0, sonst. heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X Po(λ). Es gilt. x! e λ, x {0, 1,...} 1 Wahrscheinlichkeitsrechnung 164

Größe: px
Ab Seite anzeigen:

Download "0, sonst. heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X Po(λ). Es gilt. x! e λ, x {0, 1,...} 1 Wahrscheinlichkeitsrechnung 164"

Transkript

1 1.6.2 Poisson Verteilung (vgl. z.b. Fahrmeir et. al)) 1.6 Wichtige Verteilungsmodelle Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte, deviante Verhaltensmuster, etc.). Definition [Poisson-Verteilung] Eine Zufallsvariable X mit der Wahrscheinlichkeitsfunktion f(x) =P (X = x) = { λ x x! e λ, x {0, 1,...} 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X Po(λ). Es gilt E(X) =λ, Var(X) =λ 1 Wahrscheinlichkeitsrechnung 164

2 1.6 Wichtige Verteilungsmodelle Die Poisson-Verteilung kann auch als Näherungsmodell für eine Binomialverteilung gesehen werden, wenn die Anzahl der Versuchswiederholungen n groß und die Trefferwahrscheinlichkeit π sehr klein ist (seltene Ereignisse!). Der Erwartungswert λ ist dann gleich n π. Es gilt also abgekürzt geschrieben X B(n, π) = n groß π klein X Po(n π) Hat man mehrere unabhängige Poisson-Prozesse, also dynamische Simulationen, bei denen die Ereignisanzahl Poisson-verteilt ist, also z.b. verschiedene deviante Verhaltensmuster, so ist die Gesamtanzahl der einzelnen Ereignisanzahlen wieder Poisson-verteilt: genauer gilt 1 Wahrscheinlichkeitsrechnung 165

3 1.6 Wichtige Verteilungsmodelle Satz [Addition von Poisson-verteilten Zufallsvariablen] Sind X Po(λ X ),Y Po(λ Y ) voneinander unabhängig, so gilt X + Y Po(λ X + λ Y ). Beachte, die Unabhängigkeit (genauer die Unkorreliertheit, siehe später) ist wesentlich. Hat man als Extremfall, z.b. zwei Ereignisse bei denen das eine das andere voraussetzt (Scheidungen, Scheidungen mit Streit um das Sorgerecht für Kinder), so ist die Gesamtzahl nicht mehr Poisson-verteilt. Es muss gelten, wenn X + Y Poisson-verteilt wäre: Var(X + Y )=E(X + Y )=E(X)+E(Y ) = Var(X)+Var(Y ), was aber bei abhängigen (korrelierten) X und Y verletzt ist. 1 Wahrscheinlichkeitsrechnung 166

4 Bsp Wichtige Verteilungsmodelle Max geht gerne auf Open-Air Festivals. Im Durchschnitt trifft er dort 6 weibliche Bekannte und 3 männliche Bekannte. a) Wie groß ist die Wahrscheinlichkeit, dass er genau 6 weibliche Bekannte trifft? b) Wie groß ist die Wahrscheinlichkeit, dass er mindestens einen männlichen Bekannten trifft? c) Berechnen Sie die Wahrscheinlichkeit, das er weder einen männlichen noch eine weibliche Bekannte trifft, auf 2 verschiedene Arten. Diskutieren Sie eventuell zu treffende Zusatzannahmen. 1 Wahrscheinlichkeitsrechnung 167

5 1.6.3 Normalverteilung 1.6 Wichtige Verteilungsmodelle Die Normalverteilung ist wohl das wichtigste Verteilungsmodell der Statistik, denn viele Zufallsvariablen sind (nach Transformation) (ungefähr) normalverteilt. beim Zusammenwirken vieler zufälliger Einflüsse ist der geeignet aggregierte Gesamteffekt oft approximativ normalverteilt (Zentraler Grenzwertsatz, Kap. 1.7). die asymptotische Grenzverteilung, also die Verteilung bei unendlich großem Stichprobenumfang, typischer statistischer Größen ist die Normalverteilung. 1 Wahrscheinlichkeitsrechnung 168

6 Definition Wichtige Verteilungsmodelle Eine stetige Zufallsvariable X heißt normalverteilt mit den Parametern μ und σ 2,in Zeichen X N(μ, σ 2 ), wenn für ihre Dichte gilt: f(x) = ( 1 exp 1 ) 2π σ 2σ2(x μ)2,x R (1.2) und standardnormalverteilt, in Zeichen X N(0; 1), falls μ =0und σ 2 =1gilt (π ist hier die Kreiszahl π = ). 1 Wahrscheinlichkeitsrechnung 169

7 1.6 Wichtige Verteilungsmodelle Grundlegende Eigenschaften: a) Die Dichte der Standardnormalverteilung wird oft mit ϕ(x) bezeichnet, also ϕ(x) = 1 exp ( 12 ) 2π x2 und die zugehörige Verteilungsfunktion mit Φ(x) = x ϕ(u)du b) Φ(x) lässt sich nicht in geschlossener Form durch bekannte Funktionen beschreiben = numerische Berechnung, Tabellierung. c) μ und σ 2 sind genau der Erwartungswert und die Varianz, also, wenn X Nμ, σ 2 ), dann E(X) =μ und Var(X) =σ 2. 1 Wahrscheinlichkeitsrechnung 170

8 1.6 Wichtige Verteilungsmodelle d) Die Dichte ist symmetrisch um μ, d.h. f(μ x) = f(μ + x). 1 Wahrscheinlichkeitsrechnung 171

9 1.6 Wichtige Verteilungsmodelle Grundlegendes zum Rechnen mit Normalverteilungen: Es gilt: Φ( x) =1 Φ(x) (folgt aus der Symmetrie der Dichte). Gilt X N(μ, σ 2 ), so ist die zugehörige standardisierte Zufallsvariable standardnormalverteilt. Z = X μ σ Entscheidende Eigenschaft für die Tabellierung: Es reicht die Standardnormalverteilung zu tabellieren. Normalverteilte Zufallsvariablen mit Erwartungswert μ und Varianz σ 2 muss man, wie unten erläutert, zuerst standardisieren, dann kann man aber auch die Standardnormalverteilungstabelle verwenden. Tabelliert sind die Werte der Verteilungsfunktion Φ(z) =P (Z z) für z 0. Ablesebeispiel: Φ(1.75) = 1 Wahrscheinlichkeitsrechnung 172

10 1.6 Wichtige Verteilungsmodelle Funktionswerte für negative Argumente: Φ( z) =1 Φ(z) Berechnung bei allgemeiner Normalverteilung: Wie bestimmt man bei X N (μ, σ 2 ) die Wahrscheinlichkeiten P (X a) aus der Tabelle der Standardnormalverteilung? Abgeschlossenheit gegenüber Linearkombinationen: Seien X 1 und X 2 unabhängig und X i N(μ i,σ 2 i ),i=1, 2. Ferner seien b, a 1,a 2 feste reelle Zahlen. Dann gilt Y 1 := a 1 X 1 + b N(a 1 μ 1 + b; a 2 1σ 2 1) Y 2 := a 1 X 1 + a 2 X 2 N(a 1 μ 1 + a 2 μ 2 ; a 2 1σ a 2 2σ 2 2). Das Ergebnis lässt sich auf mehrere Summanden verallgemeinern. 1 Wahrscheinlichkeitsrechnung 173

11 1.6 Wichtige Verteilungsmodelle Bsp [aus Fahrmeir et al.] Schultischhöhe: Y N(μ Y,σY 2 ), μ Y = 113, σy 2 =16 Stuhlhöhe: X N(μ X,σX 2 ), μ X =83, σx 2 =25 optimale Sitzposition: Tisch zwischen 27 und 29 cm höher als Stuhl. Wie groß ist die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Paar zueinander gut passt? Differenz: Y X soll zwischen [27, 29] sein. Definiere also V := Y X = Y +( X) Wegen X N( 83, 25) gilt dann V N(113 83, ) = N (30, 41). 1 Wahrscheinlichkeitsrechnung 174

12 Außerdem ergibt sich durch Standardisieren: 1.6 Wichtige Verteilungsmodelle 27 V V V Damit lässt sich die gesuchte Wahrscheinlichkeit bestimmen: P (27 V 29) = P ( V ) = = Φ( 0.156) Φ( 0.469) = = (1 Φ(0.156)) (1 Φ(0.469)) = = = Wahrscheinlichkeitsrechnung 175

13 Gerade in der Soziologie beobachtet man häufig große Stichprobenumfänge. Was ist das Besondere daran? Vereinfacht sich etwas und wenn ja was? Kann man Wahrscheinlichkeitsgesetzmäßigkeiten durch Betrachten vielfacher Wiederholungen erkennen? 1 Wahrscheinlichkeitsrechnung 176

14 1.7.1 Das i.i.d.-modell Betrachtet werden diskrete oder stetige Zufallsvariablen X 1,...,X n, die i.i.d. (independently, identically distributed) sind, d.h. die 1) unabhängig sind und 2) die gleiche Verteilung besitzen. Ferner sollen der Erwartungswert μ und die Varianz σ 2 existieren. Die Verteilungsfunktion werde mit F bezeichnet. Dies bildet insbesondere die Situation ab in der X 1,...,X n Merkmals X bei reiner Zufallsauswahl sind. eine Stichprobe eines 1 Wahrscheinlichkeitsrechnung 177

15 Jede Funktion von X 1,...,X n ist wieder eine Zufallsvariable, z.b. das arithmetische Mittel oder die Stichprobenvarianz 1 n n i=1 X i S2 = 1 n n (X i X) 2 i=1 Vor dem Ziehen der Stichprobe: Wahrscheinlichkeitsaussagen möglich = Wahrscheinlichkeitsrechnung anwenden Gerade bei diesen Zufallsgrößen ist die Abhängigkeit von n oft wichtig, man schreibt dann X n, S 2 n Sind X 1,...,X n jeweils {0, 1}-Variablen, so ist Xn gerade die empirische relative Häufigkeit von Einsen in der Stichprobe vom Umfang n. Notation: H n 1 Wahrscheinlichkeitsrechnung 178

16 später: Induktionsschluss Durchführen eines Zufallsexperiments // Ziehen einer Stichprobe IMMER Wahrheit S planung VORHER NACHHER W sktsrechn. Wahre Urliste Zufallsvariablen Realisationen x 1,..., x N X 1,...,Xn x 1,...,xn }{{} neue Urliste eines Merkmals (z.b. X i Einkommen der i-ten Person) Auswertung, z.b. S ziehung arithmetisches Mittel der Stichprobe arithmetisches Mittel der Stichprobe x X = n 1 ni=1 X i x = n 1 ni=1 x i arithmetisches Mittel in der Grundgesamtheit Stichprobenvarianz empirische Varianz 1 s 2 X S 2 = n 1 ni=1 (X i X) 2 s 2 = n 1 ni=1 (x i x) 2 Varianz in der Grundgesamtheit empirische Verteilungsfunktion als empirische Verteilungsfunktion Zufallsvariable in jedem Punkt x F (x) F X 1,...,X n n (x) = n 1 {i : X i x} F X 1,...,X n n (x) = n 1 {i : x i x} empirische Verteilungsfunktion in der Grundgesamtheit 1 Gehört nicht zur Grundgesamtheit; hier für empirische Version 1 Wahrscheinlichkeitsrechnung 179

17 1.7.2 Das schwache Gesetz der großen Zahlen Betrachte für wachsenden Stichprobenumfang n: X 1,...,X n i.i.d. X i {0, 1} binäre Variablen mit π = P (X i =1) H n = die relative Häufigkeit der Einsen in den ersten n Versuchen. 1 Wahrscheinlichkeitsrechnung 180

18 s[1:i] s[1:i] s[1:i] :i 1:i 1:i s[1:i] s[1:i] s[1:i] :i 1:i 1:i 1 Wahrscheinlichkeitsrechnung 181

19 Beobachtungen: 1 Wahrscheinlichkeitsrechnung 182

20 Theorem [Theorem von Bernoulli] Seien X 1,...,X n, i.i.d. mit X i {0, 1} und P (X i =1)=π. Dann gilt für n H n = 1 n i=1 X i (relative Häufigkeit der Einsen ) und beliebig kleines ɛ>0 lim n P ( H n π ɛ) =1 Anschauliche Interpretation: Die relative Häufigkeit eines Ereignisses nähert sich praktisch sicher mit wachsender Versuchszahl an die Wahrscheinlichkeit des Ereignisses an. 1 Wahrscheinlichkeitsrechnung 183

21 Zwei wichtige Konsequenzen: 1) Häufigkeitsinterpretation von Wahrscheinlichkeiten: 2) Induktion: Man kann dieses Ergebnis nutzen, um Information über eine unbekannte Wahrscheinlichkeit (π ˆ= Anteil in einer Grundgesamtheit) zu erhalten. Sei z.b. π der (unbekannte) Anteil der SPD Wähler, so ist die relative Häufigkeit in der Stichprobe eine gute Schätzung für π. Je größer die Stichprobe ist, umso größer ist die Wahrscheinlichkeit, dass die relative Häufigkeit sehr nahe beim wahren Anteil π ist. 1 Wahrscheinlichkeitsrechnung 184

22 Das Ergebnis lässt sich verallgemeinern auf Mittelwerte beliebiger Zufallsvariablen: Schwaches Gesetz der großen Zahl: Gegeben seien X 1,...,X n i.i.d. Zufallsvariablen mit (existierendem) Erwartungswert μ und (existierender) Varianz σ 2. Dann gilt für n X n := 1 n i=1 X i und beliebiges ɛ>0: lim P ( X n μ ɛ) =1 n Schreibweise: P X n μ ( Stochastische Konvergenz, X n konvergiert in Wahrscheinlichkeit gegen μ.) Konsequenz für die Interpretation des Erwartungswerts: 1 Wahrscheinlichkeitsrechnung 185

23 1.7.3 Der Hauptsatz der Statistik Satz [Hauptsatz der Statistik] Seien X 1,...,X n i.i.d. mit Verteilungsfunktion F und sei F n (x) die empirische Verteilungsfunktion der ersten n Beobachtungen. Mit D n := sup x F n (x) F (x), gilt für jedes c>0 lim P (D n >c)=0. n 1 Wahrscheinlichkeitsrechnung 186

24 Interpretation: (1:lx)/lx (1:lx)/lx (1:lx)/lx sort(x) sort(x) sort(x) Normal CDF (1:lx)/lx (1:lx)/lx function(x) pnorm(x, 0, 1) (x) sort(x) sort(x) x 1 Wahrscheinlichkeitsrechnung 187

25 1.7.4 Der zentrale Grenzwertsatz Gibt es für große Stichprobenumfänge Regelmäßigkeiten im Verteilungstyp? Gibt es eine Standardverteilung, mit der man oft bei großen empirischen Untersuchungen rechnen kann? Damit kann man dann insbesondere Fehlermengen einheitlich behandeln. 1 Wahrscheinlichkeitsrechnung 188

26 Satz [Zentraler Grenzwertsatz] Seien X 1,...,X n i.i.d. mit E(X i )=μ und Var(X i )=σ 2 > 0 sowie Z n = 1 n n i=1 ( ) Xi μ. σ Dann gilt: Z n ist asymptotisch standardnormalverteilt, in Zeichen: Z n a N(0; 1), d.h. es gilt für jedes z Für die Eingangsfragen gilt also: lim P (Z n z) =Φ(z). n Ja, wenn man die Variablen geeignet mittelt und standardisiert, dann kann man bei großem n näherungsweise mit der Normalverteilung rechnen. Dabei ist für festes n die Approximation umso besser, je symmetrischer die ursprüngliche Verteilung ist. 1 Wahrscheinlichkeitsrechnung 189

27 Histogram of res Histogram of res Histogram of res Density Density Density res res res Histogram of res Histogram of res Histogram of res Density Density Density res res res 1 Wahrscheinlichkeitsrechnung 190

28 Anwendung des zentralen Grenzwertsatz auf X: Gemäß dem Gesetz der großen Zahlen weiß man: Xn μ Für die Praxis ist es aber zudem wichtig, die konkreten Abweichungen bei großem aber endlichem n zu quantifizieren, etwa zur Beantwortung folgender Fragen: Gegeben eine Fehlermarge ε und Stichprobenumfang n: Wie groß ist die Wahrscheinlichkeit, dass X höchstens um ε von μ abweicht? Gegeben eine Fehlermarge ε und eine Sicherheitswahrscheinlichkeit γ: Wie groß muss man n mindestens wählen, damit mit mindestens Wahrscheinlichkeit γ das Stichprobenmittel höchstens um ε von μ abweicht (Stichprobenplanung)? 1 Wahrscheinlichkeitsrechnung 191

29 Aus dem zentralen Grenzwertsatz folgt: 1 n n i=1 ( ) Xi μ σ = n i=1 X i nμ n σ = n X n nμ n σ = X n μ σ/ n a N(0, 1) oder auch ( ) a X n N μ, σ2. n 1 Wahrscheinlichkeitsrechnung 192

30 Wichtige Anwendung: Approximation der Binomialverteilung Sei X B(n, π). Kann man die Verteilung von X approximieren? Damit lässt sich der zentrale Grenzwertsatz anwenden: 1 n n i=1 ( ) Y i π π(1 π) = 1 n Yi n π π(1 π) = Yi n π n π(1 π) a N(0, 1) und damit so dass X E(X) Var(X) a N(0, 1) ( ) x n π P (X x) Φ n π(1 π) falls n groß genug. 1 Wahrscheinlichkeitsrechnung 193

31 Es gibt verschiedene Faustregeln, ab wann diese Approximation gut ist, z.b. n π 5 und n (1 π) 5 n π(1 π) 9 Stetigkeitskorrektur: Durch die Approximation der diskreten Binomialverteilung durch die stetige Normalverteilung geht der diskrete Charakter verloren. Man erhält als Approximation P (X = x) 0 für jedes x N, was gerade für mittleres n unerwünscht ist. Benutze deshalb bei ganzzahligem x N. P (X x) =P (X x +0.5) Man erhält als bessere Approximation P (X x) Φ ( ) x +0.5 nπ nπ(1 π) 1 Wahrscheinlichkeitsrechnung 194

32 P (X = x) Φ ( x +0.5 nπ nπ(1 π) ) Φ ( ) x 0.5 nπ nπ(1 π) Fiktives Beispiel: Ein Politiker ist von einer gewissen umstrittenen Maßnahme überzeugt und überlegt, ob es taktisch geschickt ist, zur Unterstützung der Argumentation eine Mitgliederbefragung zu dem Thema durchzuführen. Er wählt dazu 200 Mitglieder zufällig aus und beschließt, eine Mitgliederbefragung zu riskieren, falls er in der Stichprobe mindestens 52% Zustimmung erhält. Wie groß ist die Wahrscheinlichkeit, in der Stichprobe mindestens 52% Zustimmung zu erhalten, obwohl der wahre Anteil nur 48% beträgt? 1 Wahrscheinlichkeitsrechnung 195

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

1.5.4 Quantile und Modi

1.5.4 Quantile und Modi 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.70. [Quantil, Modus] Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

1.6 Wichtige Verteilungsmodelle

1.6 Wichtige Verteilungsmodelle 1.6 Wichtige Verteilungsmodelle 1.6 Wichtige Verteilungsmodelle Wir behandeln hier nur Binomial-, Poisson- und Normalverteilung. Einige weitere Verteilungsmodelle werden direkt dort eingeführt, wo sie

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) n heisst für uns n gross Literatur Kapitel 7 * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Zusammenfassung PVK Statistik

Zusammenfassung PVK Statistik Zusammenfassung PVK Statistik (Diese Zusammenfassung wurde von Carlos Mora erstellt. Die Richtigkeit der Formeln ist ohne Gewähr.) Verteilungen von diskreten Zufallsvariablen Beschreibung Binomialverteilung

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

Statistik II für Wirtschaftswissenschaftler

Statistik II für Wirtschaftswissenschaftler Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn

Referenten: Gina Spieler, Beatrice Bressau, Laura Uhlmann Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn 8.5 Eindimensionale stetige Zufallsvariablen Eine Zufallsvariable X heißt stetig, wenn es eine Funktion f(x) gibt, sodass die Verteilungsfunktion von X folgende Gestalt hat: x F(x) = f(t)dt f(x) heißt

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Häufigkeitsverteilungen

Häufigkeitsverteilungen Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.

Mehr

3 Statistische Schätzungen

3 Statistische Schätzungen 3 Statistische Schätzungen In der Wahrscheinlichkeitstheorie geht es darum, über Modelle Ereignisse zu bewerten bzw. Voraussagen über ihr Eintreten zu treffen. Sind nun umgekehrt Daten bekannt, und wollen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Übungsrunde 11, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 11, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, 1 4.36 Übungsrunde 11, Gruppe 2 LVA 17.369, Übungsrunde 1, Gruppe 2, 16.1.27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 16.1.27 1.1 Angabe Die logische Struktur eines Systems bestehend aus drei

Mehr