Wiederholklausur Technische Mechanik WIM

Größe: px
Ab Seite anzeigen:

Download "Wiederholklausur Technische Mechanik WIM"

Transkript

1 s y HTWG Konstanz ) ( Punkte) Die Frau kann nur mit einer Kraft, die parallel zum Boden ist, auf den Wagen wirken. Am Wagen ist als Gewichtskraft nur G des Kindes zu berücksichtigen (tanα = 0.75, γ = 90 ). a.) Es sei β = 0. Bestimmen Sie für den Wagen die inneren Kräfte und Momente im senkrechten Balken und den Momentenverlauf im Balken zwischen den Rädern. 2H b.) Der senkrechte Balken hat das dargestellte dünnwandige Profil. Wie ist das Verhältnis /H zu H wählen, damit im senkrechten Balken die maximale Druckspannung den vierfachen Betrag als die maximale Zugspannung besitzt? z c.) Durch Verkürzung des Hubzylinders wird die iegefläche um den Winkel γ schräg angestellt. Geben Sie die Verkürzung des Hubzylinders in Abhängigkeit von γ an. Bei welchem Winkel γ verkürzt sich der Hubzylinder um /3? G α β γ G 51 2.) ( Punkte) a.) Bestimmen Sie den Neigungswinkel des grauen Balkens und die Seilkraft. b.) Geben Sie die inneren Kräfte und Momente im grauen Balken an. c.) Der Balken hat ein quadratisches Vollprofil mit der Kantenlänge H. Wie groß ist die maximale Zugspannung (H/ = 25, H²/G = 32907mm²/N)? 3.) (5+3+2 Punkte) An den Kontaktstellen der beiden Kegelzahnräder werden nur Kräfte in Umfangsrichtung übertragen. Beide Räder haben den Radius. Vom Werkstück, in welches ein och gebohrt werden soll, wirkt nur ein senkrechtes Reibmoment auf den Bohrer mit der änge 4. Dieser hat ein kreisrundes Vollprofil mit dem Radius R. a.) Bestimmen Sie die maximale Vergleichsspannung σ V nach Mises im Bohrer F/(πR³) = Wurzel(28)N/mm². Im Betrieb variiert die Kraft F in Abhängigkeit von α (α = 0: dargestellte Position), der Angriffspunkt bleibt unverändert: F = Fcosα F y 2 α 2 x z b a 2

2 b.) Wie groß ist die Vergleichsspannung σ V an dem Punkt, bei dem sie für α = 0 maximal ist, wenn sich der Bohrer um 45 bzw. 90 weiter gedreht hat? c.) Der Gesamtbohrer hat die Gewichtskraft 3F. Sie wirkt im senkrechten Balken des grauen Rahmens. Wie groß muss a und b gewählt werden, damit der Bohrer im Betrieb nicht kippt? α β 4.) ( Punkte) Das dünnwandige kreisrunde Rohr (Radius R m, Wandstärke s) mit der änge 6 hat die Gewichtskraft 6G, die als Streckenlast zu berücksichtigen ist (tanα = 0.75, tanβ = 4/3, G/(πR m s) = 10N/mm², /R m = 2). 2 2 a.) Bestimmen Sie die inneren Kräfte und Momente im Rohr und den Betrag der maximalen Normalspannung. b.) Wie groß wäre der Fehler, wenn man die Gewichtskraft als Einzelkraft berücksichtigen würde? c.) Die Gewichtskraft ist wieder als Streckenlast zu berücksichtigen. Auf welchen Wert muss α reduziert werden, damit in der Rohrmitte keine Zugspannung vorhanden ist? d.) Der Haftreibungskoeffizient an den Schuhen des Mannes ist µ = 0.5. Welche Gewichtskraft muss er mindestens besitzen, damit er das Rohr im Gleichgewicht halten kann? 5.) (7+3 Punkte) a.) Bestimmen Sie die inneren Kräfte und Momente im Balken AD. Alle waagrechten Balken sind unendlich steif (EI y = GI t = ). Der senkrechte Balken hat die Biegesteifigkeit EI y. Die Funktion w beschreibt die Verschiebung im senkrechten Balken in negativer y- Richtung. Für sie gilt: w = -M/(EI y ) (2. Ableitung von w nach lokaler x-koordinate) 4F F A y z 2 x D F 3F b.) Welchen Wert hat die Biegesteifigkeit EI y im senkrechten Balken in Abhängigkeit von F und, wenn sich der Kraftangriffspunkt der Kraft 4F um in positive y-richtung verschiebt?

3

4

5

6

7

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 3 α 24 15 1.) (6+2 Punkte) Der nicht maßstabsgetreu dargestellte Kran soll untersucht werden. Der schräge Balken mit der änge 20 hat einen quadratischen, dünnwandigen Querschnitt mit der Kantenlänge 3

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (6+4+2 Punkte) Die grauen Balken haben pro ängeneinheit die Gewichtskraft 60G, die als Streckenlast u berücksichtigen ist (tanα = 7/24). F A α 3/4 C a.) Wie groß sind die inneren Kräfte und Momente

Mehr

Wiederholklausur Technische Mechanik WIM

Wiederholklausur Technische Mechanik WIM 1.) (2+6+2 Punkte) Eine Spätzlepresse, an der nur senkrechte Kräfte wirken, soll untersucht werden. Der Zylinder in welchem sich der Teig befindet hat eine Grundfläche von A = ²/2. A B R a.) Welche Kraft

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 y HTWG Konstanz 19.7.2017 1.) (5+4+2+2 Punkte) Am Riemen des Schaufelradbaggers wirkt der Haftreibungskoeffizient µ = ln(5 1/π ). Der Ausleger mit der Schaufel hat den dargestellten Querschnitt (tanα =

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (6+2+5 Punkte) Der aufkran ist im Gleichgewicht. Der obere dünnwandige waagrechte Balken hat die Breite, die öhe 1.5 und die Wandstärke s. Die dünnwandige aufradwelle hat den Radius /2 und die Wandstärke

Mehr

Klausur Technische Mechanik 2

Klausur Technische Mechanik 2 1.) (3+6+3 Punkte) Auf den dargestellten smmetrischen Spindelrasenmäher mit der Gewichtskraft G und der Spurweite 4L wirken die dargestellten Kräfte. Keine Kräfte in x-richtung sind u berücksichtigen Die

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z HTWG Konstan, akultät Maschinenbau, Studiengang WIM 1 ufgabe 1: Berechnen sie die Kraftkomponenten, und und den Betrag der Kraft, falls dieser nicht gegeben ist. Berechnen Sie die Summen der Kräfte 1 und

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Mechanik 2. Übungsaufgaben

Mechanik 2. Übungsaufgaben Mechanik 2 Übungsaufgaben Professor Dr.-Ing. habil. Jörg Schröder Universität Duisburg Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 2 Seite 1 Aufgabe 1 Berechnen

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Übung zu Mechanik 2 Seite 16

Übung zu Mechanik 2 Seite 16 Übung zu Mechanik 2 Seite 16 Aufgabe 27 Ein Stab wird wie skizziert entlang der Stabachse durch eine konstante Streckenlast n beansprucht. Bestimmen Sie den Verlauf der Normalspannungen σ 11 (X 1 ) und

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

2. Der ebene Spannungszustand

2. Der ebene Spannungszustand 2. Der ebene Spannungszustand 2.1 Schubspannung 2.2 Dünnwandiger Kessel 2.3 Ebener Spannungszustand 2.4 Spannungstransformation 2.5 Hauptspannungen 2.6 Dehnungen 2.7 Elastizitätsgesetz Prof. Dr. Wandinger

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 2

HTWG Konstanz, Fakultät Maschinenbau, Studiengang MEP 1 Übungen Technische Mechanik 2 HTWG Konstan, akultät Maschinenbau, Studiengang MEP 1 ufgabe 1: Wo muss (Position ) die Masse m mit der Gewichtskraft 2.4kN montiert werden, wenn die npresskraft wischen den Rollen N = 10kN betragen soll?

Mehr

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:

0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit: Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen

Mehr

1. Aufgabe (ca % der Gesamtpunktzahl)

1. Aufgabe (ca % der Gesamtpunktzahl) . Aufgabe (ca. 7.5 % der Gesamtpunktzahl) S 4 b G S S S 3 F A B 8a Das dargestellte Tragwerk besteht aus 4 Stäben und einer starren Scheibe. Es wird durch die Kraft F und durch die Gewichtskraft G (im

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y

= 13, cm 4. = 3, cm 4. 3, cm 4 y. cm 3 y Aufgabe : ) Biegespannungsverlauf: σ b, ) M M I I bh h b cm cm) cm cm), 8 cm, 56 cm σ b, ) N cm, 8 cm N cm, 56 cm 7, N cm 89, N cm ) Gleichung der neutralen Achse : σ b, ) : M M I 7, N cm 89, N cm P Die

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:

Mehr

20 Statik Die resultierende Kraft im ebenen Kräftesystem

20 Statik Die resultierende Kraft im ebenen Kräftesystem 20 Statik Die resultierende Kraft im ebenen Kräftesstem 6.1.3 Beispiel zur Resultierenden im allgemeinen Kräftesstem An einem Brückenträger mit der Segmentlänge a=4m greifen die äußeren Kräfte F 1 =F 2

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM3, Ing.I K8 6.3.13 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Formelsammlungen

Mehr

Übung zu Mechanik 2 Seite 38

Übung zu Mechanik 2 Seite 38 Übung zu Mechanik 2 Seite 38 Aufgabe 64 Gegeben sind die Zustandslinien für Biegemoment und Normalkraft von einem räumlich beanspruchten geraden Stab. a) Bemessen Sie den Stab auf Normalspannungen! Es

Mehr

Prüfung - Technische Mechanik II

Prüfung - Technische Mechanik II Prüfung - Technische Mechanik II SoSe 2013 2. August 2013 FB 13, Festkörpermechanik Prof. Dr.-Ing. F. Gruttmann Name: Matr.-Nr.: Studiengang: Platznummer Raumnummer Die Aufgaben sind nicht nach ihrem Schwierigkeitsgrad

Mehr

Biegung

Biegung 2. Biegung Wie die Normalkraft resultiert auch das Biegemoment aus einer Normalspannung. Das Koordinatensystem des Balkens wird so gewählt, dass die Flächenschwerpunkte der Querschnitte auf der x-achse

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Kraftwinder S = a = a

Kraftwinder S = a = a Prof. Dr.-ng. Prof. E.h. P. Eberhard A Kraftwinder Der skizzierte Eckpfosten eines Gartenzaunes ist bei A fest im Boden verankert. Er wird in B durch die Kräfte, und belastet. Die Punkte B und C sind durch

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe

Mehr

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5 Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der esultierenden Aufgabe: Belasteter Balken F 5 F 1 F 2 F 3 F 4 F 5 55 110 a a a a a Gegeben: F1 = 20 N F2 = 15 N F3 = 30 N F4 = 10 N F5 = 45 N a

Mehr

Statik, Trag- und Ingenieurwerke

Statik, Trag- und Ingenieurwerke Statik, Trag- und Ingenieurwerke Grundlagen zu Baustatik Beispiele zu Raumgewicht Zusammenhänge Wichte Flächenlasten Streckenlasten Einzellasten 1 Flächenlast g 1 [kn/m 2 ] Wichte 1 [kn/m 3 ] Dicke Bauteil

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen)

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 40 cm Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 1. Zahlenarten und Rechnen b) ( ) 5 ( 2 8 ) ( 1,25) 25 1,8 5,2 ( ) Wie viel sind 20% von? 2. Kenntnisse der Elementargeometrie

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Verzerrungen und Festigkeiten

Verzerrungen und Festigkeiten Verzerrungen und Festigkeiten Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Verzerrungen

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

Goldbasispreis: 38 / Platinbasispreis: 32 / Palladiumbasispreis: 24 (Preis/g) Wandstärke: 1.3 mm Breite: 3 mm

Goldbasispreis: 38 / Platinbasispreis: 32 / Palladiumbasispreis: 24 (Preis/g) Wandstärke: 1.3 mm Breite: 3 mm Profile 01 49/01130 49/01130 49/01135 49/01135 333 Gold, Gelb 163 178 333 Gold, Gelb 184 200 333 Gold, Weiss 202 221 333 Gold, Weiss 228 250 585 Gold, Gelb 282 311 585 Gold, Gelb 322 356 585 Gold, Weiss

Mehr

Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie. r a

Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie. r a Vorlesungs-Beispiel Kragträger, Vergleich Schalen- und Balkentheorie Skizze der Aufgabenstellung: L F L F r a p Dr. Hellmann Geg.: L 3 mm, L 5mm, r a mm, F 4 N, E.* 5 MPa, ν.3, σ zul 45MPa Ges.:. Dimensionierung

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018

Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018 Theorie zu Serie erstellt von A. Menichelli 16. Februar 018 1 Spannungen in D 1.1 Allgemein Die Definition der Spannung ist im allgemeinen die Verteilung einer Kraft auf der Fläche, auf der diese Kraft

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Berufsakademie Stuttgart Prof. Dr.-Ing. Alexander Jickeli Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1

Berufsakademie Stuttgart Prof. Dr.-Ing. Alexander Jickeli Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1 Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1 Aufgabe 1.: Freischnitt, 13 Punkte, Klausur vom 10.5.99 Aufgabe 2.: (insgesamt 11 Punkte) Aufgabensammlung: Klausuraufgaben Technische

Mehr

Mechanik IA Thomas Antretter

Mechanik IA Thomas Antretter Vorlesung Thomas Antretter Institut für Mechanik, Montanuniversität Leoben, 8700 Leoben Einteilung Mechanik feste Körper Fluide (Flüssigkeiten, Gase) starre Körper deformierbare Körper Mechanik fester

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 07/02/12 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter 1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Matr.-Nummer Fachrichtung

Matr.-Nummer Fachrichtung Institut für Technische und Num. Mechanik Technische Mechanik II+III Profs. P. Eberhard, M. Hanss WS 2015/16 P 1 18. Februar 2016 Bachelor-Prüfung in Technischer Mechanik II+III Nachname, Vorname E-Mail-Adresse

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Vordiplom Mechanik/Physik WS 2000/2001

Vordiplom Mechanik/Physik WS 2000/2001 Aufgabe 1 a) Ein allgemeines Kräftesystem besteht aus folgenen Kräften: F 1 =30 N α 1 =90 Angriffspunkt: (x,y)=(0,0) F =0 N α =110 Angriffspunkt: (x,y)=(1,1) F 3 =0 N α 3 =70 Angriffspunkt: (x,y)=(,0)

Mehr

1. Aufgabe: (ca. 12 % der Gesamtpunkte)

1. Aufgabe: (ca. 12 % der Gesamtpunkte) . August 07. Aufgabe: (ca. % der Gesamtunkte) a) Skizzieren Sie an den dargestellten Stäben die Knickformen der vier Euler-Knickfälle inklusive Lagerung und geben Sie zum Eulerfall mit der höchsten Knicklast

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens . Aufgabe Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens Geg.: Kräfte F, F = F, F Streckenlast q F a Moment M = Fa Maß a 5 F Ges.: a) Lagerreaktionen in B, C und Gelenkkräfte in G, b)

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Prof. Dr.-Ing. D. Weichert 4.Übung Mechanik II 2008 9.05.2008. Aufgabe Ein rechteckiges Blech wird spiel- und spannungsfrei in eine undehnbare Führung eingepaßt. Dann wird die Temperatur des Blechs um

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum Fach Urteil BM K8 März 4 Kinetik+Kinematik Genehmigte Hilfsmittel: Ergebnis: Punkte Taschenrechner Literatur

Mehr

Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen

Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen Übung 4 Rotations-Mechanik Wirkungslinie einer Kraft, Drehmoment, Einfache Maschinen Lernziele - wissen, dass sich die Wirkung einer Kraft nicht ändert, wenn man die Kraft auf ihrer Wirkungslinie verschiebt.

Mehr

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

tgt HP 1995/96-2: Säulenschwenkkran

tgt HP 1995/96-2: Säulenschwenkkran tgt HP 1995/96-2: Säulenschwenkkran Der skizzierte Säulenschwenkkran darf maximal mit der Kraft F L belastet werden. Die Eigengewichtskraft des Schwenkarms mit Hubeinrichtung und Schwenkwerk beträgt F

Mehr

1. Einführung Festigkeitslehre

1. Einführung Festigkeitslehre 1. Einführung estigkeitslehre Themen der estigkeitslehre Zugbeanspruchung Hooksches Gesetz lächenmomente. Grades estigkeitslehre Druckbeanspruchung Abscherung lächenpressung www.lernen-interaktiv.ch 1

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr