PWP 1 Signalentdeckungstheorie

Größe: px
Ab Seite anzeigen:

Download "PWP 1 Signalentdeckungstheorie"

Transkript

1 PWP 1 Signalentdeckungstheorie Signal Detection Theory WiSe 2006

2 Motivation Terminologie Beispiel Goldstein Einfaches Modell in der Psychologie Mensch als Detektor/Entscheidungsträger Empfindlichkeit/Entdeckbarkeit des Reizes Antworttendenz Psychophysisches Modell Beschreibung nicht beobachtbarer Prozesse Verhaltensvorhersage

3 Motivation Terminologie Beispiel Goldstein Einfaches Modell Anwendungsbeispiele Psychophysik: 1000 Hz-Ton aus weißem Rauschen Diagnostik: bestimmter Befund vorhanden? Seismologie: Steht Erdbeben bevor? Zeugenaussagen: Person vor Ort?

4 Motivation Terminologie Beispiel Goldstein Einfaches Modell Bsp. Detektion von Tönen im Rauschen 2 VPn sollen reagieren, wenn Töne anwesend sind Je 100 Durchgänge Rauschen, 100 Durchgänge Signale VP1 detektiert 90, VP2 60 Signale Hört VP1 besser? VP1 sagt in 40 Fällen, in denen kein Ton da war (Rauschdurchgänge, Catch-Trials) Ja es war ein Ton da VP2 irrt sich nur bei 10 Rauschdurchgängen Wer ist jetzt besser?

5 Motivation Terminologie Beispiel Goldstein Einfaches Modell Terminologie Rauschdurchgänge (noise trials): Nur Zufallsrauschen Versuchsdurchgänge (trials) ohne Signal Signaldurchgänge (signal trials) Versuchsdurchgänge mit Signal und Rauschen Antwort ja auf Signaldurchgang = Treffer (hit) trial type Antwort Nein Ja Rauschen korrekte Ablehnung falscher Alarm Signal Auslassung (miss) Treffer (hit)

6 Motivation Terminologie Beispiel Goldstein Einfaches Modell Zusammenfassung der VPn im Bsp. von Goldstein Je 100 Trials nur Rauschen 100 Trials mit Signal VP 1 tendiert zum Ja -Sagen VP 1 VP 2 Nein Ja Nein N S Ja N S 40 60

7 Motivation Terminologie Beispiel Goldstein Einfaches Modell Änderung der Antworttendenz Gleicher Versuch mit VP2 aber Geld für richtige Antworten (und Abzug für falsche) liberalere Antworten Belohnung von korrekter Zurückweisung konservative Antworten (wenig Ja ) Neutrale Antworten, wenn alles gleich belohnt. Payoff-Matrix VP2-Antwort Gewinn Nein Ja Nein Ja N +20e -20e S -200e +200e e N +200e -20e 99 1 S -20e +20e e N +20e -20e S -20e +20e e

8 Motivation Terminologie Beispiel Goldstein Einfaches Modell Falscher Alarm vs. Treffer 1 VP2 neut VP1 lib VP1 neut P H VP2 kons VP1 kons P F

9 Motivation Terminologie Beispiel Goldstein Einfaches Modell 2. Beispiel: 1000 Hz-Ton Je 100 Trials nur Rauschen 100 Trials mit Signal 1. Durchgang: Treffer wichtig (Belohnung für hit) 2. Durchgang: kein falscher Alarm (Belohnung für correct rejection) 1. Durchgang 2. Durchgang Nein Ja Nein Ja N N S S 45 55

10 Motivation Terminologie Beispiel Goldstein Einfaches Modell Relative Häufigkeiten Überführung in rel. Häufigkeiten Anz. Treffer Trefferrate (hit rate): h = Anz. Signaldurchgänge falscher Alarm Rate (false-alarm rate): f = Anz. false alarm Anz. Rauschdurchgänge Nein Ja N S Nein Ja und N S h f 1. Durchg Durchg Redundante Werte: Auslassungsrate, Fehlerrate (miss rate)= 1 h Rate der korr. Zurückweisungen (corr. rej. rate)= 1 f

11 Motivation Terminologie Beispiel Goldstein Einfaches Modell Modell der Entscheidung Noise Signal x Verteilung der Zufallsvariablen X bei Rauschdurchgängen (Xn ) und Signaldurchgängen (Xs )

12 Motivation Terminologie Beispiel Goldstein Einfaches Modell Setzen des Kriteriums Nein λ Ja Noise Signal Zufallsvar. x > λ Entscheidung Ja false-alarm rate: P F = P(Ja noise) = P(X > λ noise) = P(X n > λ) = R λ hit rate: P F = P(Ja signal) = P(X > λ signal) = P(X s > λ) = R λ f n(x)dx = 1 F n(λ) f s (x)dx = 1 F s (λ)

13 Motivation Terminologie Beispiel Goldstein Einfaches Modell Variation von λ λl λ λ k Noise Signal Veränderung von λ wirkt auf h und f gemeinsam λk : (konservativ) Vermeidung von false alarm, aber wenig Treffer λ l : Viele Treffer, aber auch viele false alarm Geringere Überlappung der Dichtefunktionen f n und f s höhere Trennschärfe

14 Motivation Terminologie Beispiel Goldstein Einfaches Modell Modell der statistischen Entscheidung Modell zur Bestimmung interpretierbarer Variablen 3 Voraussetzungen Gesamte Information in einer Zahl repräsentiert Diese Zahl ist Zufallsvariable Überschreiten einer festen Schwelle Entscheidung ja Analogie zur NHST (Nullhypothesensignifikanztest)

15 Das Gaußsche Modell Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter X n N (µ n, σ n ) und X s N (µ s, σ s ) Skalierung: µ n = 0, σ n = 1 X n N (0, 1) und X s N (µ s, σ s ) Rechtfertigung für Normalverteilungsannahme Gut untersuchte Eigenschaften Zentraler Grenzwertsatz Empirische Befunde Bei speziellen Fragestellungen andere Verteilung

16 Die Normalverteilung Einführung Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Dichte an der Stelle x :φ(x) = 1 σ e 1 x µ 2 ( σ ) 2 2π Akkumulierte Dichte: Φ(x) = x φ(t) dt mit µ Erwartungswert und σ Standardabweichung der Verteilung

17 Das univariate Gaußsche Modell Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Problem Ein Experiment 2 Meßwerte (f, h) aber 3 unbekannte Variablen (λ, µ s, σ s ) Setze σ s = σ n = 1, µ s wird zu d X n N (0, 1) und X s N (d, 1) Vorsicht: Echte Einschränkung, sollte überprüft werden.

18 Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Beispiel zur Berechnung von d und λ Nein Ja 2. Beispiel oben, 1. Durchg. N f = 0.46 S h = P F = 0.46 = 1 F n (λ) = 1 Φ(λ) Φ(λ) = = 0.54 λ = Z(1 0.46) = Z(0.54) = X s N (d, 1) λ d = Z(1 0.82) = Z(0.18) = Kombination: d = λ (λ d ) = = 1.02

19 Schätzer für d und λ Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter 1. Z(1 f ) = ˆλ symm. ˆλ = Z(f ) 2. Z(1 h) = ˆλ ˆd Z(h) = ˆd ˆλ 3. ˆd = Z(h) Z(f )! Vorsicht! Vorzeichen überprüfen!

20 Fortsetzung 2. Beispiel Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Beispiel oben, rel. H. 1. Durchgang: ˆd = 1.02; ˆλ = 0.10 h f 1. Durchg Durchg Durchgang: ˆd = 1.00; ˆλ = 0.88 ˆλ = Z(f ) = Z(0.19) = 0.88 ˆd = Z(h) Z(f ) = Z(0.55) Z(0.19) = 0.12 ( 0.88) = 1.00 ˆd ˆλ 1. Durchg Durchg

21 Erhöhung der Entdeckbarkeit Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Weniger Überlappung der Verteilungen durch Erhöhung von d Verringerung der Varianz σ 2

22 Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Messung des Bias (Tendenz/Neigung) Ja-Sage-Tendenz von Kriterium λ und d abhängig. zentriertes Kriterium: λ center = λ 1 2 d = 1 2 [Z(f ) + Z(h)] Wahrscheinlichkeitsverhältnis (likelihood ratio): β = fs(λ) f = φ(λ d ) n(λ) φ(λ)

23 Verlauf β Einführung Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Asymmetrisch von am Schnittpunkt [ ] von f s und f n log(β) = log fs(λ) f n(λ) = log(f s (λ)) log(f n (λ))

24 Der ideale Beobachter Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Maximierung der Wahrscheinlichkeit richtiger Antwort s Wahrscheinlichkeit für Signaltrial 1 s = Wahrscheinlichk. für Noisetrial P C = P(signal) P(Ja signal) + P(noise) P(Nein noise) = s[1 F s (λ)] + (1 s)f n (λ) Pc λ * Kriterium λ

25 Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Optimales Kriterium Optimales Krit. λ für β = fs(λ ) f n(λ ) = 1 s s s = 1 2 f s(λ ) = f n (λ ) Schnittpunkt der Kurven. : Wettchance (odds) Mehr Signaltrials: s > s s < 1 f s (λ ) < f n (λ ) Das Kriterium verschiebt sich nach links (wird liberaler)

26 Pay-off Matrix Einführung Allgemeines Modell Univariates Modell Berechnung Kriterium und d Bias und Likelihood Idealer Beobachter Kosten und Nutzen der Verschiedenen Möglichkeiten ungleich Optimierung des Erwartungswertes des Gesamtwerts E(V ) = P(Signal + Ja)V (hit) + P(Signal + Nein)V (miss) +P(Noise + Ja)V (false alarm) +P(Noise + Nein)V (cor. rej.) V (miss) und V (f. a.) meist negativ

27 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell Graph zu 2. Bespiel 2. Bsp.: h f ˆd ˆλ 1. Durchg Durchg λ 1 λ 2 d'

28 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell Umsetzung in -Graph Trefferrate gegen Falschen Alarm auftragen Punkte auf einer Linie, weil d gleich groß 1 S1 P H S P F

29 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell Eine Isosensitivitätskurve!! " # $ % & ' ( ) +, -. / : ; < = A B C D E C F G H I J K L I G K G M N G I H I O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c

30 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell Isosensitivitätslinien bei versch. d! " # $ % & ' ( ) ( * +, -. / : ; < ; = ; : A B C D E F G F H I J K L M F N O P Q

31 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell Isokriteriumslinien (λ fest) P H P F

32 Graphische Darstellung Isosensitivitätskurven Univar. Gaußsches Modell im univ. Gaußschen Modell Es gilt P F = λ f n(x)dx und P H = λ f s(x)dx im univariaten Fall also P F = 1 Φ(λ) = Φ( λ) und P H = 1 Φ(λ d ) = Φ(d λ) Durch einsetzen gewinnt man die Kurve: P H = Φ(d + Φ 1 (P F )) Nur durch Tabellen oder Computerprogramme errechenbar

33 Weiterführende Themen Literatur Weitere Themen -Gerade mit Gaußschen Koordinaten Ungleiche Varianzen σ 2 n und σ 2 s Verschiedene Alternativen zu d Anwendung auf Vertrauensskalen forced-choice Paradigma Diskrimination, bzw. Identifikation Likelihoods und Bayesscher Beobachter

34 Weiterführende Themen Literatur Literatur Goldstein, E. B. (1997) Wahrnehmungspsychologie. Spektrum Akademischer Verlag, Heidelberg, erste Auflage. Macmillan, N. A. (2002) Signal detection theory. In: Pashler, H. (Hrsg.), Stevens Handbook of Experimental Psychology, Band 1, Kapitel 2, Seiten Wiley, New York, dritte Auflage. Wickens, T. D. (2002) Elementary Signal Detection Theory. Oxford University Press, New York, New York.

Anwendungsbeispiele. PWP 1 Signalentdeckungstheorie. Bsp. Detektion von Tönen im Rauschen. SDT in der Psychologie

Anwendungsbeispiele. PWP 1 Signalentdeckungstheorie. Bsp. Detektion von Tönen im Rauschen. SDT in der Psychologie Anwendungsbeispiele PWP 1 Signalentdeckungstheorie Signal Detection Theory Psychophysik: 1000 Hz-Ton aus weißem Rauschen Diagnostik: bestimmter Befund vorhanden? Seismologie: Steht Erdbeben bevor? Zeugenaussagen:

Mehr

SDT in der Psychologie. PWP 1 Signalentdeckungstheorie. Bsp. Detektion von Tönen im Rauschen. Anwendungsbeispiele

SDT in der Psychologie. PWP 1 Signalentdeckungstheorie. Bsp. Detektion von Tönen im Rauschen. Anwendungsbeispiele in der Psychologie PWP 1 Signalentdeckungstheorie Signal Detection Theory WiSe 2007 Mensch als Detektor/Entscheidungsträger Empfindlichkeit/Entdeckbarkeit des Reizes Antworttendenz Psychophysisches Modell

Mehr

* Neigung, Bereitschaft * Erwartung, Überzeugung. gesucht:

* Neigung, Bereitschaft * Erwartung, Überzeugung. gesucht: Wahrnehmung/Signalentdeckung: Reaktionsneigung Annahme: Wahrnehmung als Diskriminationsfähigkeit Wahrnehmung als Urteilsfähigkeit der Sinne über die Sinne hinausgehende, kognitive Fähigkeit Entdecken +

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Gustav Fechner ( )

Gustav Fechner ( ) Psychophysik Gustav Fechner (1801 1887) religiöser Hintergrund Fechner wollte den Nachweis erbringen, dass Körper und Geist eine Einheit bilden Wollte mathematische Beziehung zwischen subjektiven Empfindungen

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Einleitung. Klassische Methoden zur Messung von Empfindungsschwellen. Psychophysische Skalierung. Theorie der Signaldetektion

Einleitung. Klassische Methoden zur Messung von Empfindungsschwellen. Psychophysische Skalierung. Theorie der Signaldetektion Marino Menozzi & Adrian Schwaninger Überblick Klassische Methoden zur Messung von Empfindungsschwellen Psychophysische Skalierung Anwendungsbeispiele der stheorie Medizinische Diagnostik (z.b. Röntgendiagnostik)

Mehr

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern

Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Kalmanfiter (1) Typische Situation für den Einsatz von Kalman-Filtern Vorlesung Robotik SS 016 Kalmanfiter () Kalman-Filter: optimaler rekursiver Datenverarbeitungsalgorithmus optimal hängt vom gewählten

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Aufzählungen Modul 3 Wahrnehmung Die Signalentdeckungstheorie

Aufzählungen Modul 3 Wahrnehmung Die Signalentdeckungstheorie Thema 13 Themenbereich: II Konzepte und Methoden der Wahrnehmungspsychologie Das Paradigma der Signalentdeckung Das psychophysische Modell der SDT Das Leistungsmaß d' und das Reaktionsneigungsmaß ( bias")

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population

Thema der Stunde. I. Die Form der Stichprobenkennwerteverteilung. II. Schlüsse von der Stichprobe auf die Population Thema der Stunde I. Die Form der Stichprobenkennwerteverteilung II. Schlüsse von der Stichprobe auf die Population III. t-test für unabhängige und abhängige Stichproben Stichprobenkennwerte Population

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/31 Kruschwitz/Husmann (2012) Finanzierung und Investition 2/31 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München

Mehr

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele

Teil IX. Verteilungen an Daten anpassen ( Maximum-Likelihood-Schätzung. fitten ) Woche 7: Maximum-Likelihood-Schätzung. Lernziele Woche 7: Maimum-Lielihood-Schätzung Patric Müller ETHZ Teil IX Verteilungen an Daten anpassen ( fitten ): Maimum-Lielihood-Schätzung WBL 17/19, 12.06.2017 Wahrscheinlicheit

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Konfirmatorische Faktorenanalyse. Regressionsmodelle für Politikwissenschaftler

Konfirmatorische Faktorenanalyse. Regressionsmodelle für Politikwissenschaftler Konfirmatorische Faktorenanalyse Regressionsmodelle für Politikwissenschaftler Was ist ein Faktor? Faktor oder latente Variable Regressionsmodelle für Politikwissenschaftler Konfirmatorische Faktorenanalyse

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Box-Plots. Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.rechnung. Beschreibende Statistik 174 / 258

Box-Plots. Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.rechnung. Beschreibende Statistik 174 / 258 174 / 258 Box-Plots Ziel: übersichtliche Darstellung der Daten. Boxplot zu dem Eingangsbeispiel mit n=5: Descr_Boxplot0.sas Prozeduren: UNIVARIATE, GPLOT, BOXPLOT 174 / 258 Box-Plots Ziel: übersichtliche

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Kapitel VI - Maximum-Likelihood-Schätzfunktionen

Kapitel VI - Maximum-Likelihood-Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VI - Maximum-Likelihood-Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Kapitel 1: Deskriptive und explorative Statistik Empirische Verteilungsfkt (S15): Quantile (S24): Bei Typ7 1.Pkt = 0 Danach 1/(n-1) Median (S24):

Mehr

j K j d j m j h j f j

j K j d j m j h j f j Für eine stetige Zufallsvariable X in einem Intervall [ a ; b ] kann X jeden beliebigen Wert annehmen. Die Wahrscheinlichkeiten werden in diesem Fall nicht mehr wie bei einer diskreten Zufallsvariable

Mehr

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1)

4.1 Stichproben, Verteilungen und Schätzwerte. N(t) = N 0 e λt, (4.1) Kapitel 4 Stichproben und Schätzungen 4.1 Stichproben, Verteilungen und Schätzwerte Eine physikalische Messung ist eine endliche Stichprobe aus einer Grundgesamtheit, die endlich oder unendlich sein kann.

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Vorlesung im Sommersemester 2008 H. Kolanoski Humboldt-Universität zu Berlin Inhaltsverzeichnis Literaturverzeichnis iii 1 Grundlagen der Statistik 3 1.1 Wahrscheinlichkeit............................

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr