symbolschreibweise Wert g h(ρ Hg ρ W) ) u ] ρ W [1 ( d d m/s (c) Herrscht laminare Strömung im Rohr mit dem Durchmesser d? Die Strömung ist , weil Seite 11 von 16

13 (d) Wie groß ist der Volumenstrom durch das Rohrsystem? Symbolschreibweise Wert V π 4 d u 1.74m 3 /s (e) Welcher Druckanstieg muss durch die Pumpe erzeugt werden? Nur Reibungsverluste im Rohr mit dem Durchmesser d werden berücksichtigt. Symbolschreibweise ρg(h 1 + h ) + p Pumpe ( ) ρ u ξ K + L d λ t Wert 47.46kPa (f) Welche Wellenleistung (Wirkungsgrad η) muss an der Pumpe dafür aufgebracht werden? Ṗ Symbolschreibweise V p Pumpe η Wert kw (g) Tragen Sie qualitativ den Verlauf des statischen Druckes entlang eines Stromfadens zwischen den Punkten 1 und 1 in das gegebene Diagramm ein. Seite 1 von 16

14 pmax p0 pmin y x Seite 13 von 16

15 Für die Zahlenwerte gibt es anteilig insgesamt Punkte. a) Änderung des statischen Drucks p 1 p 9 Hydrostatik am U-Rohr-Manometer b) Strömungsgeschwindigkeit u Bernoulli 9 1 Konti: Einsetzen in Bernoulli p 9 + h ρ Hg g = p 1 + h ρ W g (11) u p 1 p 9 = h ρ Hg g h ρ W g (1) p 1 p 9 = h g (ρ Hg ρ W ) 1 (13) = Pa (14) + p 9 + g ρ z 9 = u 1 W + p 1 + g z 1 ρ W u 1 (15) u 1 = p 1 p 9 (16) ρ W ρ W A 9 d u 1 = u = u A 1 u ṁ 1 = ṁ 9 (17) u 1 A 1 ρ W =u A 9 ρ W (18) d 1 1 (19) u 1 = p 1 p 9 (0) ρ W u ( u d ) d1 = p 1 p 9 (1) ρ W [ ( d ) ] 1 = p 1 p 9 () ρ W u d 1 u = p 1 p [ 9 ρ ( W d ) ] (3) 1 d 1 u = h g (ρ Hg ρ W ) [ ρ ( W d ) ] (4) 1 d1 h g (ρ Hg ρ W ) u = [ ρ ( W d ) ] 1 (5) 1 d1 u = 8.859m/s (6) Seite 14 von 16

16 c) laminar oder turbulent? Re = u d ν (7) = > (8) turbulent (9) d) Volumenstrom V d) Druckanstieg durch die Pumpe Bernoulli 1 1 c 1 = c 1 p 1 = p 1 Definition der Höhen: p V 1 gemäß gegebener Formel V = u A 9 (30) = u π 1 (31) 4 d = 1.74m 3 /s (3) g z 1 c 1 + p 1 ρ P 1 ρ V = c 1 + p 1 ρ + g z 1 + p V 1 ρ, da gleicher Querschnitt, da gleicher Höhenstand in der Wassersäule (siehe Aufgabenstellung) z 1 = 0 z 1 = h 1 + h 1 (33) P 1 ρ = ρ W g z 1 + p V 1 (34) p = ρ ( u ξ i + i k λ k L k D k ) u = u, da Reibung nur um dünnen Rohr (35) λ k = λ t, da Strömung turbulent (siehe Aufgabenteil c ) (36) p V 1 = ρ u ( ) L ξ k + λ t D P 1 V = p Pumpe = ρ W g (h 1 + h ) + ρ ( ) L u ξ k + λ t D 1 (37) = 47481Pa (38) Seite 15 von 16

17 f) Wellenleistung P 1 P 1 = V p Pumpe η 1 (39) = 86965W (40) g) Druckverlauf Insgesamt 5 Punkte. Je Teilstück 0,5 Punkte; Anfang und Ende zusammen 0,5 Punkte. y p max p 0 p min x Seite 16 von 16

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Strömungsmechanik 1 WS 2010/2011

Klausur Strömungsmechanik 1 WS 2010/2011 Klausur Strömungsmechanik 1 WS 2010/2011 09. März 2011, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2016, Beginn 16:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2016, Beginn 16:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfstel sind: Klausur Strömungsmechanik Frühjahr 206 0. März 206, Beginn 6:00 Uhr Taschenrechner nicht programmierbar) Lineal und Schreibmaterial nur dokumentenecht

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012

Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012 Klausur und Lösung Strömungsmechanik 1 Frühjahr 2012 29. Februar 2012, Beginn 15:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Klausur Strömungsmaschinen I SoSe 2008

Klausur Strömungsmaschinen I SoSe 2008 Klausur Strömungsmaschinen I SoSe 2008 9 August 2008, Beginn 3:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung)

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

Klausur Strömungsmechanik 1 Herbst August 2015, Beginn 16:00 Uhr

Klausur Strömungsmechanik 1 Herbst August 2015, Beginn 16:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfstel sind: Klausur Strömungsmechanik Herbst 205 25. August 205, Beginn 6:00 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

Klausur Strömungslehre

Klausur Strömungslehre ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 10. 3. 2005 1. Aufgabe (6 Punkte) Ein Heißluftballon mit ideal schlaffer Hülle hat beim Start ein Luftvolumen V 0. Während er in die Atmosphäre

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Klausur Technische Strömungslehre z g

Klausur Technische Strömungslehre z g ...... (Name, Matr.-Nr, Unterschrift) Klausur Technische Strömungslehre 11. 03. 2009 1. Aufgabe (12 Punkte) p a z g Ein Forscher taucht mit einem kleinen U-Boot der Masse m B = 3200kg (Taucher und Boot)

Mehr

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom)

Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (Diplom) (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik I (Bachelor) & Technische Strömungslehre (iplom) 1. Aufgabe (10 Punkte) 09. 08. 2013 In einem mit einer Flüssigkeit der ichteρ 1 gefüllten zylindrischen

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 05.10.2004 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Vorname:... (Punkte) Matr.-Nr.:... HS I / HS II / IP / WI Aufg. 1)... Beurteilung:... Platz-Nr.:...

Mehr

Technische Strömungsmechanik für Studium und Praxis

Technische Strömungsmechanik für Studium und Praxis Albert Jogwich Martin Jogwich Technische Strömungsmechanik für Studium und Praxis 2. Auflage

Mehr

Kapitel 2 Übungsaufgaben

Kapitel 2 Übungsaufgaben Fluidmechanik Hydrostatik Fluide unter Beschleunigung 1 Kapitel 2 Übungsaufgaben Üb. 2-1: Berechnung des Drucks am Boden in einem nach oben offenen, mit Wasser gefüllten Behälters geg.: T = 12 C (Wassertemperatur

Mehr

Hydromechanik. /2009 Studienbegleitende Prüfung in den Studiengängen Bauingenieurwesen (DPO 1995 und 2004) Wirtschaftsingenieurwesen WS 2008/200

Hydromechanik. /2009 Studienbegleitende Prüfung in den Studiengängen Bauingenieurwesen (DPO 1995 und 2004) Wirtschaftsingenieurwesen WS 2008/200 Bauingenieurwesen Universität Kassel- D-09 Kassel I nstit ut für Geot ec hnik und Geohydraulik Prof. Dr. rer. nat. Manfred Koch Universität Kassel Kurt-Wolters-Str. 5 Kassel kochm@uni-kassel.de fon + 9-56

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild Nur für Lehrzwecke Siehe www.tfh-berlin.de/emr/rechtliche Hinweise 006 Darstellung von Teilchenbewegungen SL/Krz Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme Vektorbild Stromlinienbild gerichtetes

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt.

Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt. Aufgaben Hydraulik I, 21. August 2009, total 150 Pkt. Aufgabe 1: Klappe (13 Pkt.) Ein Wasserbehälter ist mit einer rechteckigen Klappe verschlossen, die sich um die Achse A-A drehen kann. Die Rotation

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Besprechung am /

Besprechung am / PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 016/17 Übungsblatt 9 Übungsblatt 9 Besprechung am 10.01.017 / 1.01.017 Aufgabe 1 Dakota Access Pipeline. Die Dakota Access Pipeline ist eine

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Hydromechanik WS 2012/201. /2013 Studienbegleitende Prüfung (Bachelor, Bau- und Umweltingenieurwesen)

Hydromechanik WS 2012/201. /2013 Studienbegleitende Prüfung (Bachelor, Bau- und Umweltingenieurwesen) Bauingenieur- und Umweltingenieurwesen wesen Universität Kassel- D-34109 Kassel Institut für Geotechnik und Geohydraulik Prof. Dr. rer. nat. Manfred Koch Universität Kassel Kurt-Wolters-Str. 3 34125 Kassel

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Klausur Strömungsmaschinen SS 2004

Klausur Strömungsmaschinen SS 2004 Universität Hannover Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume Klausur Strömungsmaschinen SS 2004 24. August 2004, Beginn 13:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind:

Mehr

Prüfungstrainer Strömungsmechanik

Prüfungstrainer Strömungsmechanik Valentin Schröder Prüfungstrainer Strömungsmechanik Klausur-und Übungsaufgaben mit vollständigen Musterlösungen STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis Seite 1. Viskose Fluideigenschaften 1 Aufgabe

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Aufgabe 1 Hydrostatik (23 Pkt.)

Aufgabe 1 Hydrostatik (23 Pkt.) Aufgabe 1 Hydrostatik (23 Pkt.) R 1 Das in der Abbildung dargestellte Reservoir besteht aus zwei hydraulisch miteinander verbundenen Kammern. In der geneigten Trennwand ist ein Kolben eingebaut, der sich

Mehr

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor reibungsfreie Strömung: Grenzschicht A(x) u a ρu a x = p x A(x) x

Mehr

"Hydrodynamik - Leistung einer Pumpe"

Hydrodynamik - Leistung einer Pumpe HTBL Wien 10 "Hydrodynamik" - Bernoulli-Gleichun Seite 1 von 6 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at "Hydrodynamik - Leistun einer Pumpe" Mathematische / Fachliche Inhalte in Stichworten: Lösen

Mehr

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt.

Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgaben Hydraulik I, 10. Februar 2011, total 150 Pkt. Aufgabe 1: Hydrostatik (13 Pkt.) Eine senkrechte Wand trennt zwei mit unterschiedlichen Flüssigkeiten gefüllte Behälter der selben Grundfläche (Breite

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2014/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Versuch D4: Volumenstrommessung

Versuch D4: Volumenstrommessung Versuch D4: Volumenstrommessung 1 Einführung und Grundlagen Bei technischen Prozessabläufen ist die Prozessüberwachung von zentraler Bedeutung für den korrekten Ablauf und für die Sicherheitstechnik. Sollen

Mehr

Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen

Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen Klausur Kraft- und Arbeitsmaschinen- Teil Strömungsmaschinen Prof. Dr.-Ing. Th. Carolus - Universität Siegen 2. Termin WS 2006/07 Aufgabe 1 2 3 4 Σ Name: Punkte Punktezahl Matr.-Nr.: /8 /12 /10 /10 /40

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

Prüfungsteilnehmer (bitte in Druckbuchstaben ausfüllen):

Prüfungsteilnehmer (bitte in Druckbuchstaben ausfüllen): EIGNUNGSFESTSTELLUNG Masterstudiengang Maschinenbau Prüfungsteilnehmer (bitte in Druckbuchstaben ausfüllen): Name: Vorname: Geburtstag: Nr. Prüfungstermin: Dauer der Prüfung: Umfang: Zugelassene Hilfsmittel:

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Klausur Strömungsmechanik 1 Herbst 2010

Klausur Strömungsmechanik 1 Herbst 2010 Klausur Strömungsmehanik Herbst 8. ugust, Beginn 5:3 Uhr Prüfungszeit: 9 Minuten Zugelassene Hilfsmittel sind: ashenrehner (niht rogrammierbar) FD-Formelsammlung (ohne handshriftlihe Ergänzungen) Lineal

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr

Probeklausur zur Vorlesung Physik I (WS 09/10)

Probeklausur zur Vorlesung Physik I (WS 09/10) Modalitäten zur Klausur: Bitte legen Sie Ihren Personalausweis und Studentenausweis sichtbar auf den Tisch. Beschriften Sie jedes Blatt mit Name und Vorname. Benutzen Sie für jede Aufgabe das vorgesehene

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Ende WS 01/0 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Mechanik der Flüssigkeiten und Gase

Mechanik der Flüssigkeiten und Gase BIBLIOTHEK DES TECHNIKERS UXMT Mechanik der Flüssigkeiten und Gase Technische Physik von Horst Herr VERLAG EUROPA-LEHRMITTEL Nourney, Vollmer GmbH & Co. KLEINER WERTH 50 POSTFACH 201815 5600 WUPPERTAL

Mehr

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten.

Physik 1 Mechanik Tutorium Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Seite1(6) Übung 7 Gravitation Schweredruck - Wasser. Diesmal 6 Aufgaben, davon 2 sehr leicht zu beantworten. Aufgabe 1 ISS (IRS) Die ISS (IRS) hat eine Masse von 455 t und fliegt aktuell in einer mittleren

Mehr

Nach Prüfungsordnung 1989

Nach Prüfungsordnung 1989 Fachprüfung: Prüfer: Kolben und Strömungsmaschinen Hauptstudium II Prof. Dr. Ing. H. Simon Prof. Dr. Ing. P. Roth Tag der Prüfung: 10.08.2001 Nach Prüfungsordnung 1989 Vorgesehene Punkteverteilung: Strömungsmaschinen:

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

Kompressible Strömungen

Kompressible Strömungen Kompressible Strömungen Problemstellungen: - Wie lassen sich Überschallströmungen realisieren? - Welche Windkanalgeometrie ist notwendig? - Thermodynamische Beziehungen in Überschallströmungen? - Unterschall

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 Physik PHYSIK /B SS WS 07 03/4 Inhalt der Vorlesung. Teilchen. Einzelne Teilchen B. Mehrteilchensysteme Starrer Körer - Bewegung Translation Rotation lüssigkeiten Hydrostatik Hydrodynamik Physik PHYSIK

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung E Flüssigkeiten In der Hydrostatik wird das

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Professur Strömungsmaschinen

Professur Strömungsmaschinen HTW Dresden V-SM Praktikum Kreiselpumpe Professur Strömungsmaschinen 1. Einführende Erläuterungen Kreiselpumpen sind Arbeitsmaschinen zur Förderung von Flüssigkeiten, die aber auch Gase und Feststoffe

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Prüfungsordnung 2002

Prüfungsordnung 2002 Universität Duisburg-Essen Fachbereich für Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Fluiddynamik/Strömungsmaschinen Prüfer: Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel Datum der

Mehr

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm 0,09 0,0 0,07 0,0 0,0 0,0 0,03 0,0 0,01 0,01 0,01 0,01 0,010 0,009 0,00 0,007 hydraulisch rau (k >0) d/k = 0 λ = 0 Re Grenzkurve 00 00 laminar turbulent 0 000 A 000 10 000 0 000 0 000 hydraulisch glatt

Mehr

1. Aufgabe (10 Punkte)

1. Aufgabe (10 Punkte) Teil: Technische Hydromechanik 11.02.2009, Seite 1 NAME:.... MATR.NR.:... Aufgabe 1 2 3 4 5 6 Summe Note Mögliche 10 15 25 20 25 25 120 Punktzahl Erreichte Punktzahl Bearbeitungszeit 120 Minuten (1 Punkt

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008

Klausur. Physik für Pharmazeuten und Biologen (PPh) WiSe 07/ Februar 2008 Klausur Physik für Pharmazeuten und Biologen (PPh) WiSe 07/08 11. Februar 2008 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min Bitte NICHT mit Bleistift schreiben! Nur Ergebnisse auf

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Musterklausur Physik und Umwelt I

Musterklausur Physik und Umwelt I Musterklausur Physik und Umwelt I Teil Punkte A B C Gesamt Note Bitte beachten Sie: Teil A: 20 P. / Teil B: 25 P. Teil C: 45 P. Gesamtpunktzahl: 90 P. 1. Während der Klausur sind alle Aufzeichnungen (auch

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 Summe Punkte 12 15 9 9 15 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und Matr.

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Vorlesung 23.11.2016 Kapitel 7: Mechanik verformbarer Körper, Hydrostatik Dr. Björn Wonsak 1 Organisatorisches: Prüfung: Alle formen von Taschenrechner erlaubt Speichern

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Physik 2 am

Physik 2 am Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung

Mehr

Probeklausur Physik für Ingenieure 1

Probeklausur Physik für Ingenieure 1 Probeklausur Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer

Mehr

7. Schichtenströmung 7-1. Aufgabe 7.1 [3]

7. Schichtenströmung 7-1. Aufgabe 7.1 [3] 7-1 7. Schichtenströmung Aufgabe 7.1 [3] Auf einer Unterlage befindet sich eine Ölschicht der Dicke h = 2 mm, auf der eine Platte mit der Geschwindigkeit v 0 gleitet. Ein Druckanstieg in Bewegungsrichtung

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr