Vorlesung Solarenergie: Terminplanung

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Solarenergie: Terminplanung"

Transkript

1 Vorlesung Solarenergie: Terminplanung Termin Thema Dozent Di Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle Sonne Di Halbleiterphysikalische Grundlagen Lemme r photovoltaischer Materialien Fr Kristalline pn -Solarzellen Heering Di Elektrische Eigenschaften Heering Di Optimierung kristalliner Solarzellen Lemmer Fr Technologie kristalliner Solarzellen Lemmer Di Anorganische Lemmer Dünnschichtsolarze llen Di Organische Dünnschichtsolarzellen Lemmer Di Photovoltaische Systeme I Heering Di Photovoltaische Systeme I Heering Fr Solarkollektoren Heering Di Passive Sonnenenergienutzung Heering Di Solarthermische Kraftwerke Lemmer Di Energiespeicher/Solarchemie Heering Di Kostenrechnungen zu Solaranlagen Heering Di Energieszenarien Lemmer Di Third Generation Photovoltaics Lemmer Exkursion findet im SS statt!

2 Third Generation Photovoltaics Next generation: eher quantitativ als qualitativ. Begriff wird nicht einheitlich benutzt. Unterscheidung nach M. Green: Gen. I: Wafer-basierte einkristalline Solarzellen Gen. II: Dünnschichtsolarzellen (stark reduzierte Kosten, moderate Wirkungsgrade) Gen. III: Wirkungsgradsteigerung um einen Faktor 2-3 Quelle: M. Green

3 3. Gen PV Investionskosten in /W können durch niedrige Kosten oder durch hohe Wirkungsgrade reduziert werden Quelle: RWESchottSolar

4 Third Generation Photovoltaics -Solarzellen mit potentiell niedrigen Herstellungskosten wurden bereits diskutiert Vorlesung über organische Solarzellen Hier: Welche neuen Konzepte können zur Wirkungsgradsteigerung eingesetzt werden? Bereits diskutierte Beispiele: Tandemsolarzellen, Konzentratorsolarzelle Eine grundlegendere Frage: Wie groß ist der maximale Wirkungsgrad einer Solarzelle?

5 19th century thermodynamics U: Innere Energie des Systems (für das ideale Gas z.b. U=3/2*nRT) Q: zugeführte Wärme W: am System verrichtete Arbeit Verknüpfung von Q, Q und U erfolgt über den 1. Hauptsatz der Thermodynamik (Energieerhaltung): U = Q + W oder Die Innere Energie eines abgeschlossenen Systems ist konstant. oder Es gibt kein perpetuum mobile erster Art.

6 die Sache mit der Entropie warmes Reservoir T W Q Maschine W Nach dem 1. Hauptsatz möglich: Reservoir gibt Q ab und Maschine leistet Arbeit W (geht leider nicht...) 2. Hauptsatz der Thermodynamik: Wünschenswert ist eine mathematische Formulierung, Ein Prozeß, bei dem lediglich Wärme aus einem Reservoir entnommen und vollständig in Arbeit umgewandelt wird, ist unmöglich. ein Maß für die Freiwilligkeit eines Vorgangs Entropie S

7 p die Sache mit der Entropie z.b. Reservoir: T isotherme Expansion A E Während der Zustandsänderung von A nach E wird vom System Wärme Q aufgenommen: Infinitesimales Teilstück: (reversible Änderung) ds = δq T rev (reduzierte Wärmemenge) alternative Formulierung des 2. Hauptsatzes: Bei einer freiwilligen Zustandsänderung nimmt die Entropie eines abgeschlossenen Systems zu. oder S>0 V

8 Ein Beispiel für die Entropieerhöhung: Temperaturausgleich T 2 =200 T 1 = S 2 = Q T 2 S 1 = Q T 1 S 1 Q T1 1 T 2 > 0.. allein. nach dem ersten HS wäre auch möglich!

9 Bedeutung für den Wirkungsgrad von Solarzellen In Flüssen ausgedrückt: Quelle: M.Green Energiefluss E S verrichtete Arbeit pro Zeiteinheit W Wärmefluss Q Entropiefluss Q / TA zusätzliche Entropiefluss durch Umwandlung S G

10 Bedeutung für den Wirkungsgrad von Solarzellen Q Energiefluss: Entropiefluss: E S = W + Q Q S s + S G = T A Quelle: M.Green Daher: E S = W + TA( S s + S G) und damit gilt für den Wirkungsgrad: W T TS η = = E T S S E S A A G 1 (maximal für S = 0) G

11 Der Carnot-Wirkungsgrad von Solarzellen Damit ergibt sich maximal: W T A TS A G 300K η = = 1 = 1 = 95%!! E T S 6000K S E S Aber: - ohne Entropieproduktion kein Strahlungsfluß - Carnot-Wirkungsgrad kann nicht erreicht werden Es muss auch die Abstrahlung des Absorbers berücksichtigt werden: Quelle: M.Green

12 Der Landsberg-Wirkungsgrad von Solarzellen η = TA T L 93,3% für TA 300K 3T + 3T = = S 4 A 4 S Quelle: M.Green Dieser Ansatz berücksichtigt immer noch nicht die Entropieproduktion durch Absorption und Emission.

13 Der maximale solarthermische Wirkungsgrad für einen Schwarzkörperabsorber Quelle: M.Green Für den Wirkungsgrad gilt: 4 TC TA TAS' G η 1 1 = 4 TS TC E S S ' G ist hierbei die zusätzliche Entropieproduktion jenseits der Absorptions/Emissions- Entropieproduktion Maximaler Wirkungsgrad für T C =2544 K: 85,4 % Quelle: P. Würfel

14 Solarthermische Energiekonversion: Viele unterschiedliche Absorber auf etwas unterschiedlichen Temperaturen Quelle: M.Green Hiermit könnte der Wirkungsgrad von 85,4% auf 86,8 % gesteigert werden.

15 Verluste in der Solarzelle Quelle: M. Green

16 Wirkungsgrade der Solarzelle η = abs j j Eabs, Ee, infallend η Thermalisierung εe + ε h = ω abs Quelle: P. Würfel η Thermodynamisch = ε eu e oc + ε h FF = j mp sc U j U mp oc Insgesamt ergibt sich: η = η η η FF = abs Thermalisierung Ther modynamisch j mp j U mp Ee, inf

17 Wirkungsgrade der Solarzelle Für eine optimierte (theoretische) Silizium-Solarzelle gilt: j, η abs = j Eabs Ee, infallend η η η abs = 0.74 Thermalisierung Ther modynamisch FF = 0.89 η = 0.28 = 0.67 = 0.64 η η Thermalisierung Thermodynamisch εe + ε h = ω = ε e abs eu oc + ε h FF = j mp sc U j U mp oc Insgesamt ergibt sich: η = η η η FF = abs Thermalisierung Ther modynamisch j mp j U mp Ee, inf

18 Die Rolle des Spektrums -die Fläche des Rechtecks gibt die maximale Energie an, die entnommen werden kann. Quelle: P. Würfel abs ( ), η ε = G j j E abs Ee, infallend

19 Das optimale Bandgap (AM0) Quelle: P. Würfel

20 Das optimale Bandgap (AM1) Quelle: P. Würfel

21 Strahlende Rekombination Zu η Thermodynamisch = ε eu e oc + ε h -strahlende Rekombination ist aufgrund der Umkehrbarkeit von Emission und Absorption unvermeidlich Quelle: M.Green

22 Die ideale Solarzelle Quelle: M.Green Idee: Solarzelle kriegt nur Licht mit der passenden Energie E G, alles andere wird reflektiert und wieder vom Absorber absorbiert.

23 Thermophotovoltaische Energiekonversion: Solarzellen mit Carnotwirkungsgrad Quelle: P. Würfel A: Schwarzkörperzwischenabsorber -Konzentrische Solarzellen mit einheitlicher Bandlücke -auf der Oberfläche Interferenzfilter, die nur Photonen mit hν=e G durchlassen -alle anderen Photonen werden zurückreflektiert und reabsorbiert Probleme: Absorption im Interferenzfilter, thermische Stabilität

24 Der maximale solarthermische Wirkungsgrad für einen Schwarzkörperabsorber Quelle: M.Green Für den Wirkungsgrad gilt: 4 TC TA TAS' G η 1 1 = 4 TS TC E S S ' G ist hierbei die zusätzliche Entropieproduktion jenseits der Absorptions/Emissions- Entropieproduktion Maximaler Wirkungsgrad für T C =2544 K: 85,4 % Quelle: P. Würfel

25 Tandem-Zellen-Konzepte Der Multicolor-Absorber mit anschliessendem Interferenzfilter-Ansatz ist äquivalent dazu, direkt die monochromatische Strahlung durch Solarzellen in elektrische Energie umzuwandeln. Quelle: M.Green

26 Quelle: M.Green Damit ergeben sich dann beim unendlichen Tandem wieder die maximalen 86,8%.

27 Heiße Ladungsträger (Hot carriers) Quelle: M.Green Idee: Ladungsträger mit großer Überschußenergie abgreifen, bevor sie thermalisieren.

28 Heiße Ladungsträger (Hot carriers) Quelle: P. Würfel Schema: Nur heiße Ladungsträger können in einem engen Intervall den absorbierenden Halbleiter verlassen. In den äußeren Halbleitern mit sind sie dann kalt und können dann ohnen Energieverlust abgeführt werden.

29 Heiße Ladungsträger (Hot carriers)

30 Stoßionisation Quelle: M.Green

31 Stoßionisation - das Konzept der Stoßionisation führt aus fundamentalen thermodynamischen Gründen auf eine ähnliche Situation wie die hot carrier cell. Quelle: P. Würfel - falls Stoßionisation auftritt, muss auch der Umkehrprozess Augerrekombination berücksichtigt werden -gesamte absorbierte Energie bleibt im elektronischen System - keine Thermalisierungsverluste

32 Stoßionisation Quelle: P. Würfel - im Prinzip ergibt sich wieder die ideale solarthermische Maschine -keine Verluste ans Gitter, daher kann auch bei E G =0 Energie entnommen werden

33 2-Stufenanregung

34 2-Stufenanregung Quelle: M.Green

35 2-Stufenanregung Quelle: M.Green

36 Ausblick Realität PV ist wissenschaftlich spannend und wirtschaftlich erfolgreich!

I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle Sonne Fr. 04.11. - verschoben wg. Krankheit

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie

Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

2. Hauptsatz der Thermodynamik

2. Hauptsatz der Thermodynamik Clausius (850): Wärme kann nie von selbst von einem Körper niederer emperatur auf einen Körper höherer emperatur übergehen Planck (905): Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren,

Mehr

Neue Solarzellenkonzepte

Neue Solarzellenkonzepte Neue Solarzellenkonzepte Prof. Dr. Peter Würfel Universität Karlsruhe peter.wuerfel@ phys.uni-karlsruhe.de Einleitung Der beste Wirkungsgrad, mit dem Solarzellen nicht-konzentrierte Sonnenstrahlung umgewandelt

Mehr

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION

ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION ENERGIE AUS SONNENLICHT: PHYSIK DER ENERGIEKONVERSION Dieter Neher Physik weicher Materie Institut für Physik und Astronomie Potsdam-Golm Potsdam, 23.4.2013 Weltweiter Energiebedarf Energiebedarf (weltweit)

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor

3.6 Kreisprozesse. System durchläuft eine Folge von Zustandsänderungen im pv-diagramm, so dass Anfangszustand = Endzustand. Bsp: 4-Takt Ottomotor System durchläuft eine Folge von Zustandsänderungen im p-diagramm, so dass Anfangszustand Endzustand. Bsp: 4-at Ottomotor Die eingesetzten nutzbaren Energien/Arbeiten ergeben sich ieder aus den jeeiligen

Mehr

Termin Thema Dozent Lemmer/Heering Aspekte/Energiequelle Sonne. Dünnschichtsolarzellen

Termin Thema Dozent Lemmer/Heering Aspekte/Energiequelle Sonne. Dünnschichtsolarzellen Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2004/2005 Stand: 11.10.2004 Termin Thema Dozent Di. 19.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen.

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen. Perpetuum Mobile I Perpetuum mobile erster Art: Unter einem perpetuum mobile erster Art versteht man eine Vorrichtung, deren Teile, einmal angeregt, nicht nur dauernd in Bewegung bleiben, sondern dabei

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Solarzellen- und Solarmodulherstellung: Überblick über den Stand der Technik und aktuelle Entwicklungen

Solarzellen- und Solarmodulherstellung: Überblick über den Stand der Technik und aktuelle Entwicklungen SOLTEC, Hameln, 14. September 2006 Solarzellen- und Solarmodulherstellung: Überblick über den Stand der Technik und aktuelle Entwicklungen Rüdiger Meyer Institut für Solarenergieforschung GmbH Hameln /

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Praktikum II ST: Stirling-Motor

Praktikum II ST: Stirling-Motor Praktikum II ST: Stirling-Motor Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 14. April 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 26.01.2006 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle Sonne Fr. 04.11. - verschoben wg. Krankheit

Mehr

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve

Isotherme 3. 4 Adiabate 2 T 1. Adiabate Isotherme T 2. Arbeit nach außen = eingeschlossene Kurve Carnotscher Kreisprozess Carnot Maschine = idealisierte Maschine, experimentell nicht gut zu realisieren. Einfacher Kreisprozess aus zwei isothermen und zwei adiabatischen Zustandsänderungen. Arbeit nach

Mehr

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2 1. Seminarvortrag Graduiertenkolleg 1 Seminarvortrag Graduiertenkolleg Neue Hochleistungswerkstoffe für effiziente Energienutzung Ein Beitrag zu Dünnschichtsolarzellen auf der Basis von Cu(In, Ga)Se 2

Mehr

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik Kapitel 1 Die absolute emperaturskala und der 3. Hauptsatz der hermodynamik 1.1 Die allgemeine Definition der absoluten emperatur Bisher haben wir die emperatur über die thermische Zustandsgleichung pv

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 3.1 Vorläufige Terminplanung Vorlesung Solarenergie WS 2007/2008 Stand: 21.10.2007 Vorlesung Termin Thema Dozent Nr. 1 Di. 23.10.07 Wirtschaftliche Aspekte/Energiequelle

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 04. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 04. 06.

Mehr

Entropie und Wärme im Karlsruher Physikkurs

Entropie und Wärme im Karlsruher Physikkurs Entropie und Wärme im Karlsruher Physikkurs Beitrag zum Treffen am 10. Jan. 2014 in Frankfurt Jörg Hüfner, Universität Heidelberg Temperatur, Wärme und Entropie sind Größen, die in die Physik eingeführt

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik 1 Einleitung 2 Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4.1 Formulierung des 2. Hauptsatzes Es ist unsere Alltagserfahrung, dass man physikalischen Prozessen in der Regel eine natürliche Zeitabfolge

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung

Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Thermodynamische Hauptsätze, Kreisprozesse Vorlesung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermisches Gleichgewicht und nullter Hauptsatz 3 2 Arbeit, Wärme und erster Hauptsatz

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

2. Hauptsätze der Thermodynamik

2. Hauptsätze der Thermodynamik . Hautsätze der hermodynamik ekannt sind vor allem der I. und II. Hautsatz der hermodynamik. Man sricht auch vom 0. Hautsatz und es gibt zusätzlich den III. Hautsatz. 0. HS: Einführung der emeratur als

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

ENERGIE AUS SONNENLICHT PHYSIK DER ENERGIEKONVERSION

ENERGIE AUS SONNENLICHT PHYSIK DER ENERGIEKONVERSION ENERGIE AUS SONNENLICHT PHYSIK DER ENERGIEKONVERSION Dieter Neher Physik weicher Materie Institut für Physik und Astronomie Potsdam-Golm Moderne Themen der Physik Potsdam, 16.4.2014 Weltweiter Energiebedarf

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Vorlesung Solarenergie: Terminplanung

Vorlesung Solarenergie: Terminplanung Vorlesung Solarenergie: Terminplanung Vorlesung Termin Thema Dozent Nr. 1 Di. 24.10.06 Wirtschaftliche Aspekte/Energiequelle Lemmer/Heering Sonne 2 Di. 31.10.06 Halbleiterphysikalische Grundlagen Lemmer

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

I.2: Vorlesung Solarenergie: Terminplanung

I.2: Vorlesung Solarenergie: Terminplanung I.2: Vorlesung Solarenergie: Terminplanung Termin Thema Dozent Di. 20.4. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle Sonne Do. 22.4. Halbleiterphysikalische Grundlagen Lemmer photovoltaischer

Mehr

PC I Seminar Benjamin Smith. Erzeugung von Tiefsttemperaturen/Adiabatische Entmagnetisierung T= 0?

PC I Seminar Benjamin Smith. Erzeugung von Tiefsttemperaturen/Adiabatische Entmagnetisierung T= 0? PC I Seminar Benjamin Smith Erzeugung von Tiefsttemperaturen/Adiabatische Entmagnetisierung T= 0? Inhalt Der Absolute Nullpunkt Der dritte Hauptsatz der Thermodynamik/ das Nernstsche Wärmetheorem Energetische

Mehr

Shockley und Queisser [1] haben 1961 als obere

Shockley und Queisser [1] haben 1961 als obere Photovoltaik Solarzellen der dritten Generation Grenzen des Wirkungsgrades von Solarzellen Peter Würfel und Thorsten Trupke Die Grenze für den Wirkungsgrad von gewöhnlichen Solarzellen liegt Lehrbüchern

Mehr

Physik II Übung 7, Teil I - Lösungshinweise

Physik II Übung 7, Teil I - Lösungshinweise Physik II Übung 7, Teil I - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 15.06.2012 Franz Fujara Aufgabe 1 Das Kühlen eines Klotzes Klaus spielt gern mit Bauklötzen, doch irgendwann fängt

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

über die Vorlesung Solarenergie Übersicht Termin Thema Dozent Lemmer/Heering Aspekte/Energiequelle Sonne Lemmer

über die Vorlesung Solarenergie Übersicht Termin Thema Dozent Lemmer/Heering Aspekte/Energiequelle Sonne Lemmer Übersicht über die Vorlesung Solarenergie Termin Thema Dozent Di. 19.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle Sonne Di. 26.10. Halbleiterphysikalische Grundlagen Lemmer photovoltaischer

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Energieverbrauch ~ Energieentwertung

Energieverbrauch ~ Energieentwertung 2.7 Entropie Irreversible Vorgänge: Der wohl grundlegendste Satz der Physik ist der Energieerhaltungssatz. Dieser besagt, dass Energie jeglicher Art in einem abgeschlossenen System niemals verbraucht werden

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Solar; unendliche Energie

Solar; unendliche Energie Solar; unendliche Energie Dr. Mohammad Djahanbakhsh Solarenergie Als Sonnenenergie oder Solarenergie bezeichnet man die von der Sonne durch Kernfusion erzeugte Energie, die in Teilen als elektromagnetische

Mehr

1.1: Empfohlene Literatur

1.1: Empfohlene Literatur 1. Einleitung 1.1 1.0 Allgemeine Informationen: Prof. Dr.Uli Lemmer Lichttechnisches Institut, Geb. 30.34, Raum 223 Tel: 0721-608-2531 E-Mail: uli.lemmer@lti.uni-karlsruhe.de, URL: www.lti.uni-karlsruhe.de

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Die neue Heizung ohne Gas und Öl

Die neue Heizung ohne Gas und Öl HOCHSCHULE BIBERACH Die neue Heizung ohne Gas und Öl Seite 1 Energieverbrauch der deutschen Haushalte Quelle: Gesellschaft für Rationelle Energieverwendung e.v. Seite 2 Gefährliche Schere zwischen Weltnutzenergiebedarf

Mehr

Willkommen. Welcome. Bienvenue. Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien

Willkommen. Welcome. Bienvenue. Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien Willkommen Bienvenue Welcome Raumlufttechnik Wärmepumpe Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik Prof. Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de Dipl.-Ing. Christian

Mehr

Versuch Nr. 9. Thermodynamische Kreisprozesse: Der Stirling-Motor

Versuch Nr. 9. Thermodynamische Kreisprozesse: Der Stirling-Motor Versuch Nr. 9 Thermodynamische Kreisprozesse: Der Stirling-Motor Kreisprozesse Als Kreisprozesse bezeichnet man in der Thermodynamik eine Abfolge von Zustandsänderungen, die periodisch ablaufen und immer

Mehr

Adiabatische Expansion. p. 30

Adiabatische Expansion. p. 30 Adiabatische Expansion p. 30 Isotherme Kompression p. 31 Adiabatische Kompression p. 32 PV Diagramm und Arbeit im Carnotzyklus 1. Isotherme Expansion 2. Adiabatisch Expansion 3. Isotherme Kompression 4.

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks:

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: Teilaufgaben: 1 Welche Energieformen werden den Bauteilen Dampferzeuger, Turbine, Generator und Verbraucher

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr