Zahlenrätsel/Zahlenmuster

Größe: px
Ab Seite anzeigen:

Download "Zahlenrätsel/Zahlenmuster"

Transkript

1 Zahlenrätsel/Zahlenmuster Vorhersagen einer Summe Lassen Sie jemanden eine vierstellige Zahl aufschreiben. Es werden nun abwechselnd jeweils 2 vierstellige Zahlen darunter geschrieben. Der Spieler/die Spielerin beginnt eine Zahl unter die eben ausgedachte zu schreiben, anschließend sind Sie an der Reihe. Bevor diese Zahlen aber aufgeschrieben werden, wissen Sie bereits das Ergebnis der Summe der fünf Zahlen. Vollziehen Sie folgendes Beispiel genau nach und versuchen Sie herauszufinden, warum Sie bereits nach der ersten Zahl die Summe kennen und wie Sie auf die dritte und vierte Zahl kommen. SpielerIn: 3845 vorhergesagte Summe: Zahl (SpielerIn): Zahl (Sie): Zahl (SpielerIn): Zahl (Sie): 6320 Summe: Lösung: In dem oben vorgeführten Beispiel ist die erste Ziffer der vorhergesagten Summe eine 2. Das bedeutet: Es müssen zwei Zahlenpaare, deren Ziffern sich zu 9 addieren, genommen werden, man muss also insgesamt fünf Zahlen addieren. Trick: Da zweimal 9999 addiert wird, weiß man bereits nach der ersten Zahl das Endergbnis. Trick: addieren und 2 abziehen! Natürlich gibt es viele Varianten, um diesen Trick auszuführen. Es können beispielsweise mehrere Zahlen addiert werden oder der Spieler selbst schreibt die Summe auf und Sie schreiben die erste Zahl zum Addieren an oder. Zahlensummen Summe von 1 bis 10 = 55 Summe von 1 bis 100 = 5050 Können Sie nach diesem Muster die Summe der Zahlen 1 bis 1000 bzw. 1 bis angeben? Begründen Sie Entstehung des Musters. Lösung: Summe von 1 bis 1000 = Summe von 1 bis = Summe von 1 bis n: S=(n+ 1) n 2 n=10 a n 2 =5 10a 1 mit a N (10 a + 1) 5 10 a 1 = (a 1) a 1 1

2 Palindromzahlen oder Das 196er Problem Das Wort Palindrome stammt aus dem Griechischen und bedeutet soviel wie rückwärts laufend. Meist sind hier Wörter oder Sätze gemeint, die von vorne und hinten gelesen gleich bleiben (z.b. Rentner, Anna, Otto, Lagerregal, Trug Tim eine so helle Hose nie mit Gurt?). Neben Palindromen von Wörtern gibt es auch Zahlenpalindrome. Egal, ob vorwärts oder rückwärts gelesen, die Zahlen haben den gleichen Wert (z.b. 2442). Ein besonderes Phänomen ist, dass sich aus beliebigen positiven ganzen Zahlen oft durch ein einfaches Verfahren Palindrome erzeugen lassen. Eine Zahl wird dabei mit der Zahl in umgekehrter Reihenfolge addiert. Ist die entstehende Summe (=Zahl1) ein Palindrom, dann ist man fertig, wenn nicht, dann wird zu Zahl1 die Zahl1 in umgekehrter Reihenfolge addiert, usw. Beispiele: = 143 kein Palindrom = = 484 Palindrom = ( 5 Zwischenschritte...) = Funktioniert dies immer? Das 196er-Problem wird so genannt, weil 196 die kleinste Zahl ist, mit der es noch nicht gelungen ist, ein Palindrom zu erzeugen. Jedoch gibt es auch keinen Beweis dafür, dass nie ein Palindrom mit dieser Zahl entstehen wird. Der Rekord lag im Februar 2002 (übrigens die einzige palindromische Jahreszahl in unserem Jahrhundert) bei 67 Millionen Umkehrungen und einer Zahl mit über 28 Millionen Stellen. Im Jänner 2003 lag man bei einer Zahl mit 100 Millionen Ziffern. Vieles spricht dafür, dass es für die 196 schlicht kein Palindrom gibt. Bisher fehlt jedoch der mathematische Beweis. Bemerkung: Wenn man die Zahlen bis untersucht, dann stellt man fest, dass es zwar 246 Zahlen gibt (das sind allerdings nicht einmal 2,5%), die sich hartnäckig widersetzen (196, 295, 394, 493, 592, 689, 691,...), bei allen anderen Zahlen stellt sich der Erfolg sehr schnell ein (die 89 ist da schon eine Ausnahme (24 Umkehrungen), keine der anderen "erfolgreichen" Zahlen bis braucht mehr als 24 Schritte bis zum Erfolg). Es drängt sich also die These auf: Entweder es funktioniert relativ schnell oder gar nicht. Aber jenseits der gibt es schließlich doch Zahlen, die sich erst sehr hartnäckig widersetzen und dann doch ein sehr langes Palindrom liefern (z.b. wird aus erst nach 55 Umkehrungen: ). Im Jahr 2005 fand Jason Doucette heraus, dass die Zahl nach 261 Umkehrungen zum 119-stelligen Palindrom führt. (Hier kann dies mit einem Script einfach und schnell nachvollzogen werden: (Stand: August 2015)) 2

3 Sommergewitter (Eugen Jost) Nehmen Sie irgendeine Zahl. Wenn sie gerade ist, halbieren Sie sie. Wenn sie ungerade ist, multiplizieren Sie sie mit drei, und geben Sie eins dazu. Und dann machen Sie das mit dem, was Sie herausbekommen haben, wieder und wieder und wieder. Fällt Ihnen etwas auf? Beispiel: Wir starten mit der Zahl : 2 = = : 2 = = : 2 = : 2 = = : 2 = = : 2 = 26 usw. Wieso ist das immer so? Rudolf Taschner: Das Problem ist noch offen und sehr schwer zu behandeln. Es ist natürlich völlig sinnlos, aber es ist ärgerlich, dass wir es nicht lösen können. Immer wieder 4 Denken Sie sich eine Zahl aus. Schreiben Sie diese Zahl in Worten. Zählen Sie die Anzahl der Buchstaben und notieren Sie diese Zahl. Schreiben Sie nun diese Zahl in Worten. Zählen Sie anschließend wieder die Buchstaben und notieren Sie die Anzahl der Buchstaben. Wiederholen Sie diese Schritte (Zahl in Worten schreiben Buchstaben zählen diese Zahl in Worten schreiben Buchstaben zählen ) solange, bis Sie fertig sind. Fertig? Sie werden schon sehen, was ich damit meine! 3

4 Der Zahlensack des Méziriac Bereits im Jahr 1612 errechnete Bachet de Méziriac die Gewinnposition eines einfachen kombinatorischen Spiels. Der Zahlensack des Méziriac Es hält der Sieur de Méziriac Für Euch bereit den Zahlensack: Greift mit Bedacht die erste Zahl; Von 1 bis 10 habt Ihr die Wahl. Danach fügt Méziriac im Nu Zu Eurer seine Zahl hinzu. Und, wechselweise, ernst und heiter Klettert man hoch die Zahlenleiter. Doch seid beim Kraxeln auf der Hut Und wählet klug und wählet gut! Gewinn sich fröhlich jedem zeigt, Der erstmals auf die 100 steigt. Zwei Gegner fügen abwechselnd eine Zahl zwischen 1 und 10 der allseits bekannten Zwischensumme hinzu. Das Spiel beginnt bei 0 und es endet für denjenigen Spieler siegreich, der als Erster die Gesamtsumme 100 erreicht. Lösung: Méziriacs Lösung des Zahlensack-Problems verwendet implizit das erst später entwickelte Verfahren der Rückwärtsrechnung, um die magischen Zahlen abzuleiten, die jeweils dem ersten (oder dem zweiten) Spieler einen sicheren Gewinn zugestehen. Anhand einer einfachen Überlegung lassen sich diese Strategien leicht entwerfen. Es gewinnt nämlich stets derjenige Spieler, der als Erster die 100 erreicht. Um den eigenen Gewinn abzusichern, müsste somit ein Spieler bei seiner vorletzten Zahlenwahl nur die Zahl 89 erreichen, um seinem Gegenspieler in dessen letztem Zug maximal das Erreichen der 99 zu ermöglichen. Diese siegreiche vorletzte Zahlenwahl ist jedoch nur dann nicht zu verhindern, wenn der Spieler bei seiner i-ten Zahlenwahl zuvor jeweils die Zwischensumme (i-1)*10+i, falls er der erste Spieler ist, oder i *11+1, ansonsten, bilden kann. Falls nun beide Spieler dies nachvollziehen können, steht bereits zu Spielbeginn der Sieger fest: es ist derjenige Spieler, der die erste Zahl nennt. Er wählt die 1 und hat das Spiel bereits zu seinen Gunsten entschieden. 4

5 Drei Stellen und mehr Wählen Sie eine beliebige dreistellige Zahl sagen wir 123. Nun schreiben Sie diese drei Ziffern noch einmal daneben, so dass Sie eine sechsstellige Zahl erhalten; 123 wird also zu Nun teilen Sie diese durch 7, dann durch 11 und schließlich durch 13, und ich sage Ihnen voraus, dass Sie bei der dreistelligen Zahl landen, von der Sie ausgegangen waren. Das geht mit jeder dreistelligen Zahl. Können Sie sagen, warum? Funktioniert der Trick auch mit einer vierstelligen Zahl? Wenn ja, durch welche Zahlen müsste man dann dividieren? Lösung: = 1001 Multipliziert man eine dreistellige Zahl abc mit 1001, so ergibt das immer abcabc. Mit vierstelligen Zahlen abcd muss man mit der Zahl multiplizieren, um abcdabcd zu erhalten. Man muss durch 73 und 137 dividieren, da = Wie alt sind Sie? Methode 1: Sie wollen es mir nicht sagen? Na gut, nennen Sie mir einfach das Ergebnis folgender kleinen Rechnung: Multiplizieren Sie Ihr Alter mit 10. Davon ziehen Sie irgendeine einstellige Zahl neunmal ab. Sagen Sie mir das Ergebnis.... Jetzt weiß ich, wie alt Sie sind. Wie funktioniert der Trick? Funktioniert der Trick bei jeder Person? Lösung: A Alter; Z einstellige Zahl A 10 9 Z = A Z + Z = (A Z) 10 + Z Der letzte Schritt des Tricks besteht darin, die Ziffer ganz rechts (Z) zu den anderen beiden zu addieren, die nun zu Zehnern und Einern, statt Hunderten und Zehnern werden! Vorsicht: Die Person muss älter als 9 Jahre sein! Methode 2: Um das Alter von jemanden zu ermitteln, lasse ihn einfach folgende Rechnung durchführen: Multipliziere dein Alter mit 2. Addiere 5 hinzu und multipliziere die Summe mit 5. Nenne mir nun das Ergebnis. Streiche nun die letzte Ziffer des Ergebnisses weg und ziehe vom Rest 2 ab. Jetzt hast du das Alter der Person. Begründe die Vorgehensweise! Lösung: A Alter (A 2 + 5) 5 = 10 A + 25 letzte Ziffer wegstreichen A abziehen A 5

6 Erraten des Geburtstages Wenn Sie den Geburtstag eines Freundes nicht kennen, können Sie ihm folgende Aufgabe stellen: Verdopple die Tageszahl deines Geburtstages und addiere 5 dazu. Multipliziere das Ergebnis mit 50 und addiere dazu die Monatszahl. Lassen Sie sich das Ergebnis nennen. Finden Sie heraus, wie Sie nun auf den richtigen Tag und das richtige Monat kommen. Lösung: (T 2 + 5) 50 + M = 100 T M 250 abziehen 100 T + M die letzten beiden Stellen zeigen das Monat und die restlichen Stellen den gesuchten Tag Zahlen erraten Ich schreibe eine Zahl auf einen Zettel und drehe ihn um, sodass Sie nicht wissen, welche Zahl dort steht. Nun schreiben Sie eine beliebige ganze Zahl auf. Addieren Sie 5. Multiplizieren Sie das Ergebnis mit 18. Subtrahieren Sie davon das Dreifache der zuerst gewählten Zahl. Dividieren Sie das letzte Ergebnis durch 15! Subtrahieren Sie noch Ihre gedachte Zahl! Ihre soeben errechnete Zahl stimmt mit meiner auf dem umgedrehten Zettel überein! Warum? Welche Zahl steht auf meinem Zettel? Lösung: ((((x + 5) 18) 3 x) : 15) x = ((18x x) : 15) x = x + 6 x = 6 Blitzrechnen Bitten Sie einen Freund, zwei beliebige Zahlen - sagen wir 2 und 5 - untereinander zu schreiben. 2 5 Er darf sie Ihnen jedoch nicht zeigen. Nun addiert er die beiden Zahlen und schreibt die Summe 7 darunter. Jetzt werden die unteren zwei Zahlen addiert und ihre Summe 12 darunter geschrieben. Dieser Vorgang wird wiederholt, bis 10 Zahlen da stehen Nun bitten Sie darum, einen kurzen Blick auf die Liste werfen zu dürfen. Dann wenden Sie sich schnell wieder ab. Sie bitten den Freund, die zehn Zahlen zu addieren. Bevor er fertig ist, haben Sie längst die Summe genannt:

7 Sie haben sich die vierte Zahl von unten - in diesem Fall also 50 - gemerkt. Diese multiplizieren Sie mit 11. Fertig! Wieso funktioniert das? Lösung: Z1 erste Zahl; Z2 zweite Zahl Häufigkeit der Häufigkeit der Ergebnis ersten Zahl Z1 zweiten Zahl Z Z Z Z1+Z Z2+(Z1+Z2)=Z1+2*Z (Z1+Z2)+(Z1+2*Z2)=2*Z1+3*Z (Z1+2*Z2)+(2*Z1+3*Z2)=3*Z1+5*Z (2*Z1+3*Z2)+(3*Z1+5*Z2)=5*Z1+8*Z (3*Z1+5*Z2)+(5*Z1+8*Z2)=8*Z1+13*Z (5*Z1+8*Z2)+(8*Z1+13*Z2)=13*Z1+21*Z (8*Z1+13*Z2)+(13*Z1+21*Z2)=21*Z1+34*Z2 Summe 55*Z1 + 88*Z2 = 11*(5*Z1+8*Z2) der Summe = 11*(Ergebnis aus Zeile 7) Zahlen 7

8 Überraschendes Entfernung Zwei Personen sind voneinander 50 m entfernt und halten die Enden eines 51 m langen Seils. Ein Dritter hebt das Seil in der Mitte so weit hoch, dass es straff gespannt ist. Kann er durchschlüpfen? Lösung: Satz des Pythagoras: h² =(25+ 0,5) =25,25 h=5,02 m Wo steckt der Fehler? A: 20 = 20 B: a = b a = a² = ab + a² 2ab ,25 = ,25 a² + a² 2ab = ab + a² - 2ab (4 4,5)² = (5 4,5)² 2 (a² ab) = a² ab : (a² ab) 4 4,5 = 5 4,5 2 = 1 4 = 5 C: Behauptung: = -1 D: Behauptung: 1 ist die größte reelle Zahl. Beweis: = S Beweis: ind. angenommen: ( ) = S Es gibt eine andere größte Zahl y. Also: S = S dh. 1 < y y > 0 S = -1 y < y² Wid., da y² größer als y ist 1 ist die größte reelle Zahl Lösung: A: Aus a 2 = b 2 kann man also nicht schließen, dass a = b gelten müsste; es könnte auch a = b gelten. B: a = b Division durch 0, da a² ab = 0. C: Reihe konvergiert nicht! D: Negation der Behauptung ist falsch! Vorsicht beim indirekten Beweis. 8

9 Rucksackproblem Behauptung: n beliebige SchülerInnen haben den gleichen Schulrucksack. Beweis durch vollständige Induktion: Induktionsanfang n=1: Für eine Schülerin/einen Schüler ist die Behauptung offensichtlich richtig. Induktionsschritt: Als Induktionsvoraussetzung wählt man als beliebige Zahl k die Zahl 3. Die Induktionsbehauptung für k+1 ist demnach, dass 4 SchülerInnen denselben Rucksack besitzen. Die SchülerInnen S 1, S 2 und S 3 haben nach Voraussetzung denselben Rucksack. Auch für die SchülerInnen S 2, S 3 und S 4 trifft dies aufgrund der Induktionsvoraussetzung zu. Demnach haben also alle vier SchülerInnen denselben Rucksack. Der Übergang von 4 auf 5 Rucksäcken ist mit diesem System auch leicht nachvollziehbar und somit auch für jeden beliebigen Übergang von n auf n+1. Lösung: Von dem Übergang von 3 auf 4 ausgehend ist der allgemeine Übergang von n auf n+1 für (fast) alle natürlichen Zahlen anwendbar; er versagt aber logischerweise beim Übergang von 1 auf 2. Hier lässt sich das oben benutzte Gedankenexperiment nicht anwenden. Daher sind die Kriterien für eine vollständige Induktion nicht erfüllt. Es wurde mittels einer (scheinbaren) vollständigen Induktion eine Falschaussage gemacht! Wo steckt der fehlende Euro? Drei Kinder wollen sich einen Ball kaufen. Der Ball kostet 30. Jeder der drei Kinder zahlt 10. Nach 5 Minuten stellt der Verkäufer fest, dass der Ball nur 25 kostet. Er gibt dem Lehrling 5 und sagt er soll diese 5 den dreien zurückgeben. Der Lehrling denkt sich: 5 geteilt durch drei ist schlecht zu bewerkstelligen. Er gibt daraufhin jedem der drei jeweils 1 zurück und 2 behält er für sich. Nun hat jedes Kind nur 9 bezahlt. Das heißt aber: 3 x 9 = die der Lehrling hat, sind 29. Wo ist der fehlende Euro? Lösung: Es gibt natürlich kein Problem! Es sind nur die Worte, die aufs Glatteis führen. 27 und 2 zu addieren ist völlig bedeutungslos x 1 = 27 Euro 27-2 die er behält = 25 Preis für den Ball! oder 3 x 9 = = 25 Preis für den Ball! 9

10 Fußballfeld Ein Fußballfeld ist normalerweise 105 m lang und 68 m breit. Der Umfang des Feldes, einmal außen herum, beträgt also 346 m. Jetzt nehmen wir ein Seil, das genau 347 m lang ist, also genau einen Meter länger als der Umfang des Spielfeldes. Dieses Seil legen wir um das Spielfeld herum. Ganz ordentlich, so dass es überall den gleichen Abstand vom Spielfeld hat. Das Seil bildet also auch ein Rechteck, das ein bisschen größer als das Spielfeld ist. Es hat oben und unten, rechts und links den gleichen Abstand zum Spielfeld. Wie groß ist dieser Abstand? Passt in den Rand zwischen Spielfeld und Seil eine Trillerpfeife? Eine weitere Begrenzungslinie? Oder ein Fußballschuh? Lösung: Der größte Teil des Seils liegt parallel zu den ursprünglichen Kanten des Feldes. Hierfür werden 346 m des Seils benötigt. Nur ein einziger Meter des Seils kann für die Erweiterungen an den Ecken benutzt werden. Der zusätzliche Meter des Seils wird somit auf acht gleich lange Stücke (je 12,5 cm) aufgeteilt. Äquatoraufgabe Ein Seil wird straff um den Äquator (ca km Länge) gespannt und anschließend um 1 Meter verlängert. Wie weit steht das Seil von der Erde ab, wenn man es überall gleichmäßig und gleichzeitig hochzieht? Der gleiche Sachverhalt - nur wird das Seil jetzt nicht um die Erde gespannt, sondern um einen Medizinball, der einen Umfang von 2 Metern hat. Wie weit steht das Seil in diesem Fall ab? Lösung: U Erde (r)=2 r π 2(r+ x)π=2r π+1 U neu (r)=2r π+1 x= 1 2 π =0,159m=15,9cm In beiden Fällen ist die Lösung 15,9 cm. Das Ergebnis hängt also nicht vom Radius ab! 10

11 Teile und Staple Folgendes Rätsel führt die Macht des Verdoppelns vor Augen. Nehmen Sie ein Blatt Papier und reißen Sie es mittendurch. Legen Sie die beiden Hälften aufeinander und zerreißen Sie sie in vier Stücke. Legen Sie diese wieder aufeinander und zerreißen sie in nunmehr acht Stücke. Noch einmal dasselbe, und Sie haben 16 Stücke. Tun Sie das 42 mal. Das können Sie natürlich nicht, wie Sie bald feststellen werden. Wie hoch wäre der Stapel, wenn Sie es könnten? So hoch wie ein Tisch? Wie ein Haus? Wie ein Wolkenkratzer? Bis zur Sonne? Wie nehmen an, dass ein Blatt einen Zehntelmillimeter dick ist, ein Stapel von 100 Blatt also einen Zentimeter dick. Lösung: Fast bis zum Mond! (Der Mond ist von der Erde rund km entfernt.) 2 42 / = km 11

Zahlenrätsel/Zahlenmuster

Zahlenrätsel/Zahlenmuster Zahlenrätsel/Zahlenmuster Lassen Sie jemanden eine vierstellige Zahl aufschreiben. Es werden nun abwechselnd jeweils 2 vierstellige Zahlen darunter geschrieben. Der Spieler/die Spielerin beginnt eine Zahl

Mehr

Zahlenrätsel/Zahlenmuster

Zahlenrätsel/Zahlenmuster Zahlenrätsel/Zahlenmuster Vorhersagen einer Summe Lassen Sie jemanden eine vierstellige Zahl aufschreiben. Es werden nun abwechselnd jeweils 2 vierstellige Zahlen darunter geschrieben. Der Spieler/die

Mehr

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen?

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Sandra Reichenberger (sandreich@gmail.com) Gymnasium Dachsberg (www.dachsberg.at) Universität

Mehr

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen?

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Sandra Reichenberger (sandreich@gmail.com) UF Mathematik und Informatik, Universität

Mehr

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen?

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Sandra Reichenberger (sandreich@gmail.com) Gymnasium Dachsberg (www.dachsberg.at) Universität

Mehr

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen?

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Sandra Reichenberger (sandreich@gmail.com) Gymnasium Dachsberg (www.dachsberg.at) Universität

Mehr

In s Ziel treffen - durch Multiplizieren und Dividieren

In s Ziel treffen - durch Multiplizieren und Dividieren In s Ziel treffen - durch Multiplizieren und Dividieren Multipliziere oder dividiere so, dass du mit möglichst wenigen Versuchen ins Zielgebiet triffst. Jeder Versuch kostet einen Punkt. Notiere die Anzahl

Mehr

100 Aufgaben für die Hundertertafel

100 Aufgaben für die Hundertertafel 100 Aufgaben für die Hundertertafel Die Schwierigkeitsgrade der Aufgaben sind unterschiedlich und eignen sich für die ersten drei Schuljahre. Wenn die Aufgaben auf Spielkarten geschrieben werden, können

Mehr

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.

Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird

Mehr

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten:

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: 1 Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: Beweise, die eine Behauptung nicht nur bestätigen, sondern auch erklären,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Geheimnisvolle Zahlentafeln Lösungen

Geheimnisvolle Zahlentafeln Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Geheimnisvolle Zahlentafeln Lösungen Aufgabe 1 (3-mal-3-Zahlentafel (nur für die Klassen 7/8) [4 Punkte]). Finde je eine geheimnisvolle

Mehr

Wenn wir Zahlen schriftlich miteinander addieren wollen, schreiben wir diese untereinander (sauber und ordentlich).

Wenn wir Zahlen schriftlich miteinander addieren wollen, schreiben wir diese untereinander (sauber und ordentlich). Grundrechenarten: Die Grundrechenarten sind elementar für das gesamte Schulleben und auch für das spätere Berufsleben. Gerade in der Grundschule sollte man also fleißig üben und die vier Grundrechenarten

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Helmut Lange. Besser RECHNEN. ohne Taschenrechner. Erstaunliche Rechentricks

Helmut Lange. Besser RECHNEN. ohne Taschenrechner. Erstaunliche Rechentricks Helmut Lange Besser RECHNEN ohne Taschenrechner Erstaunliche Rechentricks Vorwort In der Schule wir das Kopfrechnen kaum noch vermittelt. Werden wir im Alltag mit Rechenaufgaben konfrontiert, sind Smartphone

Mehr

Beispiellösungen zu Blatt 91

Beispiellösungen zu Blatt 91 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 91 Heiner sieht von der Anlegestelle seines Elbkutters aus, wenn er mitten

Mehr

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind.

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Große Anzahlen schätzen 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Ich schätze, es sind Menschen. Wie weiß man, wie viele Menschen das ungefähr sind? Kennst du

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Kartentricks. 1 aus 21

Kartentricks. 1 aus 21 Kartentricks 1 aus 21 Man hat 21 Karten. Drei davon legt man offen nebeneinander. Auf diese werden der Reihe nach die restlichen Karten mit sichtbarem Bild gesetzt, wobei die vierte Karte auf die erste,

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Wir entdecken Rechenvorteile

Wir entdecken Rechenvorteile Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!

Mehr

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf: 1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,

Mehr

= Rechne nach - das Ergebnis ist immer 1!

= Rechne nach - das Ergebnis ist immer 1! Was ist ein Bruch? Bisher kennst du genau eine Art der Zahlen, die sogenannten "Natürlichen Zahlen". Unter den Natürlichen Zahlen versteht man die Zahlen 0, 1,,,... bis Unendlich. Mit diesen Zahlen lassen

Mehr

schreiben, wobei p und q ganze Zahlen sind.

schreiben, wobei p und q ganze Zahlen sind. Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.

Mehr

Aufgaben Klassenstufe 5

Aufgaben Klassenstufe 5 Aufgaben Klassenstufe 5 Oma Streifstrumpf strickt für Peppi neue Socken. Peppi hat drei Lieblingsfarben und zwar rot, gelb und blau, die alle in den drei Streifen vorkommen sollen. a) Die Oma hat Wolle

Mehr

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen:

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen: Fachbereich Mathematik Tag der Mathematik 10. November 01 Klassenstufen 7, 8 Aufgabe 1 (4+4+6+4+ Punkte). Ihr kennt vermutlich schon Dreieckszahlen: n+1 n D 1 = 1 D = 3 D 3 = 6 D 4 = 10 D n = n (n+1) Wir

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?

Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt

Mehr

Multiplikation und Division - Division

Multiplikation und Division - Division Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Beispiellösungen zu Blatt 98

Beispiellösungen zu Blatt 98 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 98 Finde vier paarweise verschiedene positive ganze Zahlen a, b, c, d

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Ist 1:0=1? Ein Brief - und eine Antwort 1

Ist 1:0=1? Ein Brief - und eine Antwort 1 Hartmut Spiegel Ist 1:0=1? Ein Brief - und eine Antwort 1 " Sehr geehrter Prof. Dr. Hartmut Spiegel! 28.2.1992 Ich heiße Nicole Richter und bin 11 Jahre. Ich gehe in die 5. Klasse. In der Mathematik finde

Mehr

Anhangt: Ein Spiel zum Aufwärmen

Anhangt: Ein Spiel zum Aufwärmen Anhangt: Ein Spiel zum Aufwärmen Vor einem Rennen betreibt ein Rennläufer Gymnastik, um seine Muskeln aufzuwärmen. Bevor Sie ein in diesem Buch beschriebenes Spiel spielen, möchten Sie vielleicht eine

Mehr

Beispiellösungen zu Blatt 101

Beispiellösungen zu Blatt 101 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 101 Professor Lipidum macht einen Versuch mit seinen Studenten. Er hat

Mehr

Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern.

Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern. Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern. Beispiele: 7 110 13 (42 + 15) 2 4 + 1 1. Rechne aus. (Zahlenwert der Terme ermitteln) 420 + 105

Mehr

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel

Kopfrechenphase Wo ist das A? vorne, links, oben. (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel Kopfrechenphase 1 1. Wo ist das A? vorne, links, oben (vorne, rechts) 2. Was wurde markiert? Fünf von sechs Teilen sind farbig. Also fünf Sechstel 3. Fehler gesucht! a) 1kg sind 1000g b) 1m hat 1000mm

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 6

Erste schriftliche Wettbewerbsrunde. Klasse 6 Erste schriftliche Wettbewerbsrunde Die hinter den Lösungen stehenden Prozentzahlen zeigen, wie viel Prozent der Wettbewerbsteilnehmer die gegebene Lösung angekreuzt haben. Die richtigen Lösungen werden

Mehr

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

Dr. Regula Krapf Sommersemester Beweismethoden

Dr. Regula Krapf Sommersemester Beweismethoden Vorkurs Mathematik Dr. Regula Krapf Sommersemester 2018 Beweismethoden Aufgabe 1. Überlegen Sie sich folgende zwei Fragen: (1) Was ist ein Beweis? (2) Was ist die Funktion von Beweisen? Direkte Beweise

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 15 In dieser Vorlesung besprechen wir, wie sich im Dezimalsystem der Nachfolger, die Größergleichrelation und die Addition darstellen.

Mehr

Kalenderrechnen. Olaf Schimmel 13. November 2015

Kalenderrechnen. Olaf Schimmel 13. November 2015 Kalenderrechnen Olaf Schimmel 13. November 2015 1 Vorbemerkungen Immer mal wieder begegnet man Menschen, die mit scheinbar erstaunlichen Gedächtnisleistungen beeindrucken. In der Mathematik ist es häufig

Mehr

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis

Mehr

Runde 3 Aufgabe 1

Runde 3 Aufgabe 1 Aufgabe 1 Trage immer die Zahlen von 1 bis 6 ein. In allen Kreisringen (das sind die sechs Bahnen rund herum) und in allen Kreissegmenten (das sind die sechs keilförmigen Abschnitte der Kreisfläche) dürfen

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Grundlagen der Mathemagie

Grundlagen der Mathemagie Übungen zur Vorlesung Grundlagen der Mathemagie Helmut Glas und Martin Kreuzer ASG Passau und Universität Passau Lehrerfortbildung Bezaubernde Mathematik Universität Passau, 16.12.2014 1 Die vier Asse

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Das Einmaleins 2, 4, 6, 8, 1 0, Malt ein Plakat zu der Aufgabe 6 2.

Das Einmaleins 2, 4, 6, 8, 1 0, Malt ein Plakat zu der Aufgabe 6 2. Das Einmaleins 0 0 Tage Brötchen 0,,,, 0, Malt ein Plakat zu der Aufgabe. Einmaleins mit Mal-Aufgaben mit Füßen Kinder b) Kinder Einmaleins Zeigt her eure Füße, zeigt her eure Schuh, und sehet den fleißigen

Mehr

Inhalt: 60 Karten, 1 Sanduhr Papier und Stift werden ebenfalls benötigt.

Inhalt: 60 Karten, 1 Sanduhr Papier und Stift werden ebenfalls benötigt. Ein kommunikatives Wortspiel! Für 3 bis 10 Spieler ab 12 Jahren Inhalt: 60 Karten, 1 Sanduhr Papier und Stift werden ebenfalls benötigt. Was sollte man auf keinen Fall secondhand kaufen? Oder womit kann

Mehr

M AT H. GRUNDLAGEN D E R KRY P TO L O G I E

M AT H. GRUNDLAGEN D E R KRY P TO L O G I E Teilbarkeit und Teilbarkeitsregeln: Wiederholung Definition Teilbarkeit Eine natürliche Zahl n ist durch eine natürliche Zahl t teilbar, wenn es eine natürliche Zahl k gibt, so dass n=t k (Das heißt auch,

Mehr

Lösungen - 7. Klasse / 7. Schulstufe

Lösungen - 7. Klasse / 7. Schulstufe Lösungen der Aufgaben Lösungen - 7. Klasse / 7. Schulstufe 1. Auf jedem der zehn Felder der nebenstehenden 2 5 Tabelle befindet sich ein Mensch, der entweder ein Ehrlicher oder ein Lügner ist. Die Ehrlichen

Mehr

Inhaltsverzeichnis. Eine irre Maschine. Standorte für Rettungshubschrauber in Deutschland. Pfeilnetze

Inhaltsverzeichnis. Eine irre Maschine. Standorte für Rettungshubschrauber in Deutschland. Pfeilnetze zeitung für mathematik am mpg trier / heft 32 / juli 2013 Inhaltsverzeichnis Seite Eine irre Maschine Ben Sassenberg und Pascal Trapp 4 Standorte für Rettungshubschrauber in Deutschland Pfeilnetze Tim

Mehr

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5.

Teil 1: Trainingsheft für Klasse 7 und 8 DEMO. Lineare Gleichungen mit einer Variablen. Datei Nr Friedrich W. Buckel. Stand 5. ALGEBRA Lineare Gleichungen Teil 1: Trainingsheft für Klasse 7 und 8 Lineare Gleichungen mit einer Variablen Datei Nr. 1140 Friedrich W. Buckel Stand 5. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

URTIS SULINSKAS. Spielregeln. kompetitiv gegeneinander oder in Teams gegeneinander spielen. Seid ihr bereit, euch so auszudrücken wie nie zuvor?

URTIS SULINSKAS. Spielregeln. kompetitiv gegeneinander oder in Teams gegeneinander spielen. Seid ihr bereit, euch so auszudrücken wie nie zuvor? URTIS SULINSKAS V Rulebook Spielregeln Règle du jeu Einführung Emojito! ist ein Partyspiel für 2 bis 14 Spieler, in dem die Spieler versuchen, auf den Karten angegebene Emotionen darzustellen, indem sie

Mehr

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler?

Rechenkönig 9 7 = = 3. Spielinhalt. Das Prinzip der Karten. Wer ist der beste Rechenkünstler? Copyright - Spiele Bad Rodach 2013 Rechenkönig Wer ist der beste Rechenkünstler? Eine Lernspiele-Sammlung rund um das Rechnen im Zahlenraum von 1 bis 20. Enthalten sind sieben Spielideen in unterschiedlichen

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Zahlenknobeleien im Zahlenraum bis

Zahlenknobeleien im Zahlenraum bis vierzig vierundvierzig einunddreißig Illustration: 2009 Jupiterimages Corporation Zahlenknobeleien im Zahlenraum bis 100 1 kleiner als 60. Sie ist ungerade. Wenn du von 50 einen Zehner abziehst und sechs

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Arithmetischer Mittelwert

Arithmetischer Mittelwert Lies dir folgende Informationen zu einer statistischen Kenngröße gut durch. Rechne auch die angegebenen Beispiele noch einmal durch. Du bist der Experte für diese Kenngröße in deiner Gruppe! Überlege dir

Mehr

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen!

Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! S 1 Primitiv? Primzahlen und Primfaktoren schätzen lernen Dr. Heinrich Schneider, Wien M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! Die natürlichen Zahlen n 1, 2, 3, 4, 5, heißen natürliche Zahlen.

Mehr

Der mathematische Beweis

Der mathematische Beweis Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur

Mehr

LZ 01-1 L Ö S U N G E N 3.Klasse

LZ 01-1 L Ö S U N G E N 3.Klasse LZ 01-1 L Ö S U N G E N 3.Klasse 1. 200 2. 987 3. 250 4. 440 5. 185 6. 534 (574) 7. 507 8. Die größte dreistellige Zahl heißt 333. Die kleinste dreistellige Zahl heißt 100. Die kleinste zweistellige Zahl

Mehr

Hochbegabungsförderung in der Praxis

Hochbegabungsförderung in der Praxis Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik Übersicht

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

+ X : Addition Subtraktion Multiplikation Division. addieren subtrahieren multiplizieren vervielfachen. dividieren und plus weg

+ X : Addition Subtraktion Multiplikation Division. addieren subtrahieren multiplizieren vervielfachen. dividieren und plus weg Kopiervorlage zu M02 Was passt? + X : Addition Subtraktion Multiplikation Division addieren subtrahieren multiplizieren vervielfachen dividieren und plus weg minus mal in geteilt durch Gib dazu! Nimm weg!

Mehr

In die Vielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch!

In die Vielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch! Teilbar oder nicht? - ielfache oder nicht? 1. Hier stimmt etwas nicht. In die ielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch! 9 27 39 45 63

Mehr

Das Einmaleins. Eigene Lösungen. 2, 4, 6, 8, 1 0, Malt ein Plakat zu der Aufgabe 6 2.

Das Einmaleins. Eigene Lösungen. 2, 4, 6, 8, 1 0, Malt ein Plakat zu der Aufgabe 6 2. Das Einmaleins 0 0 Tage Brötchen 0,,,, 0, Malt ein Plakat zu der Aufgabe. Eigene Lösungen. Einmaleins mit Mal-Aufgaben mit Füßen Kinder b) Kinder Einmaleins Zeigt her eure Füße, zeigt her eure Schuh, und

Mehr

Dabei müsst ihr folgende Regeln beachten:

Dabei müsst ihr folgende Regeln beachten: 1. SUDOKU (Kat. 3) In dieser Tabelle seht ihr leere Kästchen. In jedes dieser Kästchen sollt ihr einen der folgenden Buchstaben schreiben: ein A oder ein B oder ein C oder ein D. A B Dabei müsst ihr folgende

Mehr

Die Dreiecks Ungleichung: I x + y I I x I + I y I

Die Dreiecks Ungleichung: I x + y I I x I + I y I Die Dreiecks Ungleichung: I x + y I I x I + I y I In dieser Proseminar-Arbeit geht es um die sog. Dreiecks-Ungleichung (Δ-Ungl.). Wir werden unter anderen sehen, wie man die Δ-Ungl. beweisen kann, welche

Mehr

Aufgaben Klassenstufe 5

Aufgaben Klassenstufe 5 Aufgaben Klassenstufe 5 Hier findest du 5 Zahlenfolgen. Sie fangen immer mit den Zahlen 2 und 3 an, gehen dann aber unterschiedlich weiter: Sie sind jeweils nach einer anderen Vorschrift aufgebaut. Setze

Mehr

1 Winkel messen und zeichnen... 26

1 Winkel messen und zeichnen... 26 A Teilbarkeit und Rechnen mit Brüchen Seite 1 Teiler und Teilbarkeitsregeln... 4 2 Primzahlen und Primfaktorzerlegung... 5 3 ggt und kgv... 6 4 Bruchzahlen und gemischte Zahlen... 7 5 Erweitern und Kürzen...

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

International Mathematical Olympiad Formula of Unity / The Third Millennium Jahr 2015/2016. Runde 1 Aufgaben in Klasse 5

International Mathematical Olympiad Formula of Unity / The Third Millennium Jahr 2015/2016. Runde 1 Aufgaben in Klasse 5 Aufgaben in Klasse 5 1. Peter, Basil und Anatoly haben zusammengelegt, um einen Ball zu kaufen. Es ist bekannt, dass keiner von ihnen mehr als halb so viel ausgegeben hat, wie die anderen beiden Jungen

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Orientieren im Zahlenraum bis 1 Million

Orientieren im Zahlenraum bis 1 Million Inhalt A Orientieren im Zahlenraum bis 1 Million 1 Stellentafel und Zahlenstrahl 6 2 Nachbarzahlen und Runden 8 3 Anordnen 10 B Addieren und Subtrahieren 1 Mündliches Addieren und Subtrahieren 12 2 Schriftliches

Mehr

Was ändert sich, wenn zu Beginn eine andere Anzahl n an Streichhölzern auf dem Haufen liegt?

Was ändert sich, wenn zu Beginn eine andere Anzahl n an Streichhölzern auf dem Haufen liegt? NIM Auf dem Tisch liegen mehrere Haufen mit Spielsteinen. Zum Beispiel drei Haufen mit 4, 5 und 6 Steinen. Jeder Spiele nimmt abwechselnd von einem Haufen eine beliebige Anzahl an Steinen. Der Spieler,

Mehr

Mathematik-Arbeitsblatt Klasse:

Mathematik-Arbeitsblatt Klasse: Mathematik-Arbeitsblatt Klasse: 23.10.2012 Aufgabe 1 (5A1.01-031-m) Martin, Michael und Max möchten für die Mama zu Weihnachten gemeinsam ein Buch als Geschenk kaufen. Es kostet 27. Jeder der drei hat

Mehr

14:30 Uhr. 17:30 Uhr. 18:30 Uhr. 15:30 Uhr. 16:30 Uhr

14:30 Uhr. 17:30 Uhr. 18:30 Uhr. 15:30 Uhr. 16:30 Uhr So fit BIST du 1 Trage die Uhrzeiten ein! Du kannst daneben auch eine Uhr zeichnen. 1) 2 30 14:30 Uhr 2) 5 30 17:30 Uhr 3) 6 30 18:30 Uhr 4) 3 30 15:30 Uhr 5) 4 30 16:30 Uhr 68 So fit BIST du 1 1) Trage

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Bruchterme. Klasse 8

Bruchterme. Klasse 8 ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 205 7. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Zahlen bis. Spiele im Zahlenraum bis 10. Bitte der Reihe nach! Durchführung: Varianten: Zählen. 10 (auch zu zweit möglich) vor der Tafel

Zahlen bis. Spiele im Zahlenraum bis 10. Bitte der Reihe nach! Durchführung: Varianten: Zählen. 10 (auch zu zweit möglich) vor der Tafel Bitte der Reihe nach! Zählen vor der Tafel 10 (auch zu zweit möglich) 4 5 6 7 8 9 10 Zahlenkärtchen 1 bis 10 Zehn Kindern wird je eine Zahl von 1 bis 10 zugeordnet. Die Zettel mit den jeweiligen Zahlen

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million 1. Addieren (Zusammenzählen), 3 Seiten Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 2.1. Subtrahieren (Abziehen) Abziehverfahren 1 *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 2.2. Subtrahieren

Mehr

Bruchrechnen für Fortgeschrittene. 1. Teil. Kürzen, Erweitern Addition, Subtraktion. Zur Wiederholung oder zum Auffrischen. auf etwas höherem Niveau

Bruchrechnen für Fortgeschrittene. 1. Teil. Kürzen, Erweitern Addition, Subtraktion. Zur Wiederholung oder zum Auffrischen. auf etwas höherem Niveau Bruchrechnen für Fortgeschrittene 1. Teil Kürzen, Erweitern Addition, Subtraktion Zur Wiederholung oder zum Auffrischen auf etwas höherem Niveau Die Aufgaben aus diesem Text sind zudem in 10222 ausgelagert.

Mehr

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen?

Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Mathematik: spannend - abwechslungsreich nachvollziehbar! Wie wecke und fördere ich das Interesse bei Schüler/innen? Sandra Reichenberger (sandreich@gmail.com) UF Mathematik und Informatik, Universität

Mehr

Sachinformation Umkehrzahlen

Sachinformation Umkehrzahlen Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet

Mehr

Aufgabe 5: Dezimalzahlen

Aufgabe 5: Dezimalzahlen Schüler/in Aufgabe 5: Dezimalzahlen LERNZIELE: Dezimalzahlen verstehen und sie in Brüche umformen und umgekehrt Mit Dezimalzahlen rechnen Achte darauf: 1. An verschiedenen Problemstellungen zeigst du genau,

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 1. Addieren (Zusammenzählen), 3 Seiten 2. Subtrahieren (Abziehen) Abziehverfahren *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 3. Subtrahieren (Abziehen)

Mehr